
TileTrees

SylvainLefebvre�

REVES/ INRIA Sophia-Antipolis
CarstenDachsbacher†

REVES/ INRIA Sophia-Antipolis

Figure1: Left: A torusis texturedby a TileTree.Middle: TheTileTreepositionssquaretexturetiles aroundthesurfaceusinganoctree.At
renderingtime, thesurfaceis projectedontothetiles. Right: Thetile mapholdingthesetof squaretiles.

Abstract

Texture mapping with atlasessuffer from several drawbacks:
Wastedmemory, seams,uniform resolutionandno supportof im-
plicit surfaces.Texturemappingin a volumesolvesmostof these
issues,but unfortunatelyit inducesan importantspaceand time
overhead.

To addressthis problem,we introducethe TileTree: A novel data
structurefor texturemappingsurfaces.TileTreesstoresquaretex-
ture tiles into the leavesof an octreesurroundingthe surface. At
renderingtime thesurfaceis projectedontothetiles, andthecolor
is retrievedby asimple2D texturefetchinto atile map.Thisavoids
the dif�culties of global planarparameterizationswhile still map-
ping large piecesof surfaceto regular 2D textures. Our method
is simpleto implement,doesnot requirelong pre-processingtime,
nor any modi�cation of the texturedgeometry. It is not limited to
triangle meshes.The resultingtexture haslittle distortion and is
seamlesslyinterpolatedoversmoothsurfaces.Ourmethodnatively
supportsadaptive resolution.

We show that TileTreesaremorecompactthanothervolumeap-
proaches,while providing fastaccessto thedata.We alsodescribe
aninteractivepaintingapplication,enablingto create,edit andren-
der objectswithout having to convert betweentexture representa-
tions.

Keywords: texturing, texturemapping,interactivepainting

� e-mail:Sylvain.Lefebvre@sophia.inria.fr
†e-mail:Carsten.Dachsbacher@sophia.inria.fr

1 Intr oduction

Texturemappinghasbecomeoneof thefundamentalcomponentof
computergraphicsapplications.By separatingshaperepresentation
from surfaceappearanceit providesapowerful andconvenienttool
to create,paintandrenderhighly detailedobjectsandsceneries,at
low geometricalcost.

Theestablishedapproachfor texturemappingis to �atten asurface
into the2D domainof asquareimage.Thesurfaceis parameterized
into the plane. While somesurfaceshave a naturalplanarparam-
eterization(cylinders, cones,more generallyall developablesur-
faces),in mostcasesthisoperationis extremelydif�cult. Thus,the
problemof �nding goodplanarparameterizationshasattractedlot
of researchinterestandextremelypowerful techniqueshave been
devised [FloaterandHormann2005]. The challengeis to �atten
thesurfacewhile keepinga low distortion,which oftenrequiresto
cut thesurfacein independentlyparameterizedcharts.Thesecharts
arelaterpackedinto asingletextureatlas[Maillot etal. 1993].Pro-
viding a tight packingis key to avoid wastingmemory.

Nowadays,with the increasingdemandfor realismandhigh qual-
ity in computergraphics,artists are often requiredto paint de-
tailed multi–layeredtexture mapsfor objectsand large parts of
thescenery. As a result,memoryconsumptionfor texturedatain-
creasedmuchfasterthanavailablememory. The limitations and
inherentdif�culties of planarparameterizationbecomelessaccept-
able: Memory is wastedby the impossibility to ef�ciently pack
irregular charts,or by oversamplingto compensatefor distortion.
Most parameterizationsarestaticandassumehomogeneoussam-
pling: Oncecomputedthey cannotadaptto artist paintedcontent.
Chartboundariesproducevisible discontinuitiesin thebilinear in-
terpolation.Finally, mostmethodsencodethemappingas2D co-
ordinatesin theverticesof a trianglemesh,andcannotbeusedon
implicitly de�ned surfaces.

This lead several researcherstoward adaptive and volume ap-
proaches.Theobjectis immersedinto avolumestoringcolor infor-
mationonly aroundthesurface.Datais storedin aspatialhierarchy,
typically an octree. This solvesa numberof issues:A planarpa-
rameterizationis no longernecessary, a seamlessinterpolationcan
bede�ned, thehierarchy canbere�ned in areasof interest.More-
over, the approachdoesnot involve any complex pre-processing.
Unfortunately, spatialhierarchiesalsoimply anoverheadin access
timeandspace,which limits their usein interactiveapplications.

Ournovel approachcombinestheadvantagesof volumeapproaches
and2D texturemapping. It removesthe needfor a globalparam-
eterizationwhile relying on 2D texturesfor ef�cient packingand
access.Our key ideais to useanoctreeto positionsquaretexture
tiles aroundthesurface. During renderingthesurfaceis projected
ontothetiles,andthecolor is retrievedby asimple2D texturefetch
into atile map(seeFigure1). Note,however, thatwedonotseekto
de�ne a continuoustexture domain: The tiles have differentsizes
andarepackedtogetherin arbitraryorder. Thesquarenatureof the
tiles makesef�cient packingeasierandlet usde�ne a seamlessin-
terpolationover thesurface.Furthermore,by changingtheresolu-
tion of thetileswecanlocally anddynamicallyadapttheresolution
to artistpaintedcontent.

2 Previous Work
Since its introductionby Catmull [Catmull 1974], texturing has
spanneda largebodyof research.In particular, severalresearchers
have focusedonovercomingthelimitationsof texturemapping.

Importancedriven parameterizationmethodshave beenproposed
to allocatemoreresolutionto regionswith �ne texturedetail[Sloan
et al. 1998; Sanderet al. 2002; Balmelli et al. 2002]. Carr and
Hart [Carr andHart 2004]addressedthe issueof dynamicallyup-
dating the parameterizationwhile the userpaintson the surface.
Thegeometryis clusteredinto chartsmappedontosquareregions
of thetexture.Theresolutionallocatedto eachchartis dynamically
adaptedto theuserpaintedcontent.Our TileTreeenablesa similar
interactive paintingapproach,but without the needto pre-cluster
anddynamicallyparameterizethetrianglemesh.

Severalapproachesavoid seamsby parameterizingthesurfaceonto
regularcharts[Purnomoetal. 2004;Carretal. 2006].While stored
discontinuously, neighboringchartshave correspondingsamples:
A continuousinterpolationcan be de�ned along the surface. To
avoid splitting the geometry along chart boundaries,Tarini et
al. [Tarini etal. 2004]parameterizesurfacesonthefacesof aregu-
lar polycube:A setof �x edsizecubessurroundingtheobject.Not
only doesthis de�ne a continuous,tileable texture space,but the
original meshdoesnot needto be modi�ed. However, the poly-
cubemapshave somedrawbacks: The �x ed resolutionhasto be
carefullychosento matchthegeometricfeatures,theconstruction
requiresmanualintervention,and�nally atrianglemeshis required
to encodetheparameterization.

To enabletexturing of implicit surfacesandavoid explicit parame-
terizationaltogether, Bensonet al. [BensonandDavis 2002] and
DeBryetal. [DeBry etal. 2002]proposedto encodetexturedatain
anoctreesurroundingthesurface.Thisprovideslow distortionand
adaptivetexturing,attheexpenseof aspaceandtimeoverhead:The
treecontainsmany unusedentriesin its nodes,andaccessingthe
datarequiresa long chainof indirections.Notethat thenumberof
indirectionscanbereducedat theexpenseof increasedspaceover-
head [Lefebvre et al. 2005;Lefohnet al. 2006]. Instead,Lefebvre
andHoppe[Lefebvre andHoppe2006] forgo adaptivity andcom-
pactlystore�x ed-resolutionvolumecolordatawith aperfectspatial
hash.Thespaceoverheadis verylow anddatais accessedwith only
two memorylookups. Unfortunately, bothmethodssharedif�cul-
ties inherentto volumeapproacheswhenit comesto interpolation.

Figure2: We positiontexturetiles aroundthesurfaceusinganoc-
tree.Duringrenderingthesurfaceis projectedontothetilesof clos-
estorientation.The�gure shows the2D equivalentof a tile tree:A
quadtreepositioning1D tilesaroundacurve.

Figure3: Correcttri-linear interpolationin a volumerequiresstor-
ing thesurfaceasathick layer. However, thebottom(blue)samples
shouldbesuf�cient to texturethesurface,leadingto a2x saving.

The surfaceis representedas a thick layer into the volume, thus
requiringto storeandaccess8 samples(seeFigure3). However,
interpolatingover a surfaceshouldonly require4 samples:These
approachesalwaysstoreandaccessat leasttwice thedatarequired
to textureagivensurface.In contrast,ourTileTreemaps2D texture
tilesontothesurface.

Finally, volumesurfacetrees[Boubekeur et al. 2006] arealsore-
lated to our work. The authorsnotice that subdividing an octree
arounda surfaceuntil very �ne resolutionis wasteful:After some
level of subdivision the surfaceis faithfully capturedby a simple
height�eld. We follow a similar ideaandstopsubdividing theoc-
treeassoonasthesurfacecanbetexturedby simplesquaretiles.

3 TileTrees

3.1 Overview

Our approachstartsby building an octreearoundthe surface to
be textured,similarly to previous octree-basedtexturing methods.
However - andthis is thekey ideaof our work - insteadof storing
a singlecolor valuein the leaves,we map2D tiles of texturedata
onto the facesof the leaves(up to six tiles per leaf). The tiles are
compactlystoredinto a regular 2D texture, the tile map. During
rendering,eachsurfacepoint is projectedontooneleaf face. This
producestexturecoordinatesthenusedto accessthecorresponding
texturetile. This ideais illustratedFigure2.

We only subdivide theoctreeuntil no morethanonefold exists in
eachleaf (seeSection3.2). Sincewith mostgeometrythe texture
detail is much�ner thanthe geometricfeatures,the octreeleaves
tend to be much larger than the texture pixel size: Many neigh-
boringpixelssharethesameleaf, which guaranteesa goodaccess
coherence.

Thesurfaceis projectedonto the facesof the leaveswith a simple
parallelprojection. The faceto projectonto is locally determined
from the surfacenormal. Note that this projectiononly requires
knowing the surfacenormal and enclosingleaf. It is performed
dynamicallyat renderingtime: Thusourapproachdoesnot require
to storeadditionalinformationin vertices.In fact,it doesnot even
requireverticesatall: It canbeusedon implicitly de�ned surfaces.

The following sectionsdescribeeachaspectof our approachin
moredetails.

Figure4: Thenormalto thesurfaceis usedto selecton which face
to project. The surfacepoint is then mappedto the facewith a
simpleparallelprojection.

Figure5: Left: Eachleafmaycontainupto onefold in thedirection
of projection.Right: If morethanonefold is presenttheprojection
is no longerinjective.

3.2 Projection
Eachleaf of theoctreeenclosesa pieceof surface. Our goal is to
projectthispartof thesurfaceontooneor morefacesof theleafso
thateachpoint is uniquelytextured. In otherwordstheprojection
mustbeinjective.

In addition,wewantto performtheprojectiondynamically, at run-
time. Therefore,it hasto beassimpleaspossibleto compute.How-
ever, if the projectionfails to handlesomesurfacecon�gurations,
we would have to subdivide theoctreeuntil reachingpixel resolu-
tion. As a compromise,we chooseto performa parallelprojection
ontothefacesof theleaves.Thefaceto projectontois chosenusing
the major directionof the normalto the surface. While beingex-
tremelysimpleto compute,this projectioncanhandlesuccessfully
non trivial cases,includinga full sphere.It alsohandlescorrectly
two-sidedthin surfaces,asillustratedFigure4 – adif�cult casewith
previousvolumeapproaches[BensonandDavis 2002;DeBryetal.
2002]. In fact, it can even texture the back and front sidesof a
triangledifferently.

However, it alsohasa few drawbacks.First,somesmallamountof
distortionis presenton steepsurfaces.However, it is worth noting
thatthis distortionis no greaterthantheoneproducedby anoctree
textureonfacesatanangle.Second,it is notsurjective: Someparts
of the facesmay never be coveredby the projectedsurface. As
eachfaceis representedin memoryby a squaretile, this will result
in wastedmemoryspace(seeFigure6, left). Wewill seein thenext
sectionhow this issueis addressed.

3.3 Building a tight octree
The octreesurroundingthe surfacehasto satisfy two constraints.
First, we have to make sureto subdivide enoughso that an injec-
tive projectionis possible.Given the projectiondescribedin Sec-
tion 3.2,this impliesthatnoleafmustcontainmorethanonefold in
thedirectionsusedfor projection(seeFigure5). Second,weseekto
minimizememorywaste.Considera leaf in which thesurfaceonly
projectspartially ontothefaces,leaving someunusedpixels in the
tiles. By furthersubdividing we get a betterapproximationof the

Figure6: We enforcecoverageby subdividing further leaveswith
coverageunderauserspeci�edthreshold.

Figure7: Leavesclassi�cation: full-leavesappearin blue,stacked-
leavesin dark-blue,boundary-leavesin greenandn-leavesin red.

surfaceandwe increasepixel usage(seeFigure6). Of course,at
thesametimewe increasethedepthof theoctree:Thereis a trade-
off betweenspaceef�ciency andoctreecomplexity. We therefore
exposeacoveragethresholdto theuser. This thresholdde�neshow
acceptableit is to wastespaceto favor accessef�ciency. We also
enforcea maximumtreedepth,as this is mandatoryfor ef�cient
GPUimplementation[Lefebvreetal. 2005].

Beforedescribingthedetailsof theoctreeconstruction,we de�ne
termsfor the leaf con�gurations that occur. We distinguishtwo
main typesof leaves(seeFigure8). A 1-leaf is a leaf wherethe
surfaceprojectsonto a single face. A n-leaf is a leaf wherethe
surfaceprojectsto morethanoneface. Now, within the setof 1-
leaveswe distinguishthreesubtypes.A full-leaf is a 1-leafwith a
percentagecoveragevalueof 1 (thetile is entirelyused).We call a
leaf-stack asetof 1-leavesatsameoctreelevel thatareneighboring
in thedirectionof the facesupportingthe tile (seeFigure8). The
importantpropertyof a leaf-stackis that all the facesin the stack
cansharea sametexture tile without overlapping.A leaf involved
in a leaf-stackis nameda stacked-leaf. Finally, a boundary-leafis
de�nedasa1-leafwhich is not involvedin any leaf-stackandis not
a full-leaf either. Figure7 shows the varioustypesof leaveson a
3D model.

In order to build the octree,we take the following steps,summa-
rizedin Figure9:

1. Subdivide theoctreeuntil leavescontainonefold atmost.
2. Enforcecoverageconstraintonn-leaves.
3. Enforcecoverageconstraintonboundary-leaves.
4. Split all 1-leavesthatcouldform a stackwith a neighborat a

deepersubdivision level.
5. Detectleaf-stacks(all membersshareasametexturetile).

Our implementationrelieson ray–surfaceintersectionsfor thetree
construction,makingit suitablefor bothpolygonalmeshesandim-
plicit surfaces.Within eachleaf we castaxisalignedraysto detect
folds andobtainsurfacenormals.Thesamplingratemustbehigh
enoughso that all leaf facesrequiredfor propertexturing will be
detected,andsothatno fold will bemissed.Notethatnothingpre-
cludestheuseof morerobustdetectionmechanisms.

Oncetheoctreeis created,weallocatetiles for eachof theleaf face
reachedby the surface. The next sectiondescribeshow tiles are
allocated.

n-leaf

full-leaf leaf-stack full-leaf boundary-leaf

n-leaf

1-leaf

Figure8: The2 maintypesand4 sub-typesof TileTreeleaves.

1)

3)

2)

4)

Figure9: The octreeconstructioninvolves four typesof subdivi-
sions.1) Split until no foldover. 2) and3) Split to enforcecoverage
threshold.4) Split to createleaf-stacks.

3.4 Tiles
After octreesubdivision, thenumberof tiles to allocateis:

#full-leaves+ #boundary-leaves+ #leaf-stacks+ å
f n-leafg

(n)

where# is thecountingoperator.

Eachtile is mappedontoa leaf facesothatthecentersof theborder
samplesarealignedwith the boundariesof the face. This ensures
seamlessrenderingandenablesuseof native hardwarebilinear�l-
tering. This alsoimpliessomesampleduplication:Two neighbor-
ing tilesencodethesamesamplesalongtheirboundary. Usinglarge
tiles reducesthisoverhead.

To ensurematchingsamplesbetweenleavesatdifferentsubdivision
levels, the tile sizemustbeequalto 2k + 1, with k a positive inte-
ger (seeFigure10, left). In caseof adaptive resolution,this will
alsoensurethatsamplesof the�ner resolutiontile arealignedwith
samplesof thecoarserresolutiontile (seeFigure10,right).

For a simpleaccessduring renderingall tiles arepacked together
into a singletexture: thetile-map. Tiles within n-leavesarestored
contiguously. Thus for eachleaf we allocatea texture rectangle
with a size of n(2k + 1) � (2k + 1), 1 � n � 6. The coordinates
of the top left cornersarestoredin the octreeleaves. The square
shapeof the tiles allows for simplerand thereforefasterpacking
thanwith arbitrarily shapedcharts.In our implementationwe used
a naive approachwhich placeslarger tiles �rst, from left-to-right
andtop-to-bottom.For speed-up,we trackthe�rst freecolumnof
every texture row. Although thepackingcanbe furtheroptimized
by usingquad-trees,it alreadyperformsvery well, placing18664
tiles in 96millisecondson thearmadillomodelof Figure13.

3.5 Seamless interpolation

Interpolatingthe texturesamplesalongthesurfaceis key to avoid
pixelatedappearance.Seamlessinterpolationis a dif�cult issue
which must not be overlooked. For instance,with volume ap-

5 x 5 3 x 33 x 3

3 x 3

3 x 3

3 x 3

Figure10: Left: For samplesto matchacrossboundaries,tilesmust
haveasizeof 2k + 1. Right: Samplesof tilesatdifferentresolution
arealigned.Coloratsamplesmarkedby two circlesis computedto
bethebi-linearinterpolationof theneighbors.Thisensurecontinu-
ity acrossresolutions.

0 0 1 1 1

1

0

0

1

1

1 1

Figure 11: Within the outlined cell, the faceusedto texture the
surfaceisabruptlychanging,resultingin avisibleseam.Toperform
interpolationwithin this cell, we �ag whethereachtile sampleis
usedby theenclosedsurface.

proachesinterpolationrequiresup to 8 lookupsinto thedatastruc-
ture [Lefebvre andHoppe2006],andmoreif adaptive texturing is
used[BensonandDavis 2002]. Of course,this strongly impacts
performance.This canbereducedby storingsmallblocksof data
insteadof point-wisecolors,but bordersamplereplicationlargely
increasesspaceoverhead- especiallyin a volume wherea thick
layerhasto bede�ned aroundthesurface(seeFigure3).

Our TileTreesenablefastseamlessinterpolationover smoothsur-
faces. We rely on the graphicshardware interpolationwhen ac-
cessingthetiles,andonly haveto performafew moreoperationsto
obtainaseamlessresult.In thefollowing discussion,weassumethe
per-samplecolor is alreadyknown. Pleasereferto Section4 for an
overview of how to �ll aTileTreewith texturecontent.Also,please
notethatseamlessinterpolationis currentlylimited to smoothsur-
faces.By smoothsurface, it is to beunderstoodthatwe refer to a
continuousnormal�eld over thesurface,mayit bea trianglemesh.
Wediscussthis issuein moredetailsin Section6.

For correct interpolation,thereare threecasesto consider: full-
leavesandstackedleaves,partially coveredfaces,andn-leavesin-
terior.

full-leaves
Within full-leavesandstacked-leavesa correctseamlessinterpola-
tion is guaranteed:The tile hasall the necessarysamples.Recall
we have a onepixel borderreplicationbetweenneighboringtiles
(seeSection3.4andFigure10, left).

partially covered faces
Within boundary-leaves and n-leaves the surfaceoften only par-
tially coversa face. Therefore,sometile sampleshave no de�ned
color. At boundaries,theseunde�nedcolorswouldbleed-induring
interpolation.Fortunately, thecolor of thesesamplesis simply lo-
catedin a tile of the neighboringleaf. For instance,considerthe
boundary-leafof Figure8. Themissingsamplesarelocatedin the
n-leaf just below. We simply �ll-in unde�nedsamplesby reading
their color in theneighboringleaf.

n-leavesinterior
N-leaves have an additionaldif�culty: The faceaccessedduring
renderingis abruptlychangingalong the surface(seeFigure11).
Thekey ideato achieve a correctinterpolationis to de�ne the�nal
color asa weightedsumof thecontribution of all faces.Note that
threefacescancontribute at most: The threefacescorresponding
to thedirectionof thenormal.We namethecorrespondingtiles Tx,
Ty andTz, onefor eachmaindirection.

To de�ne the interpolationweights,we storea binary �ag into the
alphachannelof the tile samples.This �ag determineswhethera
sampleis usedby theenclosedsurface(seeFigure11). This is eas-
ily computedby consideringthesurfacenormalat thelocationonto
which the sampleprojects. Note that if the surfaceis not found
underthesample,thecolor of theclosestsamplemayberepeated.
Alternatively, we canmarchalongthefacesto �nd thecolor of the
sampleon theneighboringtile. Notehowever thatnoneof thiswill
introduceadiscontinuity:The�nal color is acontinuousinterpola-
tion of thecolorsfrom all faces.

The �ag is interpolatedwhenaccessingthe tile data,so its value
variescontiguouslybetween[0;1] on thesurface.Within then-leaf
we now have threecontinuouslyvarying�ag values:ax;ay andaz
interpolatedfrom tiles Tx, Ty andTz. Notethat if a faceis not used
by the surfaceit hasno associatedtile andwe force its �ag value
to 0. Thekey ideais that the�ag valuewill be1 whenever thetile
containspropersamplesfor thesurface,andwill continuouslydrop
to 0 whenthe tile is no longerrelevant. Interpolationonly hasto
occurin areaswherenoneof the�ag valuesequal1. This leadsto
a �rst de�nition of theweightswx, wy andwz:

wx = ax � (1� ay) � (1� az)
wy = ay � (1� az) � (1� ax)
wz = az � (1� ax) � (1� ay)

Fromwhichwecomputethe�nal coloras:

c =
(cx � wx + cy � wy + cz � wz)

(wx + wy + wz)

wherecx, cy andcz arecolorsfetchedfrom tilesTx, Ty andTz.

This works well in mostcases,however theseweightsarenot ro-
bust. If morethanone�ag equals1, or all equal0, theweightsare
null andthecolor is unde�ned.Bothcasesarepossibleif smallge-
ometricfeaturesarepresentin betweentile samples.Fortunately,
thereexistsa simplesolutionto this issue.We needto enforcethat
only one�ag reaches1 simultaneously. Thenormalto thesurface
givesexactly that: It alwaysselectsa single face,so we useit to
dampenthe�ags. We thuscomputetheweightsas:

damp = abs(nrm)=max(jnrmxj; jnrmyj; jnrmzj)
wx = axdampx � (1� aydampy) � (1� azdampz)
wy = aydampy � (1� azdampz) � (1� axdampx)
wz = azdampz � (1� axdampx) � (1� aydampy)

wherenrmis thenormalto thesurfaceatthepointbeingconsidered,
andabsaper-componentabsolutevalue.Thezerocasecanthenbe
avoidedby alwaysaddinga small epsilonto the �ag values. As
long asthenormal�eld is smooth,theweightsarecontinuousand
the�nal resultis aseamlessinterpolationof thesamples.

adaptive resolution
Whenever adaptive resolutionis used,an additionaldif�culty ap-
pears:At the boundarybetweentwo tiles of different resolution,
somesamplesof the higher resolutiontile have no correspond-
ing sampleon the coarserresolutiontile. This is illustratedFig-
ure 10, right. With no speci�c treatmentthis producesobvious
high-frequency discontinuities.In orderto ensuresmoothinterpo-
lation, we force the color of higher-resolutionbordersamplesto
matchthebi-linearinterpolationof thelower-resolutionsamples.

Figure12illustratesseamlessinterpolationandadaptiveresolution.

Figure12: Left: Close-upon ann-leafwithout interpolation.Mid-
dle: Samewith seamlessinterpolationenabled.Right: Interpola-
tion andadaptive resolution.

3.6 MIP-mapping

Dueto thetile resolutionof 2k + 1, we cannotdirectly applyMIP-
mappingto the tile map. MIP-mappingcanbe achieved by com-
puting a separatetile mapfor eachresolutionlevel. This requires
to storeonetile coordinateper-level in the octreeleaves. During
rendering,theappropriateMIP-mappinglevel is computedandthe
color is fetchedfrom thecorrespondingtile map. Two levelsmay
be accessedfor linear interpolationin-betweenMIP-mappinglev-
els.Also notethatin caseof extremeundersampling,thetreeitself
maybeMIP-mapped.

3.7 Implementation details

For thetreestorageandlookupwerely on thehardwareimplemen-
tationof [Lefebvreetal. 2005].Eachleaf stores:

� A bit vectormarkingtile presenceoneachface(6 bits).
� The coordinatesof the top left cornerof the tiles within the

tile map(two 16bitsnumbers).
� Theresolutionof thetile (8 bits).

Thecompletepseudo-codefor theshaderis givenbelow:

float4 tileTreeLooukp (float3 p) {
// / lookup into the octree
float4 leaf = octree_lookup (p);
// / decode faces presence
float3 face_p = decode_pos_face_presence (leaf);
float3 face_n = decode_neg_face_presence (leaf);
// / coordinates within node
float3 local = frac (p * lvlsize);
// / align samples on leaf boundaries
float tileres = decode_tile_resolution (leaf);
float3 uvw = local * ((tileres -1.0)/(tileres))

+(0.5/(tileres));
// / select faces
float3 nrm = normalize (IN . Nrm);
v_p = face_p * nrm;
v_n = face_n * (- nrm);
float3 id_p = float3 (X_P, Y_P, Z_P);
float3 id_n = float3 (X_N, Y_N, Z_N);
float3 faceid = (v_p > 0) ? id_p : -1;
faceid = (v_n > 0) ? id_n : faceid ;
// / access tile data for present tiles
float4 clr0 =0, clr1 =0, clr2 =0;
if (faceid . x>-1) clr0 =tileLkup (leaf , faceid . x, uvw. yz);
if (faceid . y>-1) clr1 =tileLkup (leaf , faceid . y, uvw. xz);
if (faceid . z>-1) clr2 =tileLkup (leaf , faceid . z, uvw. xy);
// / sample usage vector
float3 alpha_xyz = 1e-6+ float3 (clr0 . w, clr1 . w, clr2 . w);
// / seamless interpolation
float3 anrm = abs (nrm);
float3 damp = anrm/ max(anrm. x, max(anrm. y, anrm. z));
alpha_xyz * = damp;
float3 inv = (1- alpha_xyz);
float3 w = alpha_xyz * inv . yzx * inv . zxy ;
// / compute final color
return (clr0 * w. x+clr1 * w. y+clr2 * w. z)/(dot (w,1));

}

Figure13: Left: Armadillo modeltexturedwith a uniform resolutionof 10243. TheentireTileTree�ts in 11.4MB. Right: Dragonmodel
texturedwith auniformresolutionof 10243. TheentireTileTree�ts in 11.3MB.

4 Filling with content

WeintroducedtheTileTreedatastructureandexplainedhow to ac-
cessit duringrendering.We now have to de�ne meansof �lling a
TileTreewith texturecontent.In this sectionwe describean inter-
activepaintingtool for TileTrees,andbrie�y explainhow to convert
betweenTileTreesandothertexturerepresentations.

Interacti vepainting
Interactive paintingis performedeasilyusingTileTrees.The idea
is simple: Whenbuilding the tile map,we alsocreateanauxiliary
texture storing the coordinatesof the surfacepointsprojectingto
the tile samples.A simpleray-surfaceintersectionis usedfor this
purpose.

Oncetheauxiliarytextureis built, paintingis performedasarender
to texture operation:We directly paint into the tile mapusingthe
GPU.We rasterizea quadcoveringtheentiretile map,retrieve the
world spacecoordinateof thesamplesfrom theauxiliary table,and
checkwhethersamplesareinsidethe brush. If inside,their color
is updated.Alphablendingis usedto attenuatethebrushin�uence.
Painting is extremely fast,and the speeddoesnot dependon the
brushsize:In factall pixelsmaybeupdatedatonceif desired.

Paintingis slightly morecomplex whenadaptiveresolutionis used.
Recallthatfor adaptive resolutionwe needto computethecolor of
somesamplesto obtaina smoothinterpolation(seeSection3.5).
In our currentimplementation,we updatethesesamplesaftereach
paintstroke. Also, in ourcurrentapplicationtheuseris in chargeof
increasingordecreasingthelocaltile resolution.A paintingscheme
automaticallyadaptingthe texture resolution,suchastheonepro-
posedby Carr andHart [Carr andHart 2004],could be easilyde-
signedon topof TileTrees.Pleasereferto theaccompanying video
for anexampleof aninteractivepaintingsession.

Conversion
Converting from an existing texture is a convenientfeature. This
canbeused,for instance,to provideabasisfor furtherpaintingonto
an existing object. The key idea,similarly to interactive painting,
is to rely on thecoordinatesof thesurfacepointsprojectingto the
samples.With atrianglemesh,it is easyto tracktexturecoordinates
andto fetchan initial color from anexisting atlas. With a volume
texture,the3d coordinatescanbedirectly usedto obtaina color at
eachsample. Converting a TileTreeback into a texture atlascan
beperformedsimilarly to thefastoctree-atlasconversiondescribed
in [Lefebvreetal. 2005].

Memorysize Framerate
TileTree

11.4MB 91FPS
Hashedtexture
8 lookupsfor tri-linear 15.7MB 34FPS
Octreetexture
8 lookupsfor tri-linear 32.6MB 25FPS
Hashedtexture
blocking for tri-linear 45.9MB 135FPS

Table1: Comparisonof a TileTreewith octreetextureandhashed
textureson thearmadillo modelwith anequivalentvolumetexture
resolutionof 10243. Framerateis measuredwith theviewpoint of
Figure13.

5 Results and Discussion
We compareTileTrees with other volume texture mapping ap-
proaches:octreetexturesandhashedtextures. Table1 summaries
memorysize and performancefor eachapproach. TileTreesare
slower thanblockedhashedtextures,but require3 timeslessmem-
ory. They are,however, fasterthanhashedtextureswith 8 lookups
for tri-linear interpolation,while still usinglessmemory. It is re-
markablethat even with the spaceoverheadof bordersampledu-
plicationandmemorywasteof partially coveredtile, TileTreesare
still smallerthantri-linearhashedtextures.This is of coursedueto
the fact thatvolumetexturemappingrequiresmuchmoresamples
for interpolation. Note that for a fair comparisonwe did not use
the adaptive capabilityof the TileTree,which would have further
reducememoryusage.

Table5 showshow octreecomplexity andtile mapusagearelinked.
We �x the �nal resolutionto 10243 andvary themaximumoctree
depth.As thedepthincreases,wegetabetterusageof thetile map,
but it reducesperformanceastheoctreeaccessgetsmoreexpansive.

Table 3 shows how the TileTree size evolves with the user ad-
justablecoveragethreshold.A highercoverageconstraintdecreases
tile map size, but also increasesthe octreesize. The optimal is
thereforeobtainedfor an intermediatevalue. In practicewe often
useacoveragethresholdof 1 for compactness.

Treemax Octree Tile map Tile map Frame
depth size size usage rate

5 27KB 17.4MB 49% 110FPS
6 97KB 13.5MB 59% 98FPS
7 303KB 11.1MB 68% 93FPS
8 831KB 10.9MB 75% 91FPS

Table 2: TileTree behavior for varying maximumtree depthand
�x edresolutionof 10243.

Coverage Number Octree Tile map Tile map
threshold of tiles size size usage

0 13802 103KB 18.12MB 52%
0.25 20520 217KB 11.5MB 63.8%
0.5 24423 260KB 11.0MB 66.5%
0.75 27373 288KB 11.0MB 67.5%

1 29185 303KB 11.1MB 67.6%

Table3: TileTreebehavior for a�x edresolutionof 10243 with vary-
ing coveragethreshold.Maximumtreedepthis setto 7.

6 Limitations and Future work
TileTreeshave two mainlimitations.

First,seamlessinterpolationfailswherenormalsarenotcontinuous
alongthesurface.Typically, edgesof a cubewill not have a seam-
lessinterpolation.While thismaybeacceptableif thesurfaceshave
differentmaterials,it may be a problemif a continuoustexture is
desiredacrosstheseedges.Onepossibledirection to circumvent
this issueis to usea smoothednormalfor computingthe interpo-
lation weights.However, to properlytake into accounttrianglesat
anglesgreaterthan90 degrees,interpolationmustnow considerall
faces,including thosein a directionoppositeto the normal. This
complicatestheTileTreeaccess.

Second,andthis maybethemostimportantlimitation, thenormal
�eld usedfor accesshasto beconsistentwith therealgeometry. In
particular, if normalshave a large anglecomparedto the real sur-
face,a very high distortionwill result: The TileTree is mistaken
in usinga facethatdoesnot matchsurfaceorientation.This prob-
lem,however, only existsontrianglemesheswith extremelycoarse
tessellations.In this situationa discontinuousnormalmaybeused
alongtheedge,removing distortionat theexpenseof theaforemen-
tionedseamin theinterpolation.

Finally, as additional future work we would like to explore the
opportunity of using TileTrees for ef�cient texture loading and
caching.

7 Conc lusion
We introducedthe TileTree,a new datastructurefor ef�cient tex-
turemapping.TileTreesstoresquaretexturetiles in theleavesof an
octree.Thesurfaceis projectedontothetilesduringrendering.The
resultingtextureis seamlesslyinterpolatedalongsmoothregionsof
thesurface,with little memoryandaccessoverhead.

We showedthatTileTreesaremorecompactin memorythanother
volumeapproaches,while offeringmany of theiradvantages.A low
distortiontexturemappingis achieved. No parameterizationneeds
to be explicitly stored,makingthe approachavailable for implic-
itly de�nedsurfaces.Moreover, TileTreesnatively supportadaptive
resolution,atnoadditionalrenderingcost.

We hopethat TileTreeswill provide artistsanddeveloperswith a
practicaltool to texturemapsurfaceswith aslittle dif�culty aspos-
sible.

Ackno wledg ements

Thanksto ChristianEisenacherfor carefulyproof-readingthepaper
andto GeorgeDrettakisfor thevideovoiceover.

References

BALMELLI , L ., TAUBIN, G., AND BERNARDINI , F. 2002.Space-
optimized texture maps. In Proceedingsof the Eurographics
Conference, 411–420.

BENSON, D., AND DAVIS, J. 2002. Octreetextures. In Pro-
ceedingsof ACM SIGGRAPH, ACM Press,ACM SIGGRAPH,
785–790.

BOUBEKEUR, T., HEIDRICH, W., GRANIER, X., AND SCHLICK ,
C. 2006.Volume-surfacetrees.Proceedingsof theEurographics
Conference25, 3, 399–406.

CARR, N. A., AND HART, J. C. 2004.Paintingdetail.Proceedings
of ACM SIGGRAPH23, 3, 845–852.

CARR, N., HOBEROCK , J., CRANE, K., AND HART, J. C. 2006.
Rectangularmulti-chartgeometryimages.In Proceedingsof the
EurographicsSymposiumonGeometryProcessing, ACM Press,
181–190.

CATMULL , E. E. 1974. A SubdivisionAlgorithm for Computer
Displayof CurvedSurfaces. Ph.d.thesis,Universityof Utah.

DEBRY, D., GIBBS, J., PETTY, D. D., AND ROBINS, N. 2002.
Painting and rendering textures on unparameterizedmodels.
In Proceedingsof ACM SIGGRAPH, ACM Press,ACM SIG-
GRAPH,763–768.

FLOATER, M. S., AND HORMANN, K. 2005. SurfaceParameter-
ization: a Tutorial andSurvey.

LEFEBVRE, S., AND HOPPE, H. 2006. Perfectspatialhashing.
Proceedingsof ACM SIGGRAPH25, 3, 579–588.

LEFEBVRE, S., HORNUS, S., AND NEYRET, F. 2005. Octree
Textureson theGPU. Addison–Wesley.

LEFOHN, A., KNISS, J., STRZODKA , R., SENGUPTA , S., AND
OWENS, J. 2006. Glift : Generic,ef�cient random-accessgpu
datastructures.ACM TransactionsonGraphics25, 1, 60–99.

MAILLOT, J., YAHIA , H., AND VERROUST, A. 1993. Interactive
texturemapping.In Proceedingsof ACM SIGGRAPH, Computer
GraphicsProceedings,AnnualConferenceSeries,27–34.

PURNOMO, B., COHEN, J. D., AND KUMAR, S. 2004. Seamless
textureatlases.In Proceedingsof theEurographicsSymposium
onGeometryProcessing, ACM Press,65–74.

SANDER, P. V., GORTLER, S. J., SNYDER, J., AND HOPPE, H.
2002. Signal-specializedparameterization.In Proceedingsof
theEurographicsWorkshoponRendering, 87–100.

SLOAN, P.-P. J., WEINSTEIN, D. M., AND BREDERSON, J. D.
1998. Importancedriventexturecoordinateoptimization.Com-
puterGraphicsForum17, 3, 97–104.

TARINI , M., HORMANN, K., CIGNONI , P., AND MONTANI , C.
2004. Polycubemaps.ACM Transactionson Graphics23, 3
(Aug.), 853–860.Proceedingsof ACM SIGGRAPH.

