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Figurel: Left: A torusis texturedby a TileTree. Middle: The TileTreepositionssquaretexturetiles aroundthe surfaceusinganoctree. At
renderingime, the surfaceis projectedontothetiles. Right: Thetile mapholdingthe setof squardiles.

Abstract

Texture mapping with atlasessuffer from several dravbacks:
Wastedmemory seamsuniform resolutionandno supportof im-
plicit surfaces.Texture mappingin a volumesolves mostof these
issues,but unfortunatelyit inducesan importantspaceand time
overhead.

To addresshis problem,we introducethe TileTree: A novel data
structurefor texture mappingsurfaces.TileTreesstoresquaretex-

turetiles into the leaves of an octreesurroundingthe surface. At

renderingtime the surfaceis projectedontothetiles, andthe color
is retrievedby asimple2D texturefetchinto atile map. Thisavoids
the dif culties of global planarparameterizationg/hile still map-
ping large piecesof surfaceto regular 2D textures. Our method
is simpleto implement,doesnot requirelong pre-processingme,
nor ary modi cation of the texturedgeometry It is not limited to

triangle meshes. The resultingtexture haslittle distortionandis
seamlesslynterpolatedbver smoothsurfaces.Our methodnatively
supportsaadaptve resolution.

We shaw that TileTreesare more compactthan othervolume ap-
proacheswhile providing fastaccesgo the data.We alsodescribe
aninteractve paintingapplicationenablingto create editandren-
der objectswithout having to corvert betweentexture representa-
tions.
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1 Introduction

Texture mappinghasbecomeoneof thefundamentatomponenof
computegraphicsapplications By separatinghapeepresentation
from surfaceappearanci providesa powerful andcorvenienttool
to create paintandrenderhighly detailedobjectsandsceneriesat
low geometricatost.

Theestablishe@pproachor texturemappingisto atten asurface
into the2D domainof asquaré@mage.Thesurfaceis parameterized
into the plane. While somesurfaceshave a naturalplanarparam-
eterization(cylinders, cones,more generallyall developablesur
faces)jn mostcaseghis operationis extremelydif cult. Thus,the
problemof nding goodplanarparameterizationkasattractedot
of researctinterestand extremely powerful techniqueshave been
devised [Floaterand Hormann2005]. The challengeis to atten
the surfacewhile keepinga low distortion,which oftenrequiresto
cutthesurfacein independentlparameterizedharts.Thesecharts
arelaterpacledinto asingletextureatlas[Maillot etal. 1993]. Pro-
viding atight packingis key to avoid wastingmemory

Nowadays with theincreasingdemandor realismandhigh qual-
ity in computergraphics,artists are often requiredto paint de-
tailed multi-layeredtexture mapsfor objectsand large parts of

the scenery As aresult,memoryconsumptiorfor texture datain-

creasednuchfasterthanavailablememory The limitations and
inherentdif culties of planarparameterizatiobecomedessaccept-
able: Memory is wastedby the impossibility to ef ciently pack
irregular charts,or by oversamplingto compensatéor distortion.
Most parameterizationare staticand assumehomogeneousam-
pling: Oncecomputedthey cannotadaptto artist paintedcontent.
Chartboundariegproducevisible discontinuitiesn the bilinearin-

terpolation. Finally, mostmethodsencodethe mappingas 2D co-
ordinatesn the verticesof a trianglemesh,andcannotbe usedon
implicitly de ned surfaces.




This lead several researchersoward adaptve and volume ap-
proachesTheobjectis immersednto avolumestoringcolorinfor-
mationonly aroundthesurface.Datais storedn aspatialhierarcly,
typically an octree. This solvesa numberof issues:A planarpa-
rameterizations no longernecessarya seamlesinterpolationcan
be de ned, the hierarcly canbere ned in areasof interest.More-
over, the approachdoesnot involve ary comple pre-processing.
Unfortunately spatialhierarchiesalsoimply anoverheadn access
time andspacewhich limits their usein interactve applications.

Ournovel approacltombinegheadwantage®f volumeapproaches
and 2D texture mapping. It removesthe needfor a global param-
eterizationwhile relying on 2D texturesfor ef cient packingand
access.Our key ideais to usean octreeto positionsquaretexture
tiles aroundthe surface. During renderingthe surfaceis projected
ontothetiles,andthecoloris retrievedby asimple2D texturefetch
into atile map(seeFigurel). Note,however, thatwe donotseekto
de ne a continuoustexture domain: The tiles have differentsizes
andarepacledtogetheiin arbitraryorder Thesquarenatureof the
tiles makesef cient packingeasierandlet usde ne a seamlesin-
terpolationover the surface. Furthermorepy changingthe resolu-
tion of thetileswe canlocally anddynamicallyadaptheresolution
to artistpaintedcontent.

2 Previous Work

Sinceits introductionby Catmull [Catmull 1974], texturing has
spanned large body of researchlin particular severalresearchers
have focusedon overcomingthelimitations of texture mapping.

Importancedriven parameterizatiomethodshave beenproposed
to allocatemoreresolutionto regionswith ne texturedetail[Sloan

et al. 1998; Sanderet al. 2002; Balmelli et al. 2002]. Carr and

Hart [Carr andHart 2004] addressethe issueof dynamicallyup-

dating the parameterizationwhile the user paintson the surface.
The geometryis clusterednto chartsmappedonto squareregions
of thetexture. Theresolutionallocatedo eachchartis dynamically
adaptedo the userpaintedcontent.Our TileTreeenables similar

interactve painting approach but without the needto pre-cluster
anddynamicallyparameterizéhetrianglemesh.

Severalapproacheavoid seamdy parameterizinghesurfaceonto

regularcharts[Purnomoetal. 2004;Carretal. 2006]. While stored
discontinuously neighboringchartshave correspondingsamples:
A continuousinterpolationcan be de ned along the surface. To

avoid splitting the geometry along chart boundaries, Tarini et

al. [Tarini etal. 2004]parameterizeurfacesonthefacesof aregu-

lar polycube:A setof x edsizecubessurroundinghe object. Not

only doesthis de ne a continuous tileable texture space but the
original meshdoesnot needto be modi ed. However, the poly-

cubemapshave somedravbacks: The x ed resolutionhasto be
carefully chosento matchthe geometricfeaturesthe construction
requiresmanuaintervention,and nally atrianglemeshis required
to encodethe parameterization.

To enabletexturing of implicit surfacesandavoid explicit parame-
terizationaltogetherBensonet al. [Bensonand Davis 2002] and
DeBryetal. [DeBry etal. 2002]proposedo encoddexturedatain
anoctreesurroundinghe surface.This provideslow distortionand
adaptvetexturing,attheexpenseof aspaceandtimeoverheadThe
tree containsmary unusedentriesin its nodes,and accessinghe
datarequiresa long chainof indirections.Note thatthe numberof
indirectionscanbereducedat the expenseof increasedpaceover
head [Lefelvre etal. 2005;Lefohnetal. 2006]. Instead Lefetvre
andHoppe[Lefebvre andHoppe2006] forgo adaptvity andcom-
pactlystore x ed-resolutiorvolumecolordatawith aperfectspatial
hash.Thespaceoverheads verylow anddatais accessedith only
two memorylookups. Unfortunately both methodssharedif cul-
tiesinherentto volumeapproachesvhenit comesto interpolation.
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Figure2: We positiontexturetiles aroundthe surfaceusinganoc-
tree.Duringrenderinghesurfaceis projectedontothetiles of clos-
estorientation.The gure shawvsthe 2D equialentof atile tree: A
quadtreepositioning1D tiles arounda cune.

Figure3: Correcttri-linear interpolationin a volumerequiresstor
ing thesurfaceasathick layer. However, thebottom(blue)samples
shouldbesufcient to texturethe surface leadingto a 2x saving.

The surfaceis representeas a thick layer into the volume, thus
requiringto storeandaccess8 samples (seeFigure3). However,
interpolatingover a surfaceshouldonly require4 samples:These
approachealwaysstoreandaccesat leasttwice the datarequired
totextureagivensurface.In contrastpur TileTreemaps2D texture
tiles ontothe surface.

Finally, volume surfacetrees[Boubeleur et al. 2006] are alsore-
latedto our work. The authorsnotice that subdviding an octree
arounda surfaceuntil very ne resolutionis wasteful: After some
level of subdvision the surfaceis faithfully capturedby a simple
height eld. We follow a similar ideaandstopsubdviding the oc-
treeassoonasthe surfacecanbetexturedby simplesquargiles.

3 TileTrees

3.1 Overview

Our approachstartsby building an octreearoundthe surfaceto
be textured, similarly to previous octree-basetkexturing methods.
However - andthis is the key ideaof our work - insteadof storing
asinglecolor valuein the leaves,we map2D tiles of texture data
ontothe facesof the leaves (up to six tiles perleaf). Thetiles are
compactlystoredinto a regular 2D texture, the tile map During
rendering.eachsurfacepointis projectedonto oneleaf face. This
producegexture coordinateshenusedto accesshe corresponding
texturetile. Thisideais illustratedFigure2.

We only subdvide the octreeuntil no morethanonefold existsin
eachleaf (seeSection3.2). Sincewith mostgeometrythe texture
detailis much ner thanthe geometricfeaturesthe octreeleaves
tendto be much larger than the texture pixel size: Many neigh-
boring pixels sharethe sameleaf, which guaranteea goodaccess
coherence.

The surfaceis projectedonto the facesof the leaveswith a simple
parallelprojection. The faceto projectontois locally determined
from the surfacenormal. Note that this projectiononly requires
knowing the surface normal and enclosingleaf. It is performed
dynamicallyat renderingtime: Thusourapproactdoesnotrequire
to storeadditionalinformationin vertices.In fact,it doesnot even
requireverticesatall: It canbeusedonimplicitly de ned surfaces.

The following sectionsdescribeeachaspectof our approachin
moredetails.



Figure4: Thenormalto the surfaceis usedto selecton which face
to project. The surface point is then mappedto the facewith a
simpleparallelprojection.

Figure5: Left: Eachleaf maycontainupto onefold in thedirection
of projection.Right: If morethanonefold is presenthe projection
is nolongerinjective.

3.2 Projection

Eachleaf of the octreeenclosesa pieceof surface. Our goalis to
projectthis partof the surfaceontooneor morefacesof theleafso
thateachpointis uniquelytextured. In otherwordsthe projection
mustbeinjective.

In addition,we wantto performthe projectiondynamically at run-
time. Thereforejt hasto beassimpleaspossibleo compute How-
ever, if the projectionfails to handlesomesurfacecon gurations,
we would have to subdvide the octreeuntil reachingpixel resolu-
tion. As acompromisewe chooseo performa parallelprojection
ontothefacesf theleaves. Thefaceto projectontois choserusing
the major directionof the normalto the surface. While beingex-
tremelysimpleto compute this projectioncanhandlesuccessfully
nontrivial casesjncluding a full sphere.It alsohandlescorrectly
two-sidedthin surfacesasillustratedFigure4 —adif cult casewith
previousvolumeapproachefBensonandDavis 2002;DeBry etal.
2002]. In fact, it caneven texture the back and front sidesof a
triangledifferently.

However, it alsohasa few dravbacks.First, somesmallamountof
distortionis presenbn steepsurfaces.However, it is worth noting
thatthis distortionis no greaterthanthe oneproducedy anoctree
textureonfacesatanangle.Secondit is notsurjectve: Someparts
of the facesmay never be coveredby the projectedsurface. As
eachfaceis representeth memoryby a squardile, thiswill result
in wastedmemoryspaceseeFigure6, left). We will seein thenext
sectionhow thisissueis addressed.

3.3 Building atight octree

The octreesurroundingthe surfacehasto satisfytwo constraints.
First, we have to make sureto subdvide enoughso thatan injec-
tive projectionis possible.Given the projectiondescribedn Sec-
tion 3.2,thisimpliesthatno leaf mustcontainmorethanonefold in
thedirectionsusedfor projection(seeFigure5). Secondye seekto
minimize memorywaste.Consideraleafin which the surfaceonly
projectspartially ontothe facesJeaving someunusecpixelsin the
tiles. By further subdviding we geta betterapproximationof the

Figure6: We enforcecoverageby subdviding further leaveswith
coverageundera userspeci ed threshold.

Figure7: Leavesclassi cation: full-leavesappeailin blue, stadked-
leavesin dark-blue boundary-leaves greenandn-leavesn red.

surfaceandwe increasepixel usage(seeFigure6). Of course,at
thesametime we increasehe depthof theoctree:Thereis atrade-
off betweenspaceef ciency andoctreecompleity. We therefore
exposea coveragethresholdo theuser Thisthresholdde neshow

acceptablet is to wastespaceto favor acces®fciency. We also
enforcea maximumtree depth, asthis is mandatoryfor ef cient

GPUimplementatiorjLefebvre etal. 2005].

Beforedescribingthe detailsof the octreeconstructionwe de ne
termsfor the leaf con gurationsthat occur We distinguishtwo
main typesof leaves (seeFigure8). A 1-leafis a leaf wherethe
surface projectsonto a singleface. A n-leafis a leaf wherethe
surfaceprojectsto morethanoneface. Now, within the setof 1-
leaveswe distinguishthreesubtypes.A full-leaf is a 1-leafwith a
percentageoveragevalueof 1 (thetile is entirelyused).We call a
leaf-stak a setof 1-leavesat sameoctreelevel thatareneighboring
in the directionof the facesupportingthetile (seeFigure8). The
importantpropertyof a leaf-stackis thatall the facesin the stack
cansharea sametexturetile without overlapping.A leaf involved
in aleaf-stackis nameda staked-leaf Finally, a boundary-leais
de ned asal-leafwhichis notinvolvedin ary leaf-stackandis not
a full-leaf either Figure7 shaws the varioustypesof leaveson a
3D model.

In orderto build the octree,we take the following steps,summa-
rizedin Figure9:

1. Subdvide theoctreeuntil leavescontainonefold at most.

2. Enforcecoverageconstrainion n-leaves.

3. Enforcecoverageconstrainton boundary-leges.

4. Split all 1-leavesthatcouldform a stackwith a neighborata

deepesubdvisionlevel.
5. Detectleaf-stackqall membersharea sametexturetile).

Ourimplementatiorrelieson ray—suréceintersectiondor thetree
constructionmakingit suitablefor bothpolygonalmeshesandim-

plicit surfaces.Within eachleaf we castaxisalignedraysto detect
folds andobtainsurfacenormals. The samplingratemustbe high

enoughso that all leaf facesrequiredfor propertexturing will be
detectedandsothatno fold will be missed.Notethatnothingpre-
cludesthe useof morerobustdetectiormechanisms.

Oncetheoctreeis createdwe allocatetiles for eachof theleafface
reachedby the surface. The next sectiondescribeshow tiles are
allocated.
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Figure9: The octreeconstructioninvolves four typesof subdvi-
sions.1) Split until nofoldover. 2) and3) Split to enforcecoverage
threshold 4) Split to creatdeaf-stacks.

3.4 Tiles
After octreesubdvision, the numberof tiles to allocateis:

#full-leaves+ #boundary-leges+ #leaf-stacks- é (n)

] ) fn-leay
where# is the countingoperator

Eachtile is mappedntoaleaffacesothatthecentersf theborder
samplesarealignedwith the boundarieof the face. This ensures
seamlessenderingandenablesiseof native hardwarebilinear |-
tering. This alsoimplies somesampleduplication: Two neighbor
ing tilesencodeghesamesampleslongtheirboundaryUsinglarge
tilesreduceshis overhead.

To ensurenatchingsampledetweereavesatdifferentsubdvision
levels, thetile sizemustbe equalto 2K+ 1, with k a positive inte-
ger (seeFigure 10, left). In caseof adaptve resolution,this will
alsoensurehatsampleof the ner resolutiontile arealignedwith
samplesf thecoarseresolutiontile (seeFigurel0, right).

For a simple accessluring renderingall tiles are pacled together
into a singletexture: thetile-map. Tiles within n-leavesarestored
contiguously Thusfor eachleaf we allocatea texture rectangle
with a sizeof n(2k+ 1) (2X+1),1 n 6. Thecoordinates
of thetop left cornersare storedin the octreeleaves. The square
shapeof the tiles allows for simplerand thereforefasterpacking
thanwith arbitrarily shapedcharts.In ourimplementatiorwe used
a nawve approachwhich placeslarger tiles rst, from left-to-right
andtop-to-bottom.For speed-upye trackthe rst free columnof
every texturerow. Althoughthe packingcanbe further optimized
by usingquad-treesit alreadyperformsvery well, placing 18664
tilesin 96 millisecondson thearmadillo modelof Figure13.

3.5 Seamless interpolation

Interpolatingthe texture samplesalongthe surfaceis key to avoid
pixelatedappearance.Seamlessnterpolationis a dif cult issue
which must not be overlooked. For instance,with volume ap-

Figurel0: Left: For sampleso matchacrossoundariestiles must
have asizeof 2€+ 1. Right: Samplesf tiles at differentresolution
arealigned.Color at samplesnarkedby two circlesis computedo
bethebi-linearinterpolationof theneighbors This ensurecontinu-
ity acrosgesolutions.

Figure 11: Within the outlined cell, the face usedto texture the
surfaceis abruptlychangingresultingin avisible seam.To perform
interpolationwithin this cell, we ag whethereachtile sampleis
usedby theenclosedsurface.

proachesnterpolationrequiresup to 8 lookupsinto the datastruc-
ture [Lefebvre andHoppe2006],andmoreif adaptve texturing is
used[Bensonand Davis 2002]. Of course,this stronglyimpacts
performance This canbe reducedby storingsmallblocksof data
insteadof point-wisecolors, but bordersamplereplicationlargely
increasesspaceoverhead- especiallyin a volume wherea thick
layerhasto bede ned aroundthe surface(seeFigure3).

Our TileTreesenablefastseamlesinterpolationover smoothsur
faces. We rely on the graphicshardware interpolationwhen ac-
cessinghetiles, andonly have to performafew moreoperationgo
obtainaseamlessesult.In thefollowing discussionywe assuméehe
persamplecoloris alreadyknown. Pleaseeferto Section4 for an
overview of how to Il aTileTreewith texturecontent.Also, please
notethatseamlesinterpolationis currentlylimited to smoothsur
faces.By smoothsurface it is to be understoodhatwe referto a
continuousormal eld overthesurface,mayit beatrianglemesh.
We discusghisissuein moredetailsin Section6.

For correctinterpolation,there are three casesto consider: full-
leavesandstacled leaves,partially coveredfaces andn-leavesin-
terior.

full-leaves

Within full-leavesandstacled-leaesa correctseamlesinterpola-
tion is guaranteedThe tile hasall the necessargamples.Recall
we have a one pixel borderreplicationbetweenneighboringtiles
(seeSection3.4andFigurel0, left).

partially coveredfaces

Within boundary-leges and n-leaves the surface often only par
tially coversaface. Therefore sometile sampleshave no de ned
color. At boundariestheseunde nedcolorswould bleed-induring
interpolation. Fortunately the color of thesesampleds simply lo-
catedin atile of the neighboringleaf. For instance considerthe
boundary-leabf Figure8. The missingsamplesarelocatedin the
n-leafjust belon. We simply Il-in  unde ned samplesy reading
their colorin theneighborindeaf.



n-leavesinterior

N-leaves have an additionaldif culty: The faceaccessediuring
renderingis abruptly changingalongthe surface (seeFigure 11).
Thekey ideato achieve a correctinterpolationis to de ne the nal
color asa weightedsumof the contritution of all faces.Note that
threefacescan contribute at most: The threefacescorresponding
to the directionof the normal. We namethe correspondingiles Ty,
Ty andT;, onefor eachmaindirection.

To de ne theinterpolationweights,we storea binary ag into the
alphachannelof thetile samples.This ag determinesvhethera
samplés usedby theenclosedurface(seeFigurell). Thisis eas-
ily computeddy consideringhesurfacenormalatthelocationonto
which the sampleprojects. Note thatif the surfaceis not found
underthe sample the color of the closestsamplemay berepeated.
Alternatively, we canmarchalongthefacesto nd thecolor of the
sampleontheneighboringdtile. Note however thatnoneof this will
introduceadiscontinuity: The nal coloris acontinuousnterpola-
tion of thecolorsfrom all faces.

The ag is interpolatedwhen accessinghe tile data,so its value
variescontiguouslybetweer|0; 1] onthe surface.Within the n-leaf
we now have threecontinuouslyvarying ag values:ay; ay anda;
interpolatedrom tiles Ty, Ty andT,. Notethatif afaceis notused
by the surfaceit hasno associatedile andwe forceits ag value
to 0. Thekey ideais thatthe ag valuewill be 1 wheneerthetile
containgpropersampledor thesurface,andwill continuouslydrop
to 0 whenthetile is no longerrelevant. Interpolationonly hasto
occurin areasvherenoneof the ag valuesequall. Thisleadsto
a rst de nition of theweightswy, wy andws,:

Wx=ax (1 ay) (1 az
w=ay (1 az) (1 ay)
w,=az (1 ax) (1 ay)
Fromwhichwe computethe nal coloras:
c= (cx Wx+ Cy Wy+ Cz Wy)
(wy + Wy + W)

wherecy, ¢y andc; arecolorsfetchedfrom tiles Ty, Ty andT.

This works well in mostcaseshowever theseweightsarenot ro-
bust. If morethanone ag equalsl, or all equal0, theweightsare
null andthe coloris unde ned.Both casesarepossiblef smallge-
ometricfeaturesare presentin betweertile samples.Fortunately
thereexistsa simplesolutionto this issue.We needto enforcethat
only one ag reachesl simultaneously The normalto the surface
givesexactly that: It always selectsa singleface,sowe useit to
damperthe ags. Wethuscomputetheweightsas:

damp = abgnrm)=maxjnrmj;jnrmyj;jnrmy;j)

wy = axdampx (1 aydampy) (1 azdampg)

wy = aydampy (1 azdamp;) (1 axdampy)

w; = azdamp; (1 axdampyx) (1 aydampy)

wherenrmis thenormalto thesurfaceatthepointbeingconsidered,
andabsapercomponengtbsolutevalue. The zerocasecanthenbe

avoided by always addinga small epsilonto the ag values. As

long asthenormal eld is smooth,theweightsarecontinuousand

the nal resultis aseamlesinterpolationof the samples.

adaptive resolution

Wheneer adaptve resolutionis used,an additionaldif culty ap-

pears: At the boundarybetweentwo tiles of differentresolution,
some samplesof the higher resolutiontile have no correspond-
ing sampleon the coarsemesolutiontile. This is illustrated Fig-

ure 10, right. With no speci ¢ treatmentthis producesobvious

high-frequeng discontinuities.In orderto ensuresmoothinterpo-

lation, we force the color of higherresolutionbordersamplesto

matchthe bi-linearinterpolationof thelowerresolutionsamples.

Figurel2illustratesseamlesterpolationandadaptve resolution.

Figure12: Left: Close-upon ann-leafwithoutinterpolation.Mid-
dle: Samewith seamlessnterpolationenabled.Right: Interpola-
tion andadaptve resolution.

3.6  MIP-mapping

Dueto thetile resolutionof 2¢+ 1, we cannotdirectly apply MIP-

mappingto the tile map. MIP-mappingcanbe achieved by com-
puting a separatdile mapfor eachresolutionlevel. This requires
to storeonetile coordinateperlevel in the octreeleaves. During

renderingthe appropriateMIP-mappinglevel is computecandthe
color is fetchedfrom the correspondingile map. Two levels may
be accessedor linear interpolationin-betweenMIP-mappinglev-

els. Also notethatin caseof extremeundersamplingthetreeitself

maybeMIP-mapped.

3.7 Implementation details

For thetreestorageandlookupwe rely onthe hardwareimplemen-
tationof [Lefebvre etal. 2005]. Eachleaf stores:

A bit vectormarkingtile presenc®n eachface(6 bits).

The coordinatef the top left cornerof the tiles within the
tile map(two 16 bits numbers).

Theresolutionof thetile (8 bits).
Thecompletepseudo-codéor the shadetis givenbelow:

float4  tileTreeLooukp
/I | lookup into the octree
float4  leaf = octree_lookup  (p);
/I | decode faces presence
float3  face_p = decode_pos_face_presence
float3  face_n = decode_neg_face_presence
/I | coordinates within ~ node
float3 local = frac (p * lIvisize );
/I | align samples on leaf boundaries
float tileres = decode_tile_resolution (leaf );
float3 uvw local =*(( tileres -1.0)/( tileres ))

+(0.5/( tileres ));

(float3  p) {

(leaf );
(leaf );

/I | select faces

float3 nrm normalize (IN. Nrm);

v_p = face_p =* nrm;

v_n = face_n * (- nrm);

float3 id_p = float3 (X_P, Y_P, Z_P);
float3 id_n = float3 (X_N, Y_N, Z_N);
float3  faceid =(v.p >0 ?2idp : -1
faceid = (v.n >0) ?id_n : faceid

/I | access tile data for present tiles
float4 clr0 =0, clr1 =0, clr2 =0;

if (faceid .x>-1) clr0 =tileLkup (leaf , faceid . X, uvw.yz);
if (faceid .y>-1) clrl =tileLkup (leaf , faceid .y, uvw. xz);
if (faceid .z>-1) clr2 =tileLkup (leaf , faceid .z, uvw. xy);
/I | sample usage vector

float3 alpha_xyz = 1le-6+float3 (clr0O .w,clrl .w clr2 .w)

/I | seamless interpolation

float3  anrm = abs(nrm);

float3  damp = anrm/ max( anrm. X, max( anrm.y, anrm. z));
alpha_xyz *= damp;

float3 inv = (1- alpha_xyz );

float3 w = alpha_xyz * inv .yzx * inv .zxy;

/I 1 compute final color
return  (clr0 *w. x+clrl *w. y+clr2 *w. z)/( dot (w,1));

}



Figure13: Left: Armadillo modeltexturedwith a uniform resolutionof 1024. TheentireTileTree ts in 11.4MB. Right: Dragonmodel
texturedwith a uniform resolutionof 10243, TheentireTileTree ts in 11.3MB.

4 Filling with content

We introducedthe TileTreedatastructureandexplainedhow to ac-
cessit duringrendering.We now have to de ne meansof lling a
TileTreewith texture content.In this sectionwe describeaninter
active paintingtool for TileTrees,andbrie y explainhow to cornvert
betweerTileTreesandothertexturerepresentations.

Interacti ve painting

Interactive paintingis performedeasilyusing TileTrees. Theidea
is simple: Whenbuilding thetile map,we alsocreatean auxiliary
texture storing the coordinatef the surfacepoints projectingto
thetile samples.A simpleray-surficeintersections usedfor this
purpose.

Oncetheauxiliary textureis built, paintingis performedasarender
to texture operation:We directly paintinto thetile mapusingthe
GPU.We rasterizea quadcoveringthe entiretile map,retrieve the
world spacecoordinateof the sampledrom theauxiliary table,and
checkwhethersamplesareinsidethe brush. If inside,their color
is updated Alphablendingis usedto attenuatehe brushin uence.
Painting is extremelyfast, and the speeddoesnot dependon the
brushsize:In factall pixelsmaybeupdatecdat onceif desired.

Paintingis slightly morecomplex whenadaptve resolutionis used.
Recallthatfor adaptve resolutionwe needto computethe color of
somesamplesto obtaina smoothinterpolation(seeSection3.5).
In our currentimplementationyve updatethesesamplesaftereach
paintstroke. Also, in our currentapplicationtheuseris in chageof
increasingr decreasinghelocaltile resolution.A paintingscheme
automaticallyadaptingthe texture resolution,suchasthe onepro-
posedby CarrandHart [Carr andHart 2004], could be easilyde-
signedontop of TileTrees.Pleasaeferto theaccompaying video
for anexampleof aninteractive paintingsession.

Conversion

Corverting from an existing texture is a corvenientfeature. This
canbeusedfor instanceto provide abasisfor furtherpaintingonto
an existing object. The key idea, similarly to interactive painting,
is to rely on the coordinatef the surfacepointsprojectingto the
samplesWith atrianglemeshjt is easyto tracktexturecoordinates
andto fetchaninitial color from anexisting atlas. With a volume
texture,the 3d coordinatecanbe directly usedto obtaina color at
eachsample. Converting a TileTree backinto a texture atlascan
be performedsimilarly to thefastoctree-atlagonversiondescribed
in [Lefebvre etal. 2005].

Memorysize | Framerate

TileTree

11.4MB 91FPS
Hashedexture
8 lookupsfor tri-linear 15.7MB 34FPS
Octreetexture
8 lookupsfor tri-linear 32.6MB 25FPS
Hashedexture
blodcking for tri-linear 45.9MB 135FPS

Table1: Comparisorof a TileTreewith octreetexture andhashed
textureson thearmadillo modelwith anequialentvolumetexture
resolutionof 10243, Framerateis measureavith the viewpoint of
Figurel3.

5 Results and Discussion

We compareTileTreeswith other volume texture mapping ap-

proachesoctreetexturesand hashedextures. Table1 summaries
memory size and performancefor eachapproach. TileTreesare

slower thanblocked hashedextures,but require3 timeslessmem-

ory. They are,however, fasterthanhashedextureswith 8 lookups
for tri-linear interpolation,while still usinglessmemory It is re-

markablethat even with the spaceoverheadof bordersampledu-

plicationandmemorywasteof partially coveredtile, TileTreesare

still smallerthantri-linear hashedextures.Thisis of coursedueto

thefactthatvolumetexture mappingrequiresmuchmoresamples
for interpolation. Note that for a fair comparisonwe did not use
the adaptve capability of the TileTree, which would have further

reducememoryusage.

Table5 shavs how octreecompleity andtile mapusagearelinked.
We x the nal resolutionto 1024 andvary the maximumoctree
depth.As thedepthincreaseswe geta betterusageof thetile map,
but it reduceperformancestheoctreeaccesgetsmoreexpansve.

Table 3 shavs how the TileTree size evolves with the userad-
justablecoveragethreshold A highercoverageconstraindecreases
tile map size, but also increaseghe octreesize. The optimal is
thereforeobtainedfor anintermediatevalue. In practicewe often
usea coveragethresholdof 1 for compactness.



Treemax | Octree | Tilemap | Tilemap | Frame
depth size size usage rate
5 27KB 17.4MB 49% 110FPS
6 97KB | 13.5MB 59% 98FPS
7 303KB | 11.1MB 68% 93FPS
8 831KB | 10.9MB 75% 91FPS

Table 2: TileTree behaior for varying maximumtree depthand
x edresolutionof 1024,

Coverage| Number | Octree | Tile map | Tile map
threshold | of tiles size size usage
0 13802 | 103KB | 18.12MB 52%
0.25 20520 | 217KB | 11.5MB 63.8%
0.5 24423 | 260KB | 11.0MB 66.5%
0.75 27373 | 288KB | 11.0MB 67.5%
1 29185 | 303KB 11.1MB 67.6%

Table3: TileTreebehaior for a x edresolutionof 1024 with vary-
ing coveragethreshold Maximumtreedepthis setto 7.

6 Limitations and Future work
TileTreeshave two mainlimitations.

First,seamlesimterpolationfails wherenormalsarenotcontinuous
alongthe surface. Typically, edgesof a cubewill nothave a seam-
lessinterpolation.While thismaybeacceptablé thesurfaceshave

differentmaterials,it may be a problemif a continuoustexture is

desiredacrosstheseedges. One possibledirectionto circumwent
this issueis to usea smoothechormalfor computingthe interpo-
lation weights. However, to properlytake into accounttrianglesat

anglesgreaterthan90 degreesjnterpolationmustnow considerall

faces,including thosein a directionoppositeto the normal. This

complicateghe TileTreeaccess.

Secondandthis may be the mostimportantlimitation, the normal
eld usedfor accessasto beconsistentith therealgeometry In
particular if normalshave a large anglecomparedo the real sur
face,a very high distortionwill result: The TileTree is mistalen
in usinga facethatdoesnot matchsurfaceorientation. This prob-
lem, however, only existsontrianglemeshesvith extremelycoarse
tessellationsln this situationa discontinuousiormalmay be used
alongtheedge removing distortionatthe expenseof theaforemen-

tionedseamin theinterpolation.

Finally, as additional future work we would like to explore the
opportunity of using TileTreesfor efcient texture loading and
caching.

7 Conclusion

We introducedthe TileTree,a new datastructurefor ef cient tex-
turemapping.TileTreesstoresquardexturetilesin theleavesof an
octree.Thesurfaceis projectedontothetilesduringrendering. The
resultingtextureis seamlesslynterpolatecalongsmoothregionsof
the surface,with little memoryandacces®verhead.

We shovedthat TileTreesaremorecompactin memorythanother
volumeapproachesyhile offeringmary of theiradvantagesA low

distortiontexture mappingis achieved. No parameterizationeeds
to be explicitly stored,makingthe approachavailable for implic-

itly de ned surfacesMoreover, TileTreesnatively supportadaptie

resolution at no additionalrenderingcost.

We hopethat TileTreeswill provide artistsand developerswith a
practicaltool to texture mapsurfaceswith aslittle dif culty aspos-
sible.
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