
Eurographics Workshop on Natural Phenomena (2006)
E. Galin, N. Chiba (Editors)

Effective Multi-resolution Rendering and Texture
Compression for Captured Volumetric Trees

Christian Linz1, Alex Reche-Martinez2, George Drettakis2 and Marcus Magnor1

1Institut für Computergraphik, TU Braunschweig, Germany
2REVES/INRIA, Sophia-Antipolis, France

Abstract
Trees can be realistically rendered in synthetic environments by creating volumetric representations from pho-
tographs. However, volumetric tree representations created with previous methods are expensive to render due to
the high number of primitives, and have very high texture memory requirements. We address both shortcomings
by presenting an efficient multi-resolution rendering method and an effective texture compression solution. Our
method uses an octree with appropriate textures at intermediate hierarchy levels and applies an effective prun-
ing strategy. For texture compression, we adapt a vector quantization approach in a perceptually accurate color
space, and modify the codebook generation of the Generalized Lloyd Algorithm to further improve texture qual-
ity. In combination with several hardware acceleration techniques, our approach achieves a reduction in texture
memory requirements by one order of magnitude; in addition, it is now possible to render tens or even hundreds
of captured trees at interactive rates.

Categories and Subject Descriptors(according to ACM CCS): I.3.7 [Computer Graphics]: Three-Dimensional
Graphics and Realism

1. Introduction

Modeling and rendering trees has been a goal of computer
graphics research since the early days of the field [Blo85,
dREF∗88, PL90]. While most of the effort has been in
solutions to generate entirely synthetic trees (e.g., [PL90,
dREF∗88,DHL∗98]), an alternative is the approach to cap-
ture and render real trees [SRDT01, RMMD04]. For both
synthetic and captured trees, however, polygonal representa-
tions (mainly of the leaves) result in objects which are very
complex and thus expensive to render. In addition, generat-
ing geometric levels-of-detail (LOD) for disconnected trian-
gle meshes, such as the leaves of a tree, is an unsolved prob-
lem; the few solutions proposed to date require mixing vari-
ous different representations(e.g., [Ney98,MN98,BCF∗05]).
However, trees are a good candidate for volumetric repre-
sentations [RMMD04]; one big advantage of such an ap-
proach are appropriate multi-resolution LOD structures re-
sulting naturally from the hierarchical data structure repre-
senting the volume.

Although Reche et al. [RMMD04] did use a volumetric
representation, no multi-resolution solution was presented,

Figure 1: A scene with 290 trees running at 12 fps, and
requiring 2.9 MB of texture memory for 3 different types of
trees. Using the previous approach [RMMD04], several sec-
onds are required per frame and 641 MB texture memory are
needed.

and the texture memory requirements were prohibitively
high. Despite the realistic renderings provided by the ap-

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

proach, the method remains unusable for all practical pur-
poses (60,000-140,000 polygons and 60-140MB of texture
memory per tree).

In this paper we present solutions to both the render-
ing speed and the texture memory problems. We present an
efficient multi-resolution rendering approach, in which we
choose the appropriate data-structure by creating textures for
each level, Sect.3. In addition, we employ an efficient prun-
ing strategy based on the properties of the generated textures.
We then present a modified texture compression approach,
choosing an appropriate color space during compression,
Sect.4. To improve the results, we introduce a modification
to the Generalized Lloyds Algorithm used during codebook
generation for vector quantization. Finally, we use several
graphics hardware acceleration techniques which allow us
to achieve better performance and texture compression rates,
Sect.5.

Overall, our technique allows us to render complex scenes
containing tens or hundreds of trees at interactive frame
rates. Texture memory consumption is reduced by two or-
ders of magnitude. For example, the scene in Fig.1 shows
a scene with three types of trees using a total of 2.9 MB
of memory, running at 10 fps. Using the previously existing
approach, each frame would take tens of seconds to render,
and 641 MB of texture memory would have be required. We
believe that with these improvements, captured volumetric
trees will become an interesting solution for games and other
interactive 3D applications.

2. Previous Work

In the interest of brevity, we will restrict our discussion
to a selection of the most relevant previous work. Most
previous methods concentrated on entirely synthetic trees
based on procedural methods such as grammars (L-systems)
(e.g., [PL90,DHL∗98]) or rule-based plant growing systems
which use codified botanical knowledge such as the AMAP
system [dREF∗88]. Such approaches have been used to cre-
ate highly realistic images of forests and trees, albeit with
high polygon counts.

Other than the method of Reche et al. [RMMD04] (de-
scribed in Sect.2.1 in more detail), methods for capturing
real trees include [TKN∗92], based on two photographs with
emphasis on shading, and Shlyakhter et al. [SRDT01] who
use a visual hull created from photographs of the tree. They
then fit an L-system to generate a polygonal model, while
leaves are textured by re-projecting the photographs onto the
polygons. As was the case for the synthetic trees mentioned
above, the resulting models have high polygon counts; in ad-
dition, level-of-detail mechanisms are hard to develop for
such representations.

Several image or volume-based rendering methods have
been proposed for trees. The multi-layer z-buffer method
uses precomputed synthetic images of trees [MO95,Max96].

In volumetric texture approaches, the complex tree geometry
is represented as an approximation of the reflectance at a dis-
tance [Ney98]. An adaptation of this approach to hardware
was developed later using textured slices for interactive ren-
dering [MN98]. Meyer et al. [MNP01] presented a hierarchi-
cal bidirectional texture solution for trees at different levels
of detail, resulting in efficient level-of-detail rendering for
trees. Another approach has been developed in [QNTN03],
in which a volumetric approach effects an implicit level-
of-detail mechanism, for lighting (both sun and sky) and
shadows, using shadow maps. Efficient rendering of trees
can also be achieved using point-based methods [DCSD02].
Mantler and Fuhrmann [MF03] propose a view direction
based method to reduce the amount of points to be ren-
dered and achieve impressive savings in memory and render-
ing load. More recently billboard clouds [BCF∗05,FUM05]
have been used for rendering trees. All of the above tech-
niques are applied to polygon-based synthetic trees. As such
they could be applied to the captured trees of Shlyakhter et
al. [SRDT01], but it is unclear how these could be applied to
volumetric trees.

2.1. Volumetric trees

Our rendering and texture compression approach builds on
the method of Reche et al. [RMMD04]. For clarity, we sum-
marize the method here in more detail.

Tree capture proceeds in three steps. Initially, a set of pho-
tographs is taken from around the tree, and the cameras of
these images are calibrated. Then, alpha-mattes are extracted
from the images, giving an opacity value to each pixel in
each view. In a second step, the opacity values are used to
perform an opacity estimation on a hierarchical grid, simi-
lar to tomography, resulting in the assignment of a density
value for each grid cell. The grid used in [RMMD04] was a
tri-grid, i.e., each cell is subdivided into 27 children. The de-
gree of refinement of the grid directly influences the quality
of the reconstructed volume, where higher refinement allows
the reconstruction of finer details. In the final step, textures
are generated using a heuristic based on the input images,
the depth of the cell in the tree and the alpha/opacity values.
The generated textures are then assigned to a billboard in
each cell. There is one texture per billboard per input cam-
era position. To render a novel view, the cells are traversed
in back-to-front order. The billboards generated from the two
closest input cameras are weighted and blended together in
the sense of theover operator. The two closest cameras are
computed once per frame in software.

As mentioned above, despite high-quality tree renderings,
this method suffers from high texture memory requirements
and the lack of multi-resolution rendering. We address both
shortcomings with our new approach.

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

(a) (b) (c) (d)

Figure 2: Switching from (a) level 4 (51,000 polygons) to (b) level 3 (3,800 polygons) using a tri-grid (average RMS=31.6228).
Octree representation with a switch from (c) level 6 (34,000 polygons, pruned 16,000 polygons) to (d) level 5 (6,300 polygons,
pruned 3,800 polygons). Note that the transition is less abrupt (average RMS=24.5589).

3. Multiresolution Rendering

We discuss here two main elements needed to achieve effi-
cient multi-resolution rendering. The first is the choice of the
appropriate hierarchical data structure and the generation of
the corresponding textures, as well as how to choose the ap-
propriate level of detail. The second is an efficient pruning
strategy, based on the properties of the generated textures.

3.1. Using an Octree for Multiresolution Rendering

Our goal is to provide a smoothly varying level-of-detail
(LOD) mechanism for tree rendering. The volumetric rep-
resentation is based on a hierarchical data structure. Thus
LOD can be achieved naturally by choosing and rendering
the appropriate levels of the data structure.

The tri-grid structure used in [RMMD04] is inappropri-
ate for multiresolution rendering since switching from one
level to the next involves replacing a single cell (and the cor-
responding billboards) by 27 sub-cells. This leads to large
jumps in the number of primitives, resulting in irregular
frame rates. It also produces very visible transition artifacts
for the textures which also cannot be avoided by a dissolve
in the sense of [Max96]. We choose to use an octree; as a
result the jumps in number of primitives are not as large as
with the tri-grid structure, and the transitions between differ-
ent levels of detail are less visible, especially for the lower
LODs. Fig.2(a,b) compares two neighboring levels of the
tri-grid hierarchy with neighboring levels of the octree hi-
erarchy (c,d). The artifacts are more clearly visible in the
the accompanying video. In the original approach, no pro-
vision was made to create billboards and assign textures at
intermediatenodes of the hierarchy. We use the same tex-
ture generation process as in [RMMD04], but at each level
of the hierarchy. An alternative would be to average the tex-
tures from the lower levels: however, the overhead of tex-
ture computation of the intermediate levels corresponds to

37.5% of the total texture generation time. We considered
that the tradeoff was worthwhile, since the resulting inter-
mediate level textures are of higher quality.

The selection of the level of detail to be used is based
on the distance of each cell to the current camera viewpoint.
We set up a fixed number of planes, orthogonal to the camera
viewing direction before each rendering pass. During render-
ing, for each cell of the octree structure, we check whether
its center point lies in front of or behind the current LOD
selection plane. If it lies in front of the plane, the cell is ren-
dered at the currently active LOD. Else the tree descent stops
one level above the currently set LOD, replacing eight cells
by their parent cell.

3.2. Efficient Pruning Structure

In the original method [RMMD04], rendering speed was
hindered by the large number of billboards to be rendered.
In addition to the multi-resolution, Sect.3.1, a basic opti-
mization can be performed by better understanding the prop-
erties of the textures associated with the billboards attached
to each cell. We prune the billboards that do not contribute
to the rendered result. For a given cell and a given view-
point, there is no need to render a billboard if the texture
contains no color information. Thus, it can be pruned. Our
method is comparable to the view direction based data re-
duction proposed in [MF03]. After careful study of the gen-
erated textures, we realize that this occurs quite frequently
using the texture generation heuristic of [RMMD04]. Dur-
ing the texture generation process, for each cell we check
whether it is visible from a given point of view. We trace
a ray through the volume and accumulate the alpha values
until we hit the cell. If the accumulated alpha values of the
cells hit by the ray exceed a threshold, the cell is essentially
invisible from the given viewpoint. The heuristic for texture
generation uses the alpha value in its determination of color;

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

(a) (b) (c) (d)

Figure 3: (a) A tree with a dense crown, (b) seen from the side with the foremost half of the volume cut away (camera is to the
right). (c) A tree with a sparse crown, (d) again seen from the side with the foremost half of the cells of the volume cut away.

as a result, for trees with a dense crown, no colors are as-
signed to the textures of many of the interior cells or of those
cells on the opposite side of the viewpoint. This is clearly il-
lustrated in Fig.3(a) and (b). In (b) we render a view where
we "slice away" the front half of the tree. We can clearly
see that most interior cells contain empty textures, and have
been pruned. For trees with a sparse crown, Fig.3(c),(d), this
strategy also works, although in a less aggressive manner. A
graphical illustration is given in Fig.4, showing significant
improvement for trees with a dense crown; the gain is lower
for trees with very sparse crowns. The pruning strategy is
applied recursively to the entire octree structure.

Figure 4: Statistics on the percentage of pruned cells per
level of detail and tree. For trees with a dense crown (oak),
our strategy prunes up to 65% of the cells. For the small
oak, the percentage of pruned cells is lower since the crown
of the tree is very sparse and the alpha estimation already
cuts away most of the interior of the tree canopy.

4. Texture Compression

The textures generated by the volumetric approach
[RMMD04] are of the order of 100-150MB of texture. The
packing method reported there did not actually reduce the
texture memory required at run time. The reduction reported
was for offline storage purposes only.

Since our multiresolution approach makes it necessary to
create texture information for the lower levels of detail, more
memory may be required, making it even more important to
reduce texture memory.

The change from the tri-grid to the octree means that there
are typically more levels in the hierarchy, which may result
in an increase in the number of billboards. Fortunately, this
is partially compensated by the decrease in billboard texture
size, from 8x8 (typically used in [RMMD04]) to 4x4. The
resulting texture memory is often actually reduced (see Sec-
tion 6). Nevertheless, the memory requirements are still too
high for the use in computer games or other applications.

Therefore, we additionally employ an approach for tex-
ture compression proposed by Beers et al. [BAC96]. It is
based on vector quantization (VQ) and offers high compres-
sion ratios with little loss in quality. We modify their ap-
proach to use a perceptually oriented color space such as
CIELab for the computation of the texture codebook. We
will elaborate on the details in the following subsections.

4.1. Texture quantization

The most crucial part of compressing a texture using VQ
is designing the codebook. As in [BAC96], we employ the
Generalized Lloyd Algorithm (GLA), an iterative cluster-
ing algorithm which yields a locally optimal codebook for a
given set of texture blocks, the training vector set. Our train-
ing vector set consists of all 4x4-billboards, encoded as vec-
tors. The algorithm starts with a set of potential codewords

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

from the training set and iterates on the following steps. Each
texture block is grouped with the nearest codeword accord-
ing to a given distance measure. The centroids of the clusters
are taken as the new codewords for the next iteration. This
process repeats until the set of codewords converges.

The choice of the color space is important at this point.
While the use of RGB space with theL2-norm as a distance
measure is simple and fast, GLA often groups textures that
are close according to the distance measure but are of dif-
ferent perceptual colours. To counter this problem, we trans-
form the billboard textures to the more perceptually oriented
color space CIELab and use theL2-norm as a distance mea-
sure.

The resulting compression has higher overall quality. This
can be seen in the comparison in Fig.5 for the oak tree.
In (a) we see the tree with the original uncompressed tex-
ture. In (b) we see the compressed texture using RGB space.
Clearly, RGB compression results in loss of contrast and
overall lower visual quality. In (c) we use the CIELab space.
The quality is higher, and contrast is better preserved.

4.1.1. Alpha channel quantization

The alpha channel quantization is straightforward. We en-
code each billboard alpha texture into a vector of grey level
values and run the generalized Lloyd algorithm (GLA) on
this data. Since we quantize the alpha channel independently
of the RGB channel, we have to ensure that after quantiza-
tion, every non-transparent pixel maps to a non-black pixel
in the associated color texture. We address this problem by a
heuristic that replaces every black pixel in the quantized tex-
ture with the color of the brightest pixel, computed from ev-
ery non-black pixel of the billboard texture. Using the bright-
est pixel in this heuristic avoids black pixel artifacts in the
rendition of the compressed tree.

4.1.2. Color channel quantization

We encode the color channels of each billboard texture into
an appropriately sized vector. Afterwards, GLA is run on this
vector data. The number of clusters is given by the user and
trades compression ratio against quality of the compressed
textures. We illustrate this tradeoff in Fig6.

A drawback of the quantization method of [BAC96] is the
implicit averaging of colors introduced by the GLA cluster
computation, leading to overall darker textures, as well as
loss of contrast in the textures. Our solution is to modify the
GLA to replace the cluster centroid by the closest original
input vector. If we compare Fig.5(c) to Fig.5(d), we can see
that in the center of the tree certain regions have preserved
their bright areas.

To avoid extensive texture context switching, the quan-
tized alpha textures as well as the quantized RGB textures
are organized in a texture atlas, typically of size 512x512.
Decompression consists of simply computing appropriate
texture coordinates in the codebook atlas for each billboard.

Figure 6: Average peak signal noise ration (PSNR) of
the compressed textures as a function of the codebooksize.
Higher PSNR values indicate a lower error in the quantiza-
tion.

4.2. Other compression methods

Principal component analysis (PCA) [Jol80] is another pos-
sibility for texture compression. Given a billboard size of
4x4, we are able to represent the entire set of billboards with
64 eigentextures and one mean texture for the entire RGBA
texture. In order to reconstruct the original billboard, we ad-
ditionally store 64 coefficients per billboard. While this ap-
proach offers higher compression rates than VQ without loss
in quality, we do not recommend this strategy since the re-
construction of every billboard requires multiple rendering
passes per billboard. Given the complexity of the trees with
respect to the number of billboards, this is prohibitive for
interactive frame rates.

Another popular approach to image compression is the
discrete wavelet transform (DWT) [Add02]. While this
method also offers good compression ratios for large 2D im-
ages, it is not advantageous here due to the large number of
small billboards.

5. Hardware Optimizations

Almost all information needed to render the tree is static.
We thus assemble this information once in a preprocessing
step and setup the graphics hardware accordingly. We trans-
fer all static per-vertex information once to the fast graphics
hardware memory using vertex buffer objects. Moreover, we
push computations such as the correct orientation of each
billboard onto the graphics hardware using Cg. During ren-
dering, we traverse the underlying structure in a back-to-
front manner, collect indices into the vertex buffer objects
and set up texture coordinates appropriately.

Using OpenGL, texture compression is available via the
extension GL_EXT_texture_compression_s3tc .

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

(a) (b) (c) (d)

Figure 5: (a) Tree with uncompressed texture. (b) Quantization using RGB space with visible errors (average RMS=30.1971).
(c) Quantization with CIELAB space, with original GLA algorithm (average RMS=28.1523). (d) Modified GLA algorithm using
CIELAB space (average RMS=28.1017). The RMS is computed with respect to (a) and averaged over the colour channels.

The technical details of this compression scheme can be
found in [Ope]. We use DXT5 texture compression which
gives an additional compression ratio of 4:1.

6. Results

All results described here are run on a Linux Fedora PC
with an NVIDIA 6800 graphics card with 128MB of tex-
ture memory, and a 3.06Ghz Xeon CPU. We have tested our
approach using three tree models: the oak and pine which
were also used in [RMMD04], and the additional small oak
model presented in Reche’s thesis [RM05]. We will always
refer to these trees in this order unless explicitly stated oth-
erwise. We compare the various improvements to the basic,
non-hierarchical tri-grid algorithm of [RMMD04].

Before pruning, the corresponding number of billboards
is 154,000, 54,000 and 35,000 for a 7-level octree subdivi-
sion. The corresponding numbers for a 5-level tri-grid are
361,000, 152,000 and 114,000. After pruning (Sec.3.2), the
averagenumber of billboards is 53,000, 43,000 and 33,000,
computed by rotating around the tree. In terms of rendering
speeds, the average frame rate for the three trees are: 1.5, 2.6
and 2.5 frames per second (fps) for the tri-grid, 4, 6 and 6 fps
for the complete octree and 11, 11 and 12 fps for the pruned
octree. As we can see, we have an average 78% reduction
in the number of polygons and a 86% average speedup in
rendering speed, for equivalent quality trees.

The texture memory consumption for a multi-resolution
tri-grid version of the above trees is 266, 147 and 228 MB,
before any compression (5-level). The corresponding octree
texture memory consumption, before any compression is 72,
60 and 86 MB (7-level). Using our compression approach
described in Sec.4, the memory requirement is 3.1, 2.1 and
6.3 MB. We use a codebook of size 512 for the oak and pine
and 1024 for the small pine, which has less contrast over-

all in the textures. Compared to the uncompressed tri-grid
we thus achieve a 64:1 improvement in texture memory con-
sumption (19:1 for the octree). Using the hardware compres-
sion, the actual texture memory consumption on the graphics
cards is again reduced by a factor of 4, resulting in a 256:1
overall compression compared to the tri-grid (76:1 for the
octree).

Figure 7: Scene with 12 trees in a square; this scene runs
at 20 fps. All three trees are present.

The performance of the multi-resolution rendering algo-
rithm is harder to compare, since there is no equivalent in the
original algorithm. We show in Figs.1,7 typical interactive
“game-like" environments. The “square” scene renders at an
average frame rate of 20 fps (max. 24 fps and min. 17 fps),
while the scene of the Ancient Greek city of Argos renders
at 10 fps (max. 25 fps and min. 7 fps) for the walkthroughs
shown on the accompanying video. On average, 6 trees for
the “square” scene and 180 trees for the city of Argos are
inside the viewing frustum. All three trees are used. Using

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

the original approach, this would require 641 MB of texture
memory, rendering it unusable for common graphics cards.
The total texture memory consumption using our approach
is 2.9 MB, or a total compression rate of 240:1 in this case.

Although the improvements in rendering speed and tex-
ture memory consumption now allow for rendering hundreds
of trees, it is still limited by the traversal of the underlying
data structure, needed for correct back-to-front sorting of the
billboards. This is done entirely on the CPU and the traversal
time hence gives a lower bound for the speed of our method.

7. Conclusion and Discussion

We have presented a multiresolution rendering approach for
captured volumetric trees, together with an efficient texture
compression approach. In particular, we use an octree data
structure which allows smoother multiresolution level-of-
detail control. We employ generated textures at every level.
We are able to significantly reduce the number of billboards
required to represent the volume by pruning those which do
not contribute to the image. For texture compression, we
use a vector quantization scheme [BAC96] which is modi-
fied in two ways: we use a perceptually uniform color space
(CIELab), and we modify the GLA algorithm for codebook
generation, improving texture quality. The compression does
result in a some quality loss (intensity and contrast levels) as
evidenced in Fig.5, but the overall quality is high.. It may be
possible to further improve the quality by using alternative
heuristics.

The approaches we have introduced, together with the use
of a set of graphics hardware optimizations, reduce the tex-
ture memory required for the display of the captured volu-
metric trees by one order of magnitude (e.g., from 72 MB
for the oak tree down to 3.1 MB). The multi-resolution algo-
rithm allows the display of large numbers of trees in realistic
settings for games or other interactive applications. In the
previous approach [RMMD04] a single tree ran at 2 fps; in
the examples we have shown, we are able to render environ-
ments with 290 trees at 10 fps on average.

The methods we have presented are a significant improve-
ment over previous state of the art for captured volumetric
trees. Without these, use of this representation was imprac-
tical for all realistic usage scenarios such as games etc. We
believe that with the solutions presented here, captured vol-
umetric trees will now be a viable and interesting option for
real-world applications such as games etc., since the result-
ing trees are realistic and convincing, and can be displayed
rapidly compared to other approaches.

In future work, we plan to address the two limitations of
captured volumetric trees, that is fixed lighting, which is cur-
rently embedded in the input photographs used to generate
the textures, and the fact that the trees cannot currently be
modified, since they are an exact reconstruction of an exist-
ing tree. For both of these issues, it will be necessary to cre-

ate a semantic representation of the tree by identifying the
trunk, branches and leaves, allowing their manipulation both
photometrically and geometrically. In addition, it would be
beneficial to push the back-to-front sorting of the billboards
onto the graphics hardware.

References

[Add02] ADDISON P. S.: The Illustrated Wavelet Transform
Handbook. Institute of Physics, 2002.

[BAC96] BEERS A. C., AGRAWALA M., CHADDHA N.: Ren-
dering from compressed textures. InSIGGRAPH ’96: Proceed-
ings of the 23rd annual conference on Computer graphics and
interactive techniques(New York, NY, USA, 1996), ACM Press,
pp. 373–378.

[BCF∗05] BEHRENDT S., COLDITZ C., FRANZKE O., KOPFJ.,
DEUSSENO.: Realistic real-time rendering of landscapes using
billboard clouds. InEurographics 05(2005).

[Blo85] BLOOMENTHAL J.: Modeling the mighty maple. InSIG-
GRAPH ’85: Proceedings of the 12th annual conference on Com-
puter graphics and interactive techniques(New York, NY, USA,
1985), ACM Press, pp. 305–311.

[DCSD02] DEUSSEN O., COLDITZ C., STAMMINGER M.,
DRETTAKIS G.: Interactive visualization of complex plant
ecosystems. InProc. IEEE Visualization 2002(October 2002),
pp. 219–226.

[DHL∗98] DEUSSEN O., HANRAHAN P., LINTERMANN B.,
M ĚCH R., PHARR M., PRUSINKIEWICZ P.: Realistic modeling
and rendering of plant ecosystems.Proc. SIGGRAPH’98(1998),
275–286.

[dREF∗88] DE REFFYE P., EDELIN C., FRANSON J., JAEGER

M., PUECH C.: Plant models faithful to botanical structure and
development. InProc. SIGGRAPH 88(1988), pp. 151–158.

[FUM05] FUHRMANN A. L., UMLAUF E., MANTLER S.: Ex-
treme model simplification for forest rendering. InEG Workshop
on Natural Phenomena 05(2005), pp. 57–66.

[Jol80] JOLIFFE I.: Principal Component Analysis. Springer,
1980.

[Max96] MAX N.: Hierarchical rendering of trees from precom-
puted multi-layer Z-buffers. InProc. 7th EG Rendering Work-
shop(1996), pp. 165–174.

[MF03] MANTLER S., FUHRMANN A. L.: Fast approximate vis-
ible set determination for point sample clouds. InEGVE ’03:
Proceedings of the workshop on Virtual environments 2003(New
York, NY, USA, 2003), ACM Press, pp. 163–167.

[MN98] MEYER A., NEYRET F.: Interactive volumetric textures.
In Proc. 9th EG Rendering Workshop 1998(July 1998), pp. 157–
168.

[MNP01] MEYER A., NEYRET F., POULIN P.: Interactive ren-
dering of trees with shading and shadows. InProc. 12th EG
Workshop on Rendering, 2001(Jul 2001), pp. 183–196.

[MO95] MAX N., OHSAKI K.: Rendering trees from precom-
puted Z-buffer views. InProc. 6th EG Workshop on Rendering
(1995), pp. 74–81.

c© The Eurographics Association 2006.



C. Linz, A.Reche-Martinez, G. Drettakis & M. Magnor / Effective Multi-resolution Tree Rendering

[Ney98] NEYRET F.: Modeling animating and rendering complex
scenes using volumetric textures.IEEE Trans. on Visualization
and Computer Graphics 4, 1 (Jan.–Mar. 1998), 55–70.

[Ope] OpenGL Extension Reg-
istry. http://oss.sgi.com/projects/ogl-
sample/registry/EXT/texture_compression_s3tc.txt.

[PL90] PRUSINKIEWICZ P., LINDENMAYER A.: The algorithmic
beauty of plants.Springer, New York(1990).

[QNTN03] QIN X., NAKAMAE E., TADAMURA K., NAGAI Y.:
Fast photo-realistic rendering of trees in daylight. InProc. of
Eurographics 03(Sept. 1–6 2003), pp. 243–252.

[RM05] RECHE-MARTINEZ A.: Image-based Capture and Ren-
dering with Applications to Urban Planning. PhD thesis, Univer-
sité de Nice, Sophia-Antipolis, 2005.

[RMMD04] RECHE-MARTINEZ A., MARTÍN I., DRETTAKIS

G.: Volumetric reconstruction and interactive rendering of trees
from photographs.ACM Trans. Graph. 23, 3 (2004), 720–727.

[SRDT01] SHLYAKHTER I., ROZENOER M., DORSEY J.,
TELLER S.: Reconstructing 3D tree models from instrumented
photographs.IEEE CG & A 21, 3 (May/June 2001), 53–61.

[TKN∗92] TADAMURA K., KANEDA K., NAKAMAE E., KATO

F., NOGUCHI T.: A Display Method of Trees by Using Photo
Images. Journal of Information Processing 15, 4 (1992), 526–
534.

c© The Eurographics Association 2006.


