
GigaVoxels: Ray-Guided Streaming for Efficient and Detailed Voxel Rendering

Cyril Crassin Fabrice Neyret
LJK / INRIA / Grenoble Universities / CNRS

Sylvain Lefebvre
INRIA Sophia-Antipolis

Elmar Eisemann
MPI Informatik / Saarland University

Figure 1: Images show volume data that consist of billions of voxels rendered with our dynamic sparse octree approach. Our algorithm achieves real-time to interactive rates on
volumes exceeding the GPU memory capacities by far, tanks to an efficient streaming based on a ray-casting solution. Basically, the volume is only used at the resolution that is
needed to produce the final image. Besides the gain in memory and speed, our rendering is inherently anti-aliased.

Abstract

We propose a new approach to efficiently render large volumetric
data sets. The system achieves interactive to real-time rendering
performance for several billion voxels.

Our solution is based on an adaptive data representation depend-
ing on the current view and occlusion information, coupled to an
efficient ray-casting rendering algorithm. One key element of our
method is to guide data production and streaming directly based on
information extracted during rendering.

Our data structure exploits the fact that in CG scenes, details are
often concentrated on the interface between free space and clusters
of density and shows that volumetric models might become a valu-
able alternative as a rendering primitive for real-time applications.
In this spirit, we allow a quality/performance trade-off and exploit
temporal coherence. We also introduce a mipmapping-like process
that allows for an increased display rate and better quality through
high quality filtering. To further enrich the data set, we create addi-
tional details through a variety of procedural methods.

We demonstrate our approach in several scenarios, like the explo-
ration of a 3D scan (81923 resolution), of hypertextured meshes
(163843 virtual resolution), or of a fractal (theoretically infinite res-
olution). All examples are rendered on current generation hardware
at 20-90 fps and respect the limited GPU memory budget.
This is the author’s version of the paper. The ultimate version
has been published in the I3D 2009 conference proceedings.

1 Introduction

Volume data has often been used in the context of scientific data
visualization, but it is also part of many special effects. Companies
such as Digital domain, Cinesite, or Rhythm ’n Hues now massively

rely on so-called voxel engines [Kis98, BTG03, Kap03, KH05] to
render very complex scenes.

Examples can be found in many recent movie productions
(e.g., XXX, Lord of the Rings, The Day After Tomorrow, Pirates
of the Caribbean, The Mummy 3). Clouds, smoke, foam, and even
non-fuzzy but extremely detailed geometric data (e.g., boats in Pi-
rates of the Caribbean) are all represented with voxels and rendered
via volume rendering. The scene size and resolution is so large that
voxels often do not even fit in the computer’s memory. In addition
to storage, the rendering of such data is also extremely costly, even
for previsualization.

The significant advantage of voxels is the richness of this represen-
tation and the very regular structure which makes it easy to manipu-
late. In particular, filtering operations are well-defined, making it a
good candidate to address aliasing issues that are hard to deal with
for triangulated models.

This is one of the reasons voxel data is often used to represent
pseudo-surfaces, which is an interface that resembles a surface
at a certain distance, but appears complex (non-heightfield, non-
connected, or non-opaque) at close view. An example is the fo-
liage of a tree that can be well approximated with volumetric
data [RMMD04], but this observation holds for complex surfaces
in general. Thus volumetric rendering is also a graceful way of
dealing with the level of detail problem.

In this paper, we show that the current hardware generation is ready
to achieve high-quality massive volume renderings at interactive to
real-time rates. Benefits such as filtering, occlusion culling, and
procedural data creation, as well as level-of-detail mechanisms are
integrated in an efficient GPU voxel engine. This enables us to
obtain some of the visual quality that was previously reserved for
movie productions and enables the technique to be used to previsu-
alize special effects.

There are two major issues before making detailed rendering of
massive volumes possible: overcome the memory limitations (and
propose related update schemes) and the usually costly rendering.

Volume data can require large amounts of memory, thus limiting the
scene’s extent and resolution of details. The fact that the scene can
no longer be held entirely in memory implies the need for intelligent



data streaming from larger, but slower memory units. This point is
particularly crucial for real-time applications because the memory
restrictions on the GPU are more severe than for CPU software pro-
ductions. Even if we were able to iteratively fill the GPU memory in
a brute-force manner, the transfer of 512MB each frame (which is
the standard memory size on current GPUs) already prevents real-
time performance.

The second challenge is the actual rendering of volumes. Display-
ing data with pure fixed-step ray marching can lead to alias artifacts
and is costly due to the large amount of voxels that needs to be vis-
ited, shaded, and blended.

Fortunately, most of the time, only parts of the volume are needed
at the full resolution. Others are invisible or distant enough to be
approximated without quality loss. Occlusion can also cover parts
that in consequence can be omitted. This can happen even if the
scene has no opaque entity. Transparent materials can quickly ac-
cumulate to denser, thus opaque, elements which block the view.

This paper aims at making voxels an alternative rendering primitive
for real-time applications. Our framework is highly inspired by
voxel engine tools used in special effect productions: it lifts features
known to be time and memory consuming (even in the scope of
offline production) to interactive and real-time rates.

2 Previous Work

Much work has focused on volume visualization, too much to be
covered in this paper. For a recent overview of real-time volume
rendering techniques, we refer the reader to [EHK∗06]. Also, many
approaches focus on overcoming discretized representations to re-
cover a smooth signal. This also includes high-quality normal re-
construction (e.g., [MMMY97]). Our focus lies more on data man-
agement and efficient artifact-free rendering. The high resolution
of our input also hides, to some extent, aliasing issues.

Full voxel grids have been used in many applications to benefit from
the visual complexity allowed by volumes for, e.g., fur [KK89],
vegetation [DN04], or pseudo-surfaces [Ney98]. Because of the
very detailed and realistic appearance that arises from the use of
voxels, much effort was spent on accelerating volume rendering.
Recently, many GPU-based approaches were published. Earlier so-
lutions relied on volume slicing [LL94], whereas newer approaches
perform a ray marching in the fragment shader.

Many efficient methods assume that the entire volume is present
in the graphics card’s memory, thus highly limiting the possible
detail level. Therefore, in the context of real-time rendering, vox-
els remained mostly a valuable representation for distant models
(e.g., [MN00, GM05, DN09]) because resolution can be kept low,
counteracting the usual memory cost.

Most recent methods rely on some ray marching procedure where
opaque models are of particular interest as they allow for an early
ray termination. Height fields share this concept. It also aims
at improving performance via sophisticated preprocessing meth-
ods [BD06] and intelligent ray marching [PO07], but are mostly
limited to this restricted type of data.

It is true though, that a full volume is not always needed. For com-
puter graphics scenes, it often suffices to have detail located mostly
in a layer at the interface between empty- and filled space. The
observation has been used in rendering in form of specialized rep-
resentations such as shell maps [PBFJ05], relief textures [OBM00],
bidirectional textures [TZL∗02], and hypertextures [PH89]. In all
cases, volume data is represented in a limited interface attached to
an object’s surface, or to the space around, as is the case for some
recent GPU structures [LHN05b, LH06, LD07]. Nonetheless, the

Figure 2: In CG scenes, details tend to be concentrated at interfaces between dense
clusters and empty space.

storage and rendering of these previous methods are only efficient
if the volume layer remains small on the screen. Instead, we will
deal with general volumes.

General volumetric data sets also often consist of dense clusters in
free space (compare Figure 2) so-called sparse-twice. One can ben-
efit from clustered data, e.g., by compaction [KE02] or fast traver-
sal of empty space, avoidance of occluded regions [LMK03], or by
stopping rays when a certain opacity level is reached [Sch05]. We
also want to make use of regions of constant density for acceleration
and compaction purposes.

Although inspired by the aforementioned work, this paper focuses
on out-of-core voxel rendering to achieve the aim of richness of
the representation, in conditions where the memory of the GPU is
typically orders of magnitude smaller than the data, which can be
very detailed. Much research has focused on the topic of massive
volume rendering. Boada et al. [BNS01] analyze the volume data
by computing a mipmap-like structure based on an octree. They
then choose a cut through the tree and use the leaves’ mipmap
data during rendering. LaMar et al. [LHJ99] keep all these dif-
ferent resolution levels in memory and choose the blocks according
to the distance from the observer during rendering. Our goal is a
combination of both: view-dependent rendering for massive vol-
umes. This is close to [GS04], where data is compressed, used in a
view-dependent manner, and empty space is skipped efficiently. Al-
though relatively efficient, the approach involves much CPU work,
does not achieve temporal continuity, nor does it include occlusion
tests to cull hidden parts of the volume.

Volume decompositions into blocks have been used in many other
approaches, e.g., [HQK05], but without filtering, the block struc-
ture remains visible and aliasing artifacts can occur. Filtering
was discussed in [VSE06] where two approaches are presented.
One based on [LHN05a], but leading to a more difficult filtering
scheme, and one with higher precision based on [LKS∗06], but
that tends to overrefine some parts of the scene. The structure is
view-independent though, whereas our approach adapts resolution
continuously. This makes discontinuities disappear and temporal
transitions to a different subdivision level are smooth.

Our structure shares similarities with brick maps [CB04], but is
dynamic, and, as a consequence, its content is view-dependent
(through LOD (level-of-detail) and visibility). We thus combine
an adaptive version of the structure from [LHN05a] with regular
constant-sized memory blocks [LKS∗06], which allow for very ef-
ficient hardware-based filtering.

The most related work has very recently been published by Gobbetti
et al. [GMAG08] and we will take a closer look at their solution in
the next section.

Preliminaries

Our approach was developed in parallel to the work of Gobbetti et
al. [GMAG08]. While it shares similarities with this work, our ap-
proach provides better quality / performance and offers new possi-



bilities such as procedural content and level-of-detail management
thus pushing forward the idea of making volumes a rendering prim-
itive. To better understand our contributions and make this paper
self contained, we will first give an overview of what our approach
shares with Gobbetti et al.’s one.

Let’s start with a naive consideration. If the volume is small, GPUs
allow for an efficient rendering by simply stepping through the data
set stored in a 3D texture and accumulating the voxels’ colors. In
this way, one can benefit from several hardware related advantages,
like direct 3D addressing, tri-linear interpolation, and a 3D coherent
texture cache mechanism. For larger volumes, even if the GPU had
enough memory, there are two problems: first, the algorithm would
be slow due to many steps that need to be taken in large data sets
and, second, the whole dataset will not fit into the GPU memory.

One insight is that, for a given point of view, not the entire volume
needs to be in memory. By organizing the data in a spatial sub-
division structure, empty parts can be let unsubdivided and distant
parts can be replaced by lower mipmap levels, leading to a lower
resolution (a different level-of-detail, LOD), thus less GPU mem-
ory requirements. In addition, for a given point of view, hidden
parts do not need to be loaded at all (see Figure 2). As Gobbetti et
al., we chose an octree structure, which is convenient to represent
and traverse on the GPU [LHN05b, LHN05a], and is well adapted
to store regular data like voxels.

The octree is refined as to reflect the needed precision in the scene.
Each tree node contains a pointer to a so-called brick or is indicated
as constant/empty space. A brick is a small voxel grid of some pre-
defined size M3 (usually M = 32) that approximates the part of the
original volume that corresponds to the octree’s node. For example,
the brick for a root node would be an M3 voxel approximation of
the entire data set. The data representation thus combines the mem-
ory efficiency of an adapted structure with small 3D texture units
that can be efficiently evaluated through ray marching.

All bricks are grouped in a large 3D texture, the brick pool, stored
on the GPU. This memory is limited and so its content needs to
be chosen wisely and updated when the viewpoint changes. At all
times, the algorithm makes sure that the bricks of all visible leaf
nodes are in the pool. This enables an appropriate rendering of the
entire volume from the current viewpoint. For other nodes, bricks
might be missing, in which case pointers are invalidated.

When the viewpoint is moved, nodes in the tree are fused or col-
lapsed based on the needed resolution and visibility. An update is
triggered if data in the brick pool is missing. Each brick in the pool
has a certain timestamp that is reset upon usage. If an octree node
needs a subdivision and new bricks are transferred to the GPU, the
algorithm will use the memory locations that were previously re-
served for the oldest, thus unused, bricks (this concept is referred to
as LRU - Last Recently Used).

To keep track of the current data organization and facilitate updates,
the structure is mirrored on the CPU. Structure modifications can
thus be done on the host with all its general computational capaci-
ties, and only changes need to be transferred to the GPU. This fa-
cilitates some of the operations, such as the LRU ordering on the
CPU. It also allows for a brick cache in the main memory, which
is important if the volume is so large that hard disk accesses are
necessary.

3 Overview and Contributions

With respect to the work described in the previous section, we in-
troduce several important improvements. In Section 4, we present
our generalized data structure and discuss its condensed representa-
tion on the GPU. It reduces memory requirements, simplifies imple-

mentation, accelerates computations, as well as updates, and allows
us to exploit the sparse-twice data structures often encountered in
computer graphics. In Section 5, we explain a basic rendering strat-
egy that ensures a correctly produced image. This section also de-
tails the basic processes involved to traverse the grid.

We also address aliasing, which appears because the value of a
pixel should not be defined by accumulations along a ray, but by
the integration along a cone defined by the eye and the pixel’s ex-
tent. Computing this value with several rays (FSAA methods) in-
creases computation time significantly. As for 2D texturing, a way
to overcome this issue is to use mipmapping. Equivalently, a voxel
hierarchy can be built by iteratively downsampling and averaging
neighbors. Due to the filtering process, reading from a mipmap
delivers the integrated value of a small volume. If the step size dur-
ing the ray marching is chosen accordingly to the distance from the
observer, it is possible to obtain a good approximation of the ac-
tual cone integral and accelerate computations. Mipmapping thus
addresses aliasing to a large extent, smoothes the results and can
increase rendering performance, but it increases memory consump-
tion and makes tree updates more challenging.

We then discuss a more advanced solution that relies on an LRU
mechanism in Section 6. Here, we provide a unified render-
ing/visibility/LOD framework that is efficient, eliminates much of
the previous CPU interaction, and is easy to implement.

Finally, Section 7 will show several results and possibilities to am-
plify and increase the detail level of the original data procedurally.
This enables higher rendering quality than previously possible.

Figure 3: (Left:) Our spatial structure combines a N3 tree and mipmapped 3D texture
tiles. (Right:) Hierarchical structure with constant nodes (green) or bricks (purple).

4 Our Structure

As mentioned in Section2, an adaptive space subdivision is key to
render large volumetric models. Our algorithm makes use of N3-
trees (similar to [LHN05a]). Each node in an N3-tree can be sub-
divided into N3-uniform children, hence its name. In the case of
N = 2, this results in a standard octree, but using a different N can
modify the algorithms behavior. A trade-off between memory effi-
ciency (low N, deep tree) and traversal efficiency (large N, shallow
tree) is easily possible and can be adapted to the repartition of the
input data at each scale.

We further allow each node of the N3-tree to store a brick pointer
or a constant value. Storing a single value in the case of almost ho-
mogenous regions (empty or core) reduces memory requirements
enormously and we can avoid ray marching by directly computing
the voxel’s contribution. We store brick pointers also in the inte-
rior nodes of the tree, as it will enable us to perform high-quality
filtering via mipmaps. Our new update mechanisms, introduced in
Section 6, will take this into account.

4.1 Implementation of the Structure

Figure 4 summarizes the data structure of our approach and might
be helpful during the following discussion of the implementation.



Figure 4: Our N3-tree+brick structure (illustrated as a 22 quad-tree for clarity).

In our structure, only a single pointer is used per node, where Gob-
betti et al. [GMAG08] needed eight such pointers for the child, as
well as pointers to neighboring nodes. To make this possible, we
keep all nodes in a 3D texture, which we refer to as the node pool.
The texture is organized into blocks of N3 nodes. Grouping the
children of a node in one such block makes it possible to access all
N3 child nodes with a single pointer. In this way, not only coher-
ence is largely improved during the traversal (3D texture caches on
modern GPUs help drastically), but also memory requirements are
largely reduced. Even though our structure does not exhibit neigh-
bor pointers between adjacent nodes, we will show in Section 5.1
that an efficient traversal remains possible.

For each node, we reserve data to either store a constant value (ho-
mogenous volume), or a pointer towards a brick. With this infor-
mation, we reduce the previous eight RGBA (32 bit/channel) tex-
els [GMAG08] to two 32 bit values. This results in a 16 times stor-
age improvement. It may seem less important because the N3-tree
memory occupation is much lower than for the brick pool, but the
amount of data read during the traversal of the tree is critical for the
GPU rendering performances and updates to the structure can be
achieved with significantly less information transfer from the CPU.

Figure 5: Node implementation.

The 64 bit node data is repartitioned as follows (see Figure 5):
- 30 bits - encode a pointer to the child nodes for non-leaves (zero

meaning that there is no child);
- 1 bit - indicates whether the node is refined to a maximum, or

whether the original volume still contains more data;
- 1 bit - stores whether the content is a constant RGBA8 value

(e.g., empty or core regions) or described by a brick;
- 30/32 bits - accordingly represent either:

- A pointer to an M3 brick for non-constant leaves (30 bits);
- The average value at this location for homogenous leaves

(4*8 bits).

In this paper, we also introduce a high-quality (quadrilinear) filter-
ing based on mipmapping (Section 5.2). Without this anti-aliasing,
the amount of data per node could be further reduced to only 32
bits because then only leaves need data pointers. Thus, child point-
ers, brick pointers, and constant values (stored as RGBA6) are all
exclusive and can share the same 30 bits. The remaining two bits

leave enough room for the rest of the necessary node data. Hence,
volume data is not only needed at the highest resolution (leaves of
the tree), but also for interior nodes. The performance cost of using
64 instead of 32 bits is minor because it still fits in a single texel of
a luminance-alpha texture.

5 Basic Approach

In this section, we will discuss how to render and update the volume
represented by the N3-tree. It is useful to first consider the simpler
case of standard rendering, where we assume that all necessary data
is present. This will allow the reader to further familiarize with the
data structure before we address the dynamic updates. In particular,
our advanced approach in Section 6 combines this render algorithm
and a visibility mechanism to trigger updates in a single unified
method. Previous work relied on a separate step to analyze how
to adapt the structure and which bricks should be loaded to next.
This usually involved much CPU interaction, whereas most of our
computations will be executed on the GPU.

5.1 Ray-Casting

Our rendering consists of marching the data in the structure along
the view rays while accumulating color and opacity. Hierarchically,
rays need to traverse the N3-tree, and when reaching a leaf node, the
M3-bricks or homogenous region.

To initialize the rays, we use rasterization to draw some proxy ge-
ometry that delivers the origins and directions corresponding to the
view rays to the fragment shader. One could use a screen-covering
quad on the near plane, the bounding box of the volume data, or
some approximate geometry that contains the non-empty areas of
the volume. Such a proxy for the initial position can also be used to
determine where the ray leaves the volume.

Both extremes can be computed in a single pre-rendering by acti-
vating an alpha blending set to a maximum blending and drawing
the depth of the front-facing surfaces in the luminance, and one
minus the depth of the back-facing ones in the alpha channel. Al-
ternatively, we can tile two depth buffers in one texture and let the
geometry shader move the back-facing triangles in the second tile
while inverting their depth. In practice, to allow a fair comparison
to previous work, all our tests were performed using the near plane
to initialize the rays and the volumes bounding box to stop them.

One efficient method to traverse the tree along the initial rays would
be a recursive DDA (i.e., generalized Bresenham) through the N3

tree nodes. This algorithm relies on a stack which can be imple-
mented on GPU as dynamically indexed memory. This is inefficient
on current GPUs (due to the lack of fast indexable memory within
shader processors).

Instead, we use an iterative descent from the tree root similarly to
the kd-restart algorithm [HSHH07]. It is particularly efficient be-
cause we highly benefit from the N3-tree structure. We start with
the origin of the rays and locate them in the N3-tree (top-down).
The descent stops when we reach a node with the appropriate level-
of-detail (not necessarily a leaf). Such a node either represents a
constant region of space, or contains a brick whose resolution is
fine enough so that a voxel projects to at most one pixel. In case
of a constant node, the value is simply integrated analytically along
the distance the ray traversed in the node. In case of a brick, a stan-
dard ray-marching is applied until we leave the current node. The
new position then serves as the origin for the next descent. One im-
portant observation is that our traversal does not need the structure
to indicate correct level-of-details (as done previously [GMAG08]).
This is determined in the shader. As we will see later, this is a key



feature to minimize update operations.

The descent is fast because the coordinates of a point can be used
directly to locate it in the N3-tree. Let x∈ [0,1]3 be the point’s local
coordinates in the volume’s bounding box and c be the pointer to the
children of the root node. The offset to the child node containing x
is simply int(x ∗N), the integer part of the multiplication between
x and N. We fetch the child at c + int(x ∗N) and continue with the
descent by updating x with x ∗N− int(x ∗N). Even though a new
descent is needed every time a node is left, mostly the same pointers
in the structure will be followed, thus the hardware texture cache is
very well prepared.

This ray-casting is performed using one big fragment shader for
both top-down traversal and brick sampling. It proved more effi-
cient than making these two steps separate passes, probably due to
local data storage and texture cache.

5.2 High Quality Filtering

Figure 6: Our method (top) does not show the noise of standard tracing (bottom).

The rendering of the bricks should actually be performed differently
than what we previously explained because we want to perform a
better filtering of the values. Hence, we adapt the sampling rate and
the relative mipmap level during the ray marching depending on the
viewpoint.

As mentioned before, our traversal stops when it reaches the appro-
priate node. The idea behind it was twofold. On the one hand, it
allows to increase rendering speed, on the other hand, it is a good
approximation of a cone instead of ray tracing. For smooth transi-
tions between different tree configurations and a better fit to the ac-
tual cone size, we need access to other mipmap levels of the bricks.
Fortunately, these correspond to the bricks in nodes we encounter
during the tree descent (see Figure 4).

One might think that many mipmap levels might be necessary to
perform this internal filtering, but a brick only describes a small
extent of space. It can be shown that for a small near plane offset
three levels are enough. Three is also the minimum because, if
the filter kernel at the entry point is only slightly below the next
mipmap level, it might exceed it when the cone leaves the brick.
For proper blending three levels are a must.

To make these bricks available for traversal, we collect them dur-
ing the top-down traversal. We use a small queue of three elements
implemented in shader registers without using dynamic indexing
operations. Storing data only in leaves and using neighbor point-
ers to step through the volume are both elements that would make
appropriate filtering very difficult.

The recovered color and opacity values are then accumulated with
pre-integrated transfer functions (e.g., [EKE01]). A phase func-
tion and pseudo-Phong lighting (using the density gradient as the
normal) can easily be accounted for.

5.3 Tree Updates via Interrupting and Resuming

So far, we have discussed the rendering procedure in the case that
all data is present, but for complex data, not all of it might reside in
GPU memory. Now, the simplest way to achieve a correct output
image is to start the ray tracing process and to stop rays whenever
data is missing. This is communicated to the CPU, which initiates
the loading, then the algorithm resumes at the last ray position. The

consequence is that several passes are performed to complete the
output for a given frame. To only treat active rays, we use a standard
technique in GPU ray tracing which is to block terminated pixels
with the Z-Buffer, relaying on the z-cull and early-Z GPU features
to prevent their execution.

Whenever we stop a ray, we need to maintain some status infor-
mation about the ray: its preliminary output color accumulation,
the missing node ID, and the current marching position in space.
We can fit this information in two Multiple Render Targets (MRTs).
The missing IDs are downloaded to the CPU that then adapts the
data structure.

During the next rendering pass, initiated with a proxy surface, these
buffers are used as input texture and the earlyZ technique will en-
sure that only active pixels will have the fragment shader executed.
Even though this is very rudimentary, this algorithm already shows
some nice properties. Loaded data is directly traversed by the ray,
and no data lying outside the frustum will ever be loaded, even
though we did not explicitly test for it. Further, the CPU does not
need to track the needed LODs, the rays themselves will indicate
through their traversal which precision is needed in each area of the
screen. Nevertheless, the simple system as described so far would
not know what data became useless. In the following, we will dis-
cuss a more complex LRU system and modifications of the basic
algorithm that allow for real-time performance.

6 Advanced Algorithm

We discussed our implementation of the spatial subdivision struc-
ture that enables rendering of large volumetric models. We also ex-
plained how rendering is performed, and presented a simple method
to update the data in the tree. This first approach in Section 5.3
interrupts ray tracing if data is missing, triggers an update and re-
sumes once the new data has been uploaded to the GPU. This leads
to accurately rendered images but costs much time.

The second display mode we will discuss now introduces some ap-
proximation. If data at the needed resolution is missing, a higher
mipmap level is tried. Only if none is present or the available data
is too coarse, we resort to the iterative method we have seen before.
Using higher mipmap levels is often a good choice, as it has been
shown that we perceive less details during strong motion, when it is
most likely to encounter missing data. Once the camera settles, an
accurate rendering is achieved within a few frames. Fixing a budget
for the upload thus delivers a relatively stable frame rate.

Nonetheless, information about node usage still needs to be com-
municated to the CPU and not only for the first hit node, but for
the entire trajectory of the ray. In this section, we will discuss our
solution to this problem.

6.1 Combining Rendering and Visibility

The basic principle is to subdivide or fuse nodes in the N3-tree in
an LRU manner. Each node and brick has a timestamp that is reset
upon usage and whenever a new element is added it will replace the
oldest. Let’s suppose for a moment that the CPU had access to this
information for all rays. Then it can conveniently update the times-
tamp of the pool elements (nodes and bricks) in its mirrored data
structure. Furthermore, it can trigger the loading of needed data.
It even knows where to store the brick in the pool because times-
tamps are maintained in host memory. All necessary modifications
are then transferred to the GPU via texture-update calls. This leads
to a unified management of the brick pool and the node pool as two
LRU controlled caches.

The question that remains is how to determine which nodes were
used, which ones need refinement or can be coarsened, and what



data is missing on the GPU. In [GMAG08], this information is de-
rived by evaluating node LOD’s and frustum containment through
tree traversal on the CPU, that induces a significant overhead. Fur-
ther, visibility is determined via occlusion queries against the ren-
dered image of the previous frame. But even when interleaved in-
telligently, occlusion queries result in a significant cost.

Following our strive to establish volume data as a rendering prim-
itive, we want to avoid much of the CPU interaction. Ultimately,
the GPU should steer which data is loaded and indicate what data
was helpful in the previous frames. Interestingly, this information
is available on the GPU when ray tracing terminates because the
current volume was just traversed. This is the key insight that mo-
tivated us to combine rendering and visibility update phase.

In our solution, besides the output color, each ray also outputs some
supplementary information about data usage or update needs. Be-
cause the information is collected by the rays, frustum containment,
visibility and LOD selection are naturally handled in one unified
way and all workload is taken off the CPU.

There are two major problems that needs to be addressed and that
we will describe in more detail in the following sections. First and
especially in the presence of transparency, each ray traverses a large
number of nodes, but we can only output a limited amount of infor-
mation per fragment in the framebuffer (even when using MRTs).
Ad-hoc solutions, e.g., storing only the first node, would not lead
to acceptable results with a LRU scheme. Second, this information
needs to be sent back to the CPU to trigger the updates. As band-
width is limited, we will show how to perform a compaction before
data exchange.

6.1.1 Rendered Feedback Information

During rendering we traverse the tree and stop when we reach the
node corresponding to the needed level-of-detail. If the required
data is present, we traverse the mipmapped brick. To make sure
that the CPU keeps these elements in the pool, we collect the cur-
rent node index in a node-list (it will be the CPU that makes sure
that all the node’s parents needed for the mipmapping also remain
in the cache). If the appropriate level-of-detail is missing or the
node is terminal, meaning that there is no more refined data in the
original model, we simply add it to the node-list. Remember that
this information is indicated via one bit in the node (Figure 5). Oth-
erwise, we also add it to the node-list, but indicate that it needs
further subdivision. In practice, it works best to limit subdivisions
to one request per ray. A single subdivision might already change
opacity and allow an early ray termination in the next frame.

As stated before, arbitrarily sized node-lists cannot be efficiently
output on current GPUs (currently only eight RGBA32 render tar-
gets are possible). An adapted repartition of the data is necessary.
We reserve the first render target for the output color. The remain-
ing buffers will keep the node information and we will refer to them
as the node-list textures.

Each node-list texture provides room for four encountered nodes
(one per channel) and their respective subdivision tag. This indi-
cator will make the CPU simply reset the timestamp, or induce a
subdivision because the needed level-of-detail is currently missing.
Interestingly, there is no need to send collapse information. If the
rendering algorithm no longer descends into a node, its index will
never be put into the list, thus the LRU mechanism will not reset its
timestamp and thus replace the data at some point. This establishes
a lazy evaluation scheme which simplifies substantially previous
solutions that needed to maintain the tree actively.

Using 30 bits for the node index, 1 bit for the subdivision tag, and
seven node-list textures allow for a 7×4 = 28-node output per ray.

Generally, this is insufficient for complex scenes. To ensure that
no nodes are missed, we exploit two important properties of our
algorithm: spatial (on screen), and temporal coherence (between
successive frames). This will introduce some additional computa-
tions and in practice we found that three MRTs are the best choice.
Hence, each pixel can store 3×4 = 12 nodes.

Neighboring rays will visit mostly similar nodes because the brick
in a node always projects onto several pixels. To exploit this spatial
coherence, we group rays in packages in the image plane. E.g., for
a package size of 2× 2, the upper-left ray will store the first 12
traversed nodes, the upper-right the second 12 nodes, and so on (cf.
Figure 7). This totals in 48 node indices.

Figure 7: We exploit spatial coherence using a pattern attributing different node sets.

In addition, temporal coherence can be used. During traversal the
rendered nodes are pushed in a FIFO. In the first frame, we stop
pushing after 48, in the second frame after 96 elements. This 48-
element window is shifted over a small set of frames, this increases
the number of retrievable nodes further. For regions with less nodes,
one should notice that the use of a FIFO ensures an information
output in each frame. There is no penalization due to temporal
coherence. In consequence, we gain reactivity where we can.

6.1.2 Compaction of Update Information

To simplify explanations, we will ignore the spatial-coherence pat-
tern and assume that 12 nodes per ray suffice.

Once the node-list textures are constructed, it would be possible
to read back the memory to the CPU, but the resulting bandwidth
would be enormous and parsing additionally costly on CPU. Ide-
ally, one instance of each node reference would be enough. A naive
way to achieve this consists in sorting the node indices on the GPU
and then use a stream reduction to remove multiple entries. Sorting
is expensive and we would further sort many elements that would
afterwards just be deleted. Fortunately, we just saw that coherence
between neighboring rays is a powerful property and can be used to
compaction the texture. It is possible to reduce the set sufficiently
to make the sorting step unnecessary.

Figure 8: Selection step: (Left:) Lists are compared following a 2D pattern -
(N)K=(Not) Kept. (Right:) List entries are only compared on a local scope.

In a first pass, we derive a selection mask. Here, the the i-th bit
in an output pixel indicates that the i-th element in the list of the
underlying node-list texel should be kept. The selection mask is
based on a local comparison. We use a pattern like the one shown
in Figure 8. It compares the center list (orange, Figure 8-top-right)
against its surrounding lists and an entry in the list is only kept if
it does not appear in the surrounding (Figure 8-left). Theoretically,
this can be costly if the lists are long, but most nodes will be crossed
approximatively at the same moment by two neighboring rays. This



Figure 9: Some results: Trabecular bone data (augmented with Perlin noise) and Hypertextured bunny (based on a distance field approximated on the fly on the GPU)

allows us to perform an efficient approximate comparison: the i-th
list element is only tested against the (i-1)-th, i-th, (i+1)-th elements
of the neighboring lists (Figure 8-right). This can induce "false
positives", but it remains conservative.

After this first step, each pixel of the selection mask contains a
bitvector, whose non-zero entries represent the list elements to
keep. We rely on the HistoPyramids [ZTTS06] to reduce the se-
lection mask. This algorithm is a special case of the prefix-sum
scan and binary search algorithm, highly optimized to exploit 2D
locality and GPU’s texture processing units. The final step recovers
the actual corresponding node indices, then the compacted texture
is transferred to the CPU. During this rearrangement process, the
original pixel position will be lost. Having 12 node entries per list,
we can avoid this problem by using the remaining 20 bits (over 32)
to encode the pixel position of the ray. Only with this location in-
formation we will be able to recover the actual node indices.

After the reduction, each pixel contains a ray pixel-position and a
bitmask. This information allows the creation of a compact node
index texture that will be read back by the CPU. In practice, the
bitmask usually contains 2-3 non-zero entries. It is thus possible to
make the final compacted texture one single RGBA32 texture which
allows us to store indices of four nodes. If this limit is exceeded the
requests are automatically postponed to the next frame.

7 Results

All tests were performed on a Core2 bi-core E6600 at 2.4 GHz, and
an NVIDIA 8800 GTS 512 graphics card (G92 GPU) with 512 MB.
All images are rendered at 512×512 (see Figures 1 and 9).

Example 1: Explicit volume (trabecular bone).
We used a 10243 scanned volume of a trabecular bone. Mipmaps
were precomputed and analyzed for constant density. This exam-
ple still fit in the CPU memory. We copied this volume 8 times in
each direction in order to simulate a 81923 resolution. In our data
structure, we used N = 2 and M = 16. The algorithm achieves 20-
40 Hz with smooth mipmapping activated. Without, an average of
60fps was possible. We also added scales of Perlin noise to increase
richness. This noise is added procedurally on the GPU. Evaluating
noise in each frame would be expensive, at a low penalty, we cre-
ate bricks on the GPU that we can then use in subsequent frames.
In comparison to [GMAG08], this indicates approximately a 50%
speedup (nevertheless, this is based on our implementation).

Example 2: Procedural volume by instantiation (Sierpinski).
We used one unique brick of size 813. We naturally chose N = 3
so that we can rely on one unique instantiation for all non-empty
children. The resolution is potentially infinite, but in practice, the
floating point precision of coordinates limits the zoom to 219 so the
maximum virtual resolution is 8.4M3. Performance often reaches
90 Hz, and usually stays around 60.

Example 3: Hypertextures and amplification of a mesh.
For this example, we use a volume defined by the interior of a mesh.

We derive a distance field from the mesh on the fly on the GPU. and
use the surface vicinity for hypertexture lookups. Here we aimed at
very high quality and use 20 octaves of Perlin noise, shading, and
complex materials. Due to the complex computations on the GPU
to produce the volume information, the frame rate is relatively low
(around 20 FPS for a 10243 volume).

Example 4: Cumulus cloud.
Our method was used to encode the cloud details in [BNM∗08] (a
paper dealing with multiple scattering in clouds). Even in combi-
nation with complex shading [BNM∗08], our algorithm allows for
an increase of detail. We used N = 2, M = 32, and 5 octaves of
Perlin noise to simulate enhance the cumulus cloud, with a virtual
resolution of 20483.

Memory usage: In most examples, the node pool was small (4
MB) corresponding to 643 entries. Using 163 bricks, 10243 indices
can be referenced.The brick pool used 430 MB giving room for 423

bricks.

We usually trade-off some computation time for memory efficiency:
in all our examples, normals are computed on-the-fly. The procedu-
ral noise examples further showed that bricks can also be created on
the GPU. This on-the-fly noise creation proves actually to be more
efficient than a CPU evaluation and transfer.

8 Conclusion and Future Work

We have presented a method for interactive rendering of large and
very detailed volumes. Our work shows that real-time performance
with high quality volume rendering is possible. The algorithm
avoids most of the CPU interaction. Our compact data structure
minimizes memory usage on the GPU side. The introduction of
smooth transitions based on mipmapping allow temporal coher-
ence and anti-aliasing. This hints at the possibility that volume data
could be an important future real-time primitive.

Currently, animation is a big problem for volume data. In the future,
we would like to investigate possible solutions.

Another interesting avenue would be to apply our method to other
hierarchical representations: general mesh subdivisions, point ren-
dering, or recent structures like volume-surface trees [BHGS06].

We would like to thank: Digisens for their support; Antoine Bouthors, Eric Brune-
ton, and Hedlena Bezerra for proof reading, and the anonymous reviewers for their
helpful comments. This work has been partly supported by the Excellence Cluster on
Multimodal Computing and Interaction (MMCI - www.m2ci.org).

References

BABOUD L., DÉCORET X.: Realistic water volumes in real-time.
In EG Workshop on Natural Phenomena (2006), Eurographics.

BOUBEKEUR T., HEIDRICH W., GRANIER X., SCHLICK C.:
Volume-surface trees. Computer Graphics Forum 25, 3 (2006),
399–409. Proceedings of EUROGRAPHICS 2006.



BOUTHORS A., NEYRET F., MAX N., BRUNETON E., CRASSIN
C.: Interactive multiple anisotropic scattering in clouds. In
ACM Symposium on Interactive 3D Graphics and Games (I3D)
(2008).

BOADA I., NAVAZO I., SCOPIGNO R.: Multiresolution volume
visualization with a texture-based octree. Vis. Comput. 13, 3
(2001).

BARGE B. L., TESSENDORF J., GADDIPATI V.: Tetrad volume
and particle rendering in X2. In SIGGRAPH Sketch (2003).
http://portal.acm.org/ft_gateway.cfm?id=965491 .

CHRISTENSEN P. H., BATALI D.: An irradiance atlas for global
illumination in complex production scenes. In Rendering Tech-
niques (EGSR) (2004), pp. 133–142.

DECAUDIN P., NEYRET F.: Rendering forest scenes in real-time.
In Rendering Techniques (EGSR) (june 2004), pp. 93–102.

DECAUDIN P., NEYRET F.: Volumetric billboards. Computer
Graphics Forum (2009).

ENGEL K., HADWIGER M., KNISS J., REZK-SALAMA C.,
WEISKOPF D.: Real-time Volume Graphics. AK-Peters, 2006.

ENGEL K., KRAUS M., ERTL T.: High-quality pre-integrated
volume rendering using hardware-accelerated pixel shading.
In ACM SIGGRAPH/EUROGRAPHICS workshop on Graphics
hardware (HWWS) (2001), pp. 9–16.

GOBBETTI E., MARTON F.: Far voxels: a multiresolution frame-
work for interactive rendering of huge complex 3d models on
commodity graphics platforms. In ACM Transactions on Graph-
ics (Proceedings of SIGGRAPH) (2005), ACM.

GOBBETTI E., MARTON F., ANTONIO J., GUITIAN I.: A single-
pass GPU ray casting framework for interactive out-of-core ren-
dering of massive volumetric datasets. Vis. Comput. 24, 7 (2008),
797–806.

GUTHE S., STRASSER W.: Advanced techniques for high quality
multiresolution volume rendering. In Computers & Graphics
(2004), Elsevier Science, pp. 51–58.

HONG W., QIU F., KAUFMAN A.: GPU-based object-order ray-
casting for large datasets. In Volume Graphics, Fourth Interna-
tional Workshop on (2005), pp. 177–240.

HORN D. R., SUGERMAN J., HOUSTON M., HANRAHAN P.: In-
teractive k-d tree GPU raytracing. In ACM Siggraph symposium
on Interactive 3D graphics and games (I3D) (2007).

KAPLER A.: Avalanche! snowy FX for XXX. In SIGGRAPH
Sketch (2003).
http://portal.acm.org/ft_gateway.cfm?id=965492 .

KRAUS M., ERTL T.: Adaptive texture maps. In ACM SIG-
GRAPH/EUROGRAPHICS conference on Graphics hardware
(HWWS) (2002), pp. 7–15.

KRALL J., HARRINGTON C.: Modeling and rendering
of clouds on "stealth". In SIGGRAPH Sketch (2005).
http://portal.acm.org/ft_gateway.cfm?id=1187214 .

KISACIKOGLU G.: The making of black-hole and nebula
clouds for the motion picture `Sphere´ with volumetric ren-
dering and the f-rep of solids. In SIGGRAPH Sketch (1998).
http://portal.acm.org/ft_gateway.cfm?id=282285 .

KAJIYA J. T., KAY T. L.: Rendering fur with three dimensional
textures. In SIGGRAPH (1989), pp. 271–280.

LEFEBVRE S., DACHSBACHER C.: Tiletrees. In ACM SIG-
GRAPH Symposium on Interactive 3D Graphics and Games
(I3D) (2007).

LEFEBVRE S., HOPPE H.: Perfect spatial hashing. In SIGGRAPH
(2006), pp. 579–588.

LAMAR E., HAMANN B., JOY K. I.: Multiresolution techniques
for interactive texture-based volume visualization. In Proceed-
ings of Visualization (VIS) (1999), pp. 355–361.

LEFEBVRE S., HORNUS S., NEYRET F.: GPU Gems 2. 2005,
ch. Octree Textures on the GPU, pp. 595–613.

LEFEBVRE S., HORNUS S., NEYRET F.: Texture sprites: Texture
elements splatted on surfaces. In ACM-SIGGRAPH Symposium
on Interactive 3D Graphics (I3D) (April 2005).

LEFOHN A., KNISS J. M., STRZODKA R., SENGUPTA S.,
OWENS J. D.: Glift: Generic, Efficient, Random-Access GPU
Data Structures. ACM Transactions on Graphics 25, 1 (2006).

LACROUTE P., LEVOY M.: Fast volume rendering using a shear-
warp factorization of the viewing transformation. In SIGGRAPH
(1994), pp. 451–458.

LI W., MUELLER K., KAUFMAN A.: Empty space skipping and
occlusion clipping for texture-based volume rendering. In Pro-
ceedings of IEEE Visualization (VIS) (2003), p. 42.

MÖLLER T., MACHIRAJU R., MUELLER K., YAGEL R.: A com-
parison of normal estimation schemes. In Proceedings of VIS
(IEEE Conference on Visualization) (1997), pp. 19–.

MEYER A., NEYRET F.: Multiscale shaders for the efficient re-
alistic rendering of pine-trees. In Proceedings of GI (Graphics
Interface) (2000).

NEYRET F.: Modeling animating and rendering complex scenes
using volumetric textures. IEEE Transactions on Visualization
and Computer Graphics 4, 1 (Jan.–Mar. 1998), 55–70.

OLIVEIRA M. M., BISHOP G., MCALLISTER D.: Relief texture
mapping. In SIGGRAPH (2000), pp. 359–368.

PORUMBESCU S. D., BUDGE B., FENG L., JOY K. I.: Shell maps.
In SIGGRAPH (2005), pp. 626–633.

PERLIN K., HOFFERT E. M.: Hypertexture. In SIGGRAPH
(1989), pp. 253–262.

POLICARPO F., OLIVEIRA M.: GPU Gems 3. Addison-Wesley,
2007, ch. 18: Relaxed Cone Stepping For Relief Mapping.

RECHE-MARTINEZ A., MARTIN I., DRETTAKIS G.: Volumet-
ric reconstruction and interactive rendering of trees from pho-
tographs. In SIGGRAPH proceedings (2004), pp. 720–727.

SCHARSACH H.: Advanced GPU raycasting. In Central European
Seminar on Computer Graphics (2005), pp. 69–76.

TONG X., ZHANG J., LIU L., WANG X., GUO B., SHUM H.-
Y.: Synthesis of bidirectional texture functions on arbitrary sur-
faces. ACM Transactions on Graphics 21, 3 (2002), 665–672.
(Proceedings of ACM SIGGRAPH 2002).

VOLLRATH J. E., SCHAFHITZEL T., ERTL T.: Employing Com-
plex GPU Data Structures for the Interactive Visualization of
Adaptive Mesh Refinement Data. In of the International Work-
shop on Volume Graphics (2006).

ZIEGLER G., TEVS A., THEOBALT C., SEIDEL H.-P.: GPU point
list generation through histogram pyramids. In Proc. of VMV
(2006), pp. 137–141.


