
Accurate Interactive Specular Reflections on Curved Objects

Pau Estalella1, Ignacio Martin1, George Drettakis2, Dani Tost3, Olivier Devillers4, Frederic Cazals4

University of Girona1 REVES/INRIA2 UPC3 GEOMETRICA/INRIA4

Girona, Spain Sophia-Antipolis, France Barcelona, Spain Sophia-Antipolis, France

Abstract

We present a new method to compute interactive
reflections on curved objects. The approach cre-
ates virtual reflected objects which are blended into
the scene. We use a property of the reflection ge-
ometry which allows us to efficiently and accu-
rately find the point of reflection for every reflected
vertex, using only reflector geometry and normal
information. This reflector information is stored
in a pair of appropriate cubemaps, thus making it
available during rendering. The implementation
presented achieves interactive rates on reasonably-
sized scenes. In addition,we introduce an interpola-
tion method to control the accuracy of our solution
depending on the required frame rate.

1 Introduction

Real-time reflections from curved objects are an im-
portant visual cue for synthetic images. We are used
to seeing the reflections of the rest of the environ-
ment, in any real-life setting containing shiny or
mirror-like reflectors. In addition, reflections have
an important aesthetic value, which designers of vir-
tual environments would like to exploit, for exam-
ple in VR applications for design and training, or
computer games. Depending on the application, the
accuracyandspeedof computation of these reflec-
tions are very significant; either or both of these fac-
tors severely restrict the use of reflections on curved
objects in most real-time applications.

Despite advances in graphics hardware and cor-
responding algorithms, it is currently not possible
to render accurate real-time reflections for curved
objects. Ray-tracing, and in particular PC-cluster-
based solutions [15] have shown impressive results:
it is fair to say however, that these solutions still
cannot produce real-time reflections on a single
workstation for high-resolution images. Another
solution to real-time reflections on curved objects

is environment mapping, and in particular the re-
computation of the maps at every frame for every
reflector (e.g., [11]), to accommodate moving ob-
jects. This appears to be the solution of choice in
recent computer games: however, it is costly (4-6
rendering passes of the entire environment per re-
flector), and can be very inaccurate for reflected ob-
jects close to the reflector, or in regions of the re-
flector with high-curvature.

The idea of using multiple passes to render reflec-
tions using graphics hardware was proposed in [5],
for planar reflectors. The idea is to compute the ge-
ometry of the reflected “virtual objects” and render
these in a second pass. An extension to curved ob-
jects was proposed by [13]; however, this approach
does not provide a guarantee of accuracy and im-
plies a non-negligeable run-time cost per reflector.

In this paper, we present a novel solution to
computing real-time reflections on curved objects
which exploits information locally available at ren-
der time.

Our main contributions are: (i) The computa-
tion of real-time reflections with controllable accu-
racy for a large class of curved objects (convex or
concave objects), (ii) a demonstration of geometric
properties of the geometry of reflection, allowing
the definition of an error function and an associated
search algorithm, which allows us to find reflection
points rapidly (iii) the introduction and use of posi-
tion/normal reflector cube maps, resulting in a local
search algorithm without access to the geometry of
the scene, (iv) an approximation method that per-
forms the search of the reflected positions of the
vertices of a bounding grid of the reflectors in or-
der to quickly compute the reflected vertices of the
mesh by interpolation.

We next discuss previous work and then present
some basic concepts. After describing our algo-
rithm and presenting the results, we conclude with
a discussion of the advantages and shortcomings of
the proposed approach.

VMV 2005 Erlangen, Germany, November 16–18, 2005

2 Previous Work

The most widely-used approach for rendering spec-
ular reflections is ray-tracing [16, 6]. Despite re-
cent efforts, real-time ray-tracing (e.g., [15]) is still
not available on simple, stand-alone workstations.
Therefore its use in real-time animation and in
video-games is still limited.

For planar surfaces, an alternative is the Multi-
pass Pipeline Rendering (MPR) proposed in [5].
It consists of recursively rendering the scene us-
ing the hardware-provided pipeline, adding addi-
tional levels of reflections at each pass. The authors
define avirtual viewpoint for each mirror surface
computed by reflecting the viewer using the beam-
tracing specular transformations [9]. The mirror im-
ages must be recomputed if the reflectors or the re-
flected surfaces move.

In complex environments such as outdoor scenes
with trees and plants, the projection step for each
mirror surface can be avoided by using precom-
puted radiance maps (e.g., [1]). Radiance maps are
reflected images of the scene from different view-
points, computed in a pre-process, and used at run-
time applying warping techniques. However, this
improvement is of little use in dynamic environ-
ments since radiance maps must be recomputed if
the objects of the scene move.

Many specular surfaces such as car bodywork,
pans and panoramic glass walls, are curved and
therefore not suitable for the MPR strategy. Envi-
ronment Maps (EM) [2] provide simple approxima-
tions of reflections on curved objects. They assume
that the environment is infinitely distant from the
reflector and, therefore, that the reflections on the
object surface are similar to those computed from a
central point of the object. An omnidirectional im-
age of the environment is thus computed by project-
ing through the center of the object onto a cube- or
sphere-map [7]. Parameterized Environment Maps
(PEM) [8] improve traditional EM by adding self
reflections. A PEM is a sequence of EM recorded
over a set of viewpoints. The EM are computed
with ray-tracing and segmented into several layers
that separate different shading terms and local and
distant parts of the environment. PEMs improve the
realism of the reflections but increase the cost of
the pre-processing stage dedicated to their compu-
tations, which is view-independent and thus must be
re-computed if the reflector or the reflected surfaces

move.
In [3], environment maps are precomputed for

different viewpoints and warped at render time; an
approach which also warps but incrementally up-
dates pre-computed EM for dynamic scenes was
presented in [10]. Modern graphics hardware al-
lows render-to-texture capabilities to be used to re-
compute EM at each frame for each reflector, with
real-time performance [11]; the approach however
becomes expensive for scenes with a large number
of reflectors. The last three methods can treat dy-
namic scenes, but are still inaccurate for reflections
of close-by objects.

An analytic approach for the computation of vir-
tual vertices on curved reflectors based on the path
perturbation theory, is described in [4]. It is based
on a pre-processing step in which sparse sets of
rays are traced in the scene using standard ray-
tracing. At run-time, the actual reflection points
are computed by updating the reflection points of
nearby pre-computed rays. This method operates
on implicit surfaces, and has an relatively expensive
preprocessing step, which needs to be recomputed
when reflectors move.

In [13] a solution is proposed for reflections on
curved reflectors, extending the idea of MPR. The
virtual object is calculated by computing the virtual
vertices of all its polygons and topologically con-
necting them. The approach is based on a tessel-
lation of reflectors into triangles, and the compu-
tation of a data structure called theexplosion map
to accelerate the computation of virtual vertices.
The explosion map is re-computed for each reflec-
tor and viewpoint. Using this structure, it is possi-
ble to quickly determine if the reflection of a point
of the reflected surface is visible for the given view-
point, and if so, to compute an approximate reflec-
tion plane tangent to the reflector in order to mirror
the point about it. This approach is the most closely
related previous work, and we will compare it to our
solution in Section 8.

3 Overview of Computation for Vir-
tual Reflected Objects

Our method uses the concept of virtual object pro-
posed in [5]. During rendering, for each reflector,
and each reflected mesh, we create a virtual mesh
that we render giving to the observer the illusion of
viewing the scene reflected on the curved reflector.

666

Consider a curved reflectorρ and a pointV
which will be reflected byρ. We want to find the
reflection pointR on ρ so that we can compute the
virtual vertexV ′ and render the reflection. We base
the search ofR on the following property.

Let P be a point on the reflectorρ. The normal at
point P is defined asNP . The observer position is
O. The normalizedbisector vectorBP is the bisec-
tor of the angleÔPV . We also define thebisector
direction vectorB′

P to be the vector defined from
the end of unit vectorNP to the end of unit vector
BP .

The reflection pointR is the point on the reflec-
tor surface with normalNR, such that the vector
BR coincides with vectorNR. No other point on
the reflector’s surface has this property. All these
quantities are shown in Fig. 1.

Therefore, to compute the virtual vertexV ′, we
perform a search to find the position of thereflection
pointR. We start with a pointP on the surface, and
we use an error function which indicates how farP
is from the reflection pointR. We define the error
function as the angle (Fig. 1) between the bisector
BP and the normalNR.

Figure 1: The basic geometry used: the observerO, a
pointP on the reflector, a vertexV which will be reflected
on the reflectorρ, the normalNP and the bisectorBP .
The pointR is the reflection point, at whichBR = NR,
by definition.

We want to perform this search using information
which is available at render time, and with minimal
overhead. GivenO andV , and a starting pointP
on the reflector, we will use a pair of cube maps
to search forR. These maps, which we callre-
flector cube-maps, encode positions on the reflector
surface and their corresponding normals. We will
search forR within these maps.

In the next section, we explain how we create
the reflector cube maps and give details of the er-

ror function and its properties. We then present
the search algorithm to find the reflection point
given these maps. We next describe an approxi-
mation method based on interpolation that reduces
the number of searches to perform, followed by the
treatment of special-cases. We conclude with re-
sults and a discussion of our approach.

4 Finding the reflection points

4.1 Reflector Cube-Maps

The cubes maps are an encoding of points on the re-
flectors (position map) and normals and will be used
during the search of the reflection point at rendering
time. The creation of the reflector cube maps is a
pure pre-processing step. It is completely indepen-
dent of the view and the rest of the scene, and thus
can be computed once and stored with each object
during modelling.

Figure 2: Projection of reflector’s triangles against the
reflector cube map faces.

To create the reflector position and normal cube
maps, we project a vertexP of the reflector by in-
tersecting the ray defined by the centerC of the re-
flector andP with the appropriate cube-map face
(see Fig. 2). From now on, we useuP to designate
the 2D cube map texture point corresponding toP .

To draw the position map we assign each vertex’s
3D position to a vertex color. To draw the normal
map we assign the vertex’s normal to a vertex color.
This way the triangles drawn are filled with lin-
early interpolated 3D positions and normals, which
should ideally match the reflector’s surface.

An important feature of our approach is the fact
that this map can be created with a highly tessellated

666

version of the reflector, which can be different from
that used for rendering. The accuracy of the reflec-
tions will thus be higher, without additional cost at
rendering time.

Figure 3: Definition of the projected bisector direction
bp.

4.2 The error function

Recall that the error function must be determined
using the local properties available during render-
ing, i.e., the positions of the reflector and the nor-
mal. For any pointP on the reflector’s surface, we
can compute the angle betweenBP and NP . In
practice, we compute the dot productBP · NP of
the normalized vectors, and use the resulting value
between minus one and one as the error value. The
error function is thus defined as follows:

E(P) = (1 − BP ·NP)/2 (1)

The error function has a zero at the reflection point
and a value of one whenBP andNP point in oppo-
site directions.

We callregion of interest, the region bounded by
the bitangents (red dashed lines in Fig. 3) corre-
sponding toO andV on the reflector; This is the
region in the interior of the green line in the figure.
Points outside this region cannot reflectV . We will
use the following theorem in what follows.

In the region of interest and for a convex reflec-
tor the error functionE has a unique minimum at
R, by definition of the reflection point. The projec-
tion of this vector on the cube map is theprojected
bisector directionbP . VectorbP can also be defined
by the endpoints of the intersections of the rays de-
fined byNP andBP with the cube-map face. We
use the projected bisector in the search for the mini-
mum later. These quantities are illustrated in Fig. 3.

For a given pointP in the region of interest, if
we follow the bisector direction vectorB′

P , by less
than the lengthPR, to a new pointQ, we approach
the reflection pointR. This is proved in a separate
document annexed to the submission.

Thus, to find the reflection pointR, we use an al-
gorithm which follows the vectorB′

P . If we knew
PR, we could guarantee that we advance towards
to minimum of the error function; since this infor-
mation is not available, we will approximate it, and
demonstrate that the method works well in practice.

The vectorsB′
P define a vector field over the sur-

face of the object, andbp defines the vector field
V (s, t) in the cube-maps. For a given configuration
of a reflector, an observerO and a viewerV , we
can visualize vector fieldV (s, t) in a region of the
cube map close to the projected reflection pointuR

(see Fig. 4(left)). We can see that, as expected, the
vector flow lines lead touR.

xi

bi bm

x i bi
h
2
_+

xi+1 x i h+ bm=
xm=

Figure 4: Left: Visualisation of the vector field. Right:
Illustration of search algorithm.

4.3 Search algorithm

The algorithm operates on the reflector cube maps,
with the terminating condition of the error function
(Eq. 1) being below a given thresholdε.

At a given pointuP , we obtainNP directly from
the surface normals texture, andBP is computed as
the bisector of the anglêOPV , with O andV the
observer and the vertex being reflected, andP the
position extracted from the surface positions texture
(see Fig. 1). We thus obtain the projection bisector
directionbP .

As illustrated in Fig. 4(left), the vector field
V (s, t) has a “sink”; following the vectors of the
field to reach this sink is a well-known numerical
problem. This sink, whereV (s, t) is 0, is precisely
the reflection point. Finding the minimum, and thus
the reflection point, reduces to solving the equation

666

V (s, t) = 0. We use the midpoint method (second
order Runge-Kutta) with adaptive step size to solve
this equation. Our approach requires just two tex-
ture evaluations per step, while giving the desired
accuracy.

The method works as follows: We compute the
projected bisectorbi at the current point, the pro-
jected bisectorbm at half the step distance in the
direction ofbi, and move a full step length in the
direction of bm (see Fig. 4(right)). We adjust the
step length depending on the difference ofbi and
bm. If the vectors are very different, we reduce the
stepsize. If they are very similar, we increase it.

5 Interpolation-Based Optimization

Computing the virtual meshes by directly applying
the search algorithm to all the reflected mesh ver-
tices has two drawbacks. First, the computational
cost is linear with the number of mesh vertices of
the reflector. It does not depend on the actual size
of the reflection areas in the image. Thus, when
the reflection is small in the current view, which is
quite often with curved reflectors, most of the com-
putation is simply wasted. A second drawback is
that although the search algorithm is precise, since
the number of iterations is fixed, the solutions have
variance, which may produce visible artifacts such
as flickering during animation.

In order to adjust the rendering cost to the real
needs of precision and to remove artifacts, we have
developed the following optimization. For each
meshM , in a pre-process, we compute a regular
isothetic bounding gridG(M) of Nx × Ny × Nz

cells. We store only the set of cells of the grid that
contain at least one vertex of the mesh.

In a pre-process, for each vertex of the mesh, we
find the grid cell ofG(M) to which the vertex be-
longs and we compute the vertex local coordinates
(u, v, w) inside the cell. During rendering, for each
reflectorρ and each meshM , we create a virtual
grid Gρ(M) by computing the virtual vertices of
all the grid vertices using the search algorithm de-
scribed above. Then, we compute the coordinates
of the virtual position of all the mesh vertices by in-
terpolation using the local coordinates (u, v, w) of
each vertex in its corresponding virtual cell.

In the current implementation, the number of
cells per grid axisNx, Ny andNz is chosen such
that the total number of cells is a constant user-

defined fraction of the number of vertices of the
mesh, and such that the cells are as close to cubes as
possible in order to provide a smooth interpolation.

6 Special Cases

The basic algorithm described above gives the gen-
eral principle of our approach. A case that requires
special treatment is that of triangles which are par-
tially hidden by the reflector: we explain how to
deal with this case. Our approach currently has
some requirements on the geometry of the reflec-
tors; we discuss these briefly.

6.1 Hidden vertices

Given an observer and a convex reflector, we can
partition the space into three different regions, fol-
lowing the naming convention in [13] (see Figure
5(left)). The first region is called the reflected re-
gion, corresponding to the subset of space seen by
the observer, reflected by the reflector. The sec-
ond region is the hidden region, the subset of the
space occluded from the observer by the reflector.
In the case of a closed reflecting surface, the union
of these two regions is the entire space. For open
reflecting surfaces, the union of these two disjoint
regions leaves out the so called unreflected region.

Figure 5:The reflected (green), hidden (cyan) and unre-
flected (red) regions. Their respective extents are related
to observer position and reflector shape (blue.) Computa-
tion of bisector B during the inverse search requires com-
puting the reflection pointp of p′ w.r.t. the current normal
N and reflector surface pointr.

When computing the virtual vertices for reflec-
tions, scene triangles that lie completely in the hid-
den or unreflected regions can be discarded without
further work. Triangles that lie partially in these re-
gions and partially in the reflected region must be
processed, and we must find reflected positions for
the vertices outside the reflected region.

666

For any given pointP in the reflected region we
have one and only one pointP ′ in the hidden re-
gion that corresponds to the virtual specular reflec-
tion point. Symmetrically, for every pointP ′ in the
hidden region, we have one and only one pointP in
the reflected region. For a given pointP ′ in the hid-
den region, we wish to find the reflection point us-
ing the same algorithm. To do this, we first compute
the reflection pointp of p′ to compute the bisector
B, as can be seen in Figure 5(right). This operation
is performed at every step of the iterative search for
the reflection point. The rest of the search proceeds
as before, allowing the algorithm to find the reflec-
tion pointR.

6.2 Geometry Preprocessing

We currently have some restrictions on the input.
For open reflectors, we require an accompanying
closed object in the model so we can fill the reflec-
tor cube maps. Since open objects are often mod-
eled as trimmed closed objects, this is not a ma-
jor restriction. In the long run, an automatic pre-
processing algorithm could perform this step. We
also require objects to be segmented into concave
or convex pieces. Again, this is is currently done
manually as a preprocess.

7 Results

We present results of our approach for a scene
representing a kitchen. Clearly, since this paper
is about real-time reflections, the results are best
seen in the accompanying video. The video shows
viewer navigations in the kitchen varying the num-
ber of grid vertices. It show be noted that the frame
rates are slightly lower than the real ones, because
of the frame capture and composition software.

The two left-most image of Fig. 6 show images
computed using our approach performing the search
for the full set of vertices and approximating the
search by interpolation, using a grid with a number
of vertices of 10% of the number of mesh vertices.
An environment map image of the same image is
also shown along with a ray-traced image. The ray-
traced image has been computed using NuGraph
and the lighting conditions are not exactly the same
than those of our software. However, the reflections
in the ray-traced image can be taken as a reference
solution. From Figure 6, it is clear that environ-

ment maps, even when recomputed at each frame,
produce reflections which are very inaccurate for
close-by objects. The image of the scene computed
applying the search for the full set of vertices shows
artifacts caused by the fixed resolution of the itera-
tive search. The image computed by interpolation
and using the search for the grid vertices removes
these artifacts and gives a smooth, visually pleasant
reflection. Our method produces results which are
accurate to the precision of the subdivision of the
objects in the scene. The “Kitchen” scene of Fig. 6
with the approximation strategy runs at an average
of 10 fps and at 1.3 fps if the search is performed for
all vertices. Varying the number of selected vertices
in Figure Fig. 7 the rates are 16.3 fps for 4.1% exact
vertices, 13.6 fps for 5.5%, 10.1 fps for 9.6% and
8.3 fps for 14.3%, respectively. We have observed
that above 10% the quality difference is not notice-
able. Finally, Figure Fig. 8 shows the same view
computed with no grid interpolation, and using dif-
ferent number of iterations for the vertex search.

All results are reported on a Pentium Xeon
3.2Ghz with an Asus A400 GeForce 6800 graphics
card running Linux RedHat 9.

Figure 7: The Kitchen scene. Same view with different
densities for the grids. The number of grid vertices is a
fixed percentage of the number of mesh vertices. Top left
uses 4.1%, top right uses 5.5%, bottom left uses 9.6%, and
bottom right uses 14.3%

666

Figure 6:The Kitchen scene. From left to right. The reference ray-traced image, the scene rendered using our approach
searching for all the vertices, the scene rendered using our approach, searching for only 10% of the vertices and approx-
imating the others and the scene using dynamic environment maps (i.e., recomputed at each frame). Our approach for
full search as well as with the approximation is clearly much closer to the ray-traced solution than DEM.

Figure 8: The Kitchen scene. Same view with different
number of iterations used for the local search. No grid
used, all vertices are reflected. Top left uses 3 iterations,
top right uses 5 iterations, bottom left uses 7 iterations,
and bottom right uses 9 iterations. Using more iterations
gives no noticeable improvements.

8 Discussion and Conclusions

The results show that our approach provides very
accurate reflections on curved objects, with real-
time performance.

Moreover, the approximation mechanism speeds
up rendering allowing users to tune the accuracy of
the reflections. As a consequence, our approach is
sufficiently fast and produces accurate reflections.

In terms of existing alternatives, the accuracy

of environment maps, even if they are computed
at every frame, is simply insufficient for objects
close to the reflector. Although we do not have a
full comparison with the method presented in [13],
the authors point out that their method will often
find an incorrect triangle in an explosion map, and
thus the reflection point found will be incorrect.
The method could be improved with an additional
search [12] to find a better approximation to the re-
flection point. However, an efficient implementa-
tion, which would be implementable in hardware,
would require a structure similar to our reflector
cube maps, since the explosion maps do not con-
tain normal information, and the geometry stored in
the explosion map is reflected. In terms of compu-
tation cost, we believe that the computation of the
explosion map and our search for reflection points
have comparable cost, but with higher accuracy.

In terms of limitations, our approach cannot han-
dle torus-like geometries for the reflectors; however
no other real-time alternative exists. Our current
implementation requires a certain amount of pre-
processing for reflectors (see Section 6.2). Cur-
rently, edges of large polygons are not correctly re-
flected, since we only reflect the endpoints. Also,
the cost of the additional rendering pass per reflec-
tor is currently significant, since every vertex has to
be reflected on every reflector. However, we believe
that these problems can be addressed, and although
they currently limit the use of our approach, they
are not major hurdles.

Using a level-of-detail (LOD) grid hierarchy
could greatly reduce the cost of the reflection com-
putation. The advantage is that the size of the grid
determines the quality of the reflection. The size

666

of the grid should be selected proportionally to the
area of the reflection in image space for each view.
Other accelerations are possible, for example only
doing the computation for visible reflectors, or us-
ing other culling techniques.

Another improvement concerns the requirements
for geometry processing the input (see Section 6.2).
This step is currently done manually; automating
this processing is an important avenue of research.

The current implementation does not treat mul-
tiple reflections, but a straightforward extension of
our approach could handle this. We believe how-
ever that it would first be necessary to implement
the LOD improvement to make such an approach
feasible. Computation of refraction would require
the study of the analytic properties of the equivalent
error functions, but is most probably possible.

Finally, a hardware-based version of the pro-
posed approach is currently being implemented for
both the search of the exact vertices and the inter-
polation of the approximated vertices.

References

[1] Rui Bastos, Kenneth Hoff, William Wynn,
and Anselmo Lastra. Increased photorealism
for interactive architectural walkthroughs. In
SI3D ’99: Proceedings of the 1999 symposium
on Interactive 3D graphics, pages 183–190.
ACM Press, 1999.

[2] James F. Blinn and Martin E. Newell. Texture
and reflection in computer generated images.
Communications of the ACM, 19(10):542–
547, October 1976.

[3] Brian Cabral, Marc Olano, and Philip Nemec.
Reflection space image based rendering. In
SIGGRAPH ’99: Proceedings of the 26th an-
nual conference on Computer graphics and
interactive techniques, pages 165–170. ACM
Press, 1999.

[4] M. Chen and J. Arvo. Perturbation
methods for interactive specular reflections.
IEEE Transactions on Visualization and
Computer Graphics, 6(3):253–264, July/
September 2000.

[5] Paul J. Diefenbach and Norman I. Badler.
Multi-pass pipeline rendering: realism for dy-
namic environments. InSI3D ’97: Proceed-
ings of the 1997 symposium on Interactive 3D
graphics, pages 59–ff. ACM Press, 1997.

[6] Andrew S. Glassner, editor.An Introduction
to Ray Tracing. Academic Press, 1989.

[7] Ned Greene. Environment mapping and
other applications of world projections.IEEE
Computer Graphics and Applications, 6(11),
November 1986. revised from Graphics Inter-
face ’86 version.

[8] Ziyad S. Hakura, John M. Snyder, and
Jerome E. Lengyel. Parameterized environ-
ment maps. InSI3D ’01: Proceedings of the
2001 symposium on Interactive 3D graphics,
pages 203–208. ACM Press, 2001.

[9] Paul S. Heckbert and Pat Hanrahan. Beam
tracing polygonal objects. InComputer
Graphics (SIGGRAPH ’84 Proceedings), vol-
ume 18, pages 119–127, July 1984.

[10] Alexandre Meyer and Ćeline Loscos. Real-
time reflection on moving vehicles in urban
environments. InVRST ’03: Proceedings of
the ACM symposium on Virtual reality soft-
ware and technology, pages 32–40. ACM
Press, 2003.

[11] Kasper Høy Nielsen and Niels Jørgen Chris-
tensen. Real-time recursive specular reflec-
tions on planar and curved surfaces using
graphics hardware. InJournal of WSCG, vol-
ume 10, pages 91–98, Plzen , Czech Republic,
February 2002. University of West Bohemia.

[12] Eyal Ofek.Modeling and Rendering 3-D Ob-
jects. PhD thesis, Institute of Computer Sci-
ence, The Hebrew University, 1998.

[13] Eyal Ofek and Ari Rappoport. Interactive re-
flections on curved objects. InSIGGRAPH
’98: Proceedings of the 25th annual confer-
ence on Computer graphics and interactive
techniques, pages 333–342. ACM Press, 1998.

[14] William H. Press, Brian P. Flannery, Saul A.
Teukolsky, and William T. Vetterling.Numer-
ical Recipes: The Art of Scientific Computing.
Cambridge University Press, Cambridge (UK)
and New York, 2nd edition, 1992.

[15] Ingo Wald, Philipp Slusallek, Carsten Ben-
thin, and Markus Wagner. Interactive dis-
tributed ray tracing of highly complex mod-
els. InRendering Techniques, pages 277–288,
2001.

[16] Turner Whitted. An improved illumination
model for shaded display. CACM, 1980,
23(6):343–349, 1980.

666

