
IS
S

N
 0

24
9-

08
03

appor t
 t e chn ique

THÈME 4

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

View-Dependent Layered Projective Texture Maps

Alex Reche — George Drettakis

N◦ 5016

Novembre 2003

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)

Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

View-Dependent Layered Projective Texture Maps

Alex Reche∗† , George Drettakis ‡†

Thème 4 — Simulation et optimisation
de systèmes complexes

Projets Reves

Rapport technique n◦ 5016 — Novembre 2003 — 19 pages

Abstract: Capturing and rendering of real scenes in an immersive virtual environment
is still a challenging task. In this paper we present a novel workflow, which emphasizes
high-quality, view-dependent projective texturing at low memory cost, while allowing artist
intervention to ensure image quality control. First, a small set of photographs of a real scene
are used to create a 3D model, using standard tools to create models from images. Optimized
visibility layers are then created for each photograph. These layers are subsequently used
to created standard 2D image-editing layers, enabling artists to fill-in missing texture using
standard techniques such as clone brushing, or to create transparency maps. The result of
this preprocess is used by our novel layered projective texture rendering algorithm, which
has low texture memory consumption, high interactive image quality and avoids the need
for subdividing geometry for visibility. Our approach brings together a set of standard
components and tools, and adapts easily to existing workflows, both in terms of content
creation and virtual environment display. We show results of our implementation on a
real-world project.

Key-words: Virtual Reality, Augmented Reality, Projective Textures, Layered Images,
View Dependent Texture Maps

This is a note

This is a second note

∗ Footnote for first author
† Shared foot note
‡ Footnote for second author

Textures Projectives a Calques dependant du Point de
Vue

Résumé : La capture et le rendu des scènes réelles dans le contexte des environnements vir-
tuels immersifs sont encore des tâches très difficiles. Nous présentons une nouvelle approche,
en utilisant des textures projectives dépendantes du point de vue, de haute qualité et avec
un faible coût en mémoire texture. Dans un premier temps, des photographies de la scène
réelle sont utilisées pour créer un modèle 3D avec des outils standards. Notre méthode
ordonne automatiquement la géométrie en groupes à niveaux de visibilité différents pour
chaque point de vue. Ces groupes sont ensuite utilisés pour découper les images en calques,
permettant aux artistes le remplissage des textures manquantes, dues à la non-visibilité, en
utilisant des outils comme le tampon de duplication (clone brush). Le résultat de ce proces-
sus est utilisé par notre nouvel algorithme de rendu en utilisant des textures projectives à
calques, qui a un faible coût d’utilisation de mémoire de texture, une qualité haute de rendu
et dans le cas de textures projectives dépendantes du point de vue, évite la subdivision de
la géométrie engendrée par la visibilité en utilisant des méthodes précédentes.

Mots-clés : Realite Virtuelle, Realite Augmentee, Textures Projectives, Calques d’Images,
Textures dependantes du point de vue

VDLPTM 3

Contents

1 Introduction 4

2 Related Previous Work 5
2.1 View Dependent Texture Mapping . 5
2.2 Image-based Modeling and Rendering . 5
2.3 Visibility Ordering and Image-Editing . 6

3 Overview 6

4 Real Scene Capture 8

5 Creating Visibility and Image Layers 9
5.1 Visibility Layers . 11
5.2 Creating Image Layers . 12

6 Image Editing 13

7 Layered View Dependent Projective Texture Display 13
7.1 Data Structures for Layered View Dependent Projective Textures 15
7.2 Rendering Multiple Views . 15

8 Results 15

9 Discussion and Conclusions 18

10 Acknowledgements 18

RT n◦ 5016

4 Reche & Drettakis

1 Introduction

Recent developments in modeling from images and other real-world capture techniques (e.g.,
laser or time-of-flight scanning, or stereo-based methods), have resulted in an increasing
interest in the creation and display of 3D models in realistic computer graphics and virtual
environments (VE’s). The visual quality of such environments can be very high, thanks
to the richness of the textures extracted from high-resolution digital photography and the
quality of the reconstructed 3D geometry.

The applications for such VE’s are numerous. Urban planning and environmental impact
studies, archaeology and education, training, design but also film production or computer
games are just a few cases where these highly-realistic virtual environments comprise an
important quality and technological advancement.

Modeling-from-images approaches have been largely based on pioneering work in Com-
puter Vision [20, 5]. In Computer Graphics, the work by Debevec [3], and his Facade system
have inspired much of the work which followed. Image-based modelling and rendering meth-
ods have also been developed [12, 10, 6], which are yet another alternative method to capture
and display real world scenes. The Facade approach, and the follow-up interactive render-
ing version [4], use a view-dependent rendering algorithm. The textures used in display are
blended from textures from multiple views, and can be quite satisfactory. In the interactive
case, projective textures are used, requiring a geometric visibility pre-process (subdivision
of polygons).

In practice, several commercial modeling-from-images products have been since devel-
oped and are used for real world projects (e.g., [27, 23, 26]). All of these products however
have adopted standard, rather than projective, texture mapping for display: each polygon
has an associated texture, which is extracted from the input photographs by applying in-
verse camera projection. Geometry is thus displayed as regular textured polygons, and can
be directly integrated into a traditional computer graphics or virtual environment rendering
system. This choice is also justified by a need for control of visual quality. Artists can in-
tervene at various stages of the process, using standard image-editing tools (such as Adobe
PhotoshopTM [7], or GIMP[25]), for example to fill in missing texture information or remove
undesirable objects etc. They can also edit the textured geometry using standard modeling
tools [22, 24], in a traditional graphics/VE production workflow.

In this paper, we present new algorithms and a new workflow which address a number
of shortcomings of previous methods.

• We adopt a view-dependent display model, by blending textures coming from different
input photographs corresponding to different viewpoints; the quality of the renderings
is thus much higher than the result of standard modeling-from-images products. One
goal of our approach is to remain compatible with standard graphics and VE rendering
systems, typically in the context of a scene-graph based approach.

• We develop a new projective texture rendering approach, which does not require sub-
division of polygons. This approach is based on image-layers, which are automatically

INRIA

VDLPTM 5

generated by our system. This also reduces texture memory requirements compared
to texture extraction approaches.

• The image-layers are tightly integrated with standard image-editing programs. Artists
can thus edit the image in a standard manner, maintaining tight control over final
image quality.

We have implemented our system, and we show results from a reconstructed 3D model
of a real-world project, which is the construction of the Nice Tramway. For comparison, we
show how existing commercial products can be used to create view-dependent renderings,
and we show by example that our method has lower memory consumption, superior visual
quality and is easier to use and faster for model creation.

2 Related Previous Work

We first review the most closely related work which is that of Debevec and colleagues,
on view-dependent texture mapping. We briefly mention other image-based modeling and
rendering (IBMR) approaches, explaining why they cannot be used for our purposes. Finally
we briefly discuss layering, visibility ordering and image editing.

2.1 View Dependent Texture Mapping

In their original paper [3], Debevec et al. presented the first modeling-from-images system
Facade. The idea of view-dependent texture mapping (VDTM) was presented, but the
rendering approach is clearly off-line and uses model-based stereo to obtain very impressive
visual results. This work was transposed to an interactive rendering context [4], in which
the polygons which are partially visible in one of the input images are subdivided and
missing textures are filled by simple color interpolation. Projective texturing is used and
textures are blended by creating a view-map of closest viewing angles. This method has the
advantage of being completely automatic; the flip side of this is the lack of quality control
in a traditional content-creation workflow. In particular, for surfaces which do not receive
a projective texture a hole-filling technique is used. This step, which is one of the main
sources of visual error, is done by simple interpolation of colours from neighouring vertices.
Subdivision of input geometry could also be problematic in some contexts, due to numerical
imprecision. The method we will present can be seen as an extension of this approach, by
addressing these two issues.

2.2 Image-based Modeling and Rendering

Image-based modeling and rendering solutions have been developed since the mid-nineties;
pioneering work includes view-interpolation [2] and plenoptic modeling [12]. The Lightfield[10]
and Lumigraph[6] algorithms are based on relatively dense sampling of images, so that pure

RT n◦ 5016

6 Reche & Drettakis

(Lightfield) or geometry-assisted (Lumigraph) image interpolation suffices to render an im-
age. The size of the data sets required for these approaches (gigabytes of image data), makes
them very hard to use for realistic projects.

Many improvements have been proposed to these basic methods. Examples include
view-based rendering [17] or surface light fields [21]. One method of particular interest is the
Unstructured Lumigraph [1], which can be seen as a “middle ground” between the lumigraph
and view-dependent texture mapping. The criteria for blending are more sophisticated
compared to VDTM, and the geometric model can be almost arbitrarily coarse. All of
these methods require special-purpose rendering algorithms, and is some cases are hard
to integrate in a traditional scene-graph like rendering structures, in which captured and
“standard” virtual objects co-exist, and can be manipulated interactively.

Another IBMR approach are layered depth images[18], which add depth to a multi-layer
image, resulting in high-quality renderings. Both real (simple layers) and synthetic examples
were presented. Special-purpose algorithms are also necessary for this approach. A related
method is relief texture mapping[15], which renders geometric detail using a depth map, and
performs part of the projective transformation by manipulating the texture plus depth map
before rendering. The results, both for Relief Texture Mapping and for LDI’s, are dependent
on the quality and availability of depth information.

2.3 Visibility Ordering and Image-Editing

Our algorithm for layer construction is based on a hardware visibility ordering algorithm by
Krishnan et al.[9]. A more complete, software solution has been presented by Snyder and
Lengyel [19]. Visibility cycles are resolved in the algorithm by Newell et al. [13]. Our work is
also related to the work of Oh et al.[14], in what concerns the integration of 3D information
and image editing. Most of the algorithms developed by Oh et al. could be applied to our
image editing operations, making them more efficient and easy to use.

3 Overview

We will first discuss 3D model reconstruction using modeling-from-images solutions, and
how they can be adapted to view-dependent rendering.

We will then describe our image layer construction algorithm. Our goal is to achieve
projective texture mapping, without the need to subdivide input geometry. Consider the
example shown in Fig. 1. The scene has three objects, A, B and C and we consider 3 views,
cameras c1, c2 and c3. The corresponding images are shown from each camera in the second
row. When using the previous projective texture mapping algorithm[4], even for such a
simple scene, objects A and B must be subdivided. For view c1, B will be cut into the B1,
B2 (see Fig. 1 top row). When moving from c1 to c2, object B2 will have the image from c1

as a projective texture, and then will blend the images from c1 and c2. Object B1 however,
will always be displayed with the image of c2, since it is invisible from c1.

INRIA

VDLPTM 7

Figure 1: Row 1 left: The geometric configuration of the scenes and the cameras. Row 1
right: the corresponding 3D geometry. Row 2: The three images corresponding to the three
cameras, c1, c2 and c3. Row 3: The three image-layers viewed in GIMP, corresponding to
camera c1, after image editing (clone brushing etc.). Row 4: Visualisation of the projected
layers.

Instead of doing this, we create layered images, or image layers, by first constructing
visibility layers. For a given camera or view, a geometry layer is a set of surfaces for which
no pair is mutually occluded. In the example of Fig. 1, and for camera c1, there are three
layers, the first containing A and C, the second containing B, which is partially hidden
by A and the third the background We then create an image layer, corresponding to each

RT n◦ 5016

8 Reche & Drettakis

geometry layer (see Fig. 1 third row). The first layer corresponds to the portions of the
image from c1 covered by the pixels corresponding to A and C, and the second image layer
corresponds to object B.

We construct geometric visibility layers by adapting the hardware-based algorithm of
[9], and then create standard image-editing (i.e., Adobe Photoshop[7] or GIMP[25]) layers,
which will be used as projective textures. We discuss how these layers can be edited using
standard techniques. For example, for the layers of c1, the missing texture of B is filled in
GIMP.

The edited layers are then used as projective textures in our new algorithm. The algo-
rithm uses the corresponding compact image layer as projective textures for the appropriate
polygons of the reconstructed 3D model, avoiding the need for geometry subdivision. This is
shown in the last row of Fig. 1. Because the layers and image-editing have resolved visibility
we can move around freely.

We have implemented this entire workflow, using REALVIZ ImageModeler[27] to re-
construct 3D geometry, and GIMP[25] as an image-editing tool. We present the method
and results on a model of Place Massena in Nice, showing how we can rapidly construct
appropriate texture layers, and achieve interactive, high-quality, view-dependent display of
captured real scenes.

4 Real Scene Capture

The first step of our approach is to create the coarse 3D model; we have chosen to use
an approach based on modeling from images. We first calibrate the cameras of the input
photographs, and we construct an approximate, polygonal 3D model of the real scene. In
this work we use REALVIZ ImageModelerTM [27]. Other products such as PhotoModeler[26]
or Canoma [23], or research systems such as Rekon[16] could be used with the same result.
The research system Facade[3, 4], can also be used to the same effect, but has a different,
view-dependent approach to rendering, as described in the Sect. 2.

These systems [27, 23, 26, 16] extract textures (see Fig. 2), either from a single im-
age or from a combination of images. Texture extraction results in an “unfolding” of the
corresponding part of the input photograph into texture space, by applying the inverse per-
spective transform. The texture can then be applied via standard texture mapping onto the
3D model generated.

As a result, the overall texture requirements using this method are much higher than
the resolution of the input images. Consider for example Fig. 2, where the entire input
photograph has resolution 2160 x 1440 and just the facade texture has resolution 2323 x
439.

Textures extracted by this process are not always complete. Consider for example the last
row of 3; on the left we see the result of extracted textures before editing, and on the right
we see the edited result. The final result is obtained using standard image-editing programs
such as Adobe PhotoshopTM [7] or GIMP[25]. An artist will typically use clone-brushing or
simple editing to repair this problems. Extracted textured are “unfolded” using the inverse

INRIA

VDLPTM 9

Figure 2: Top: the photo of a facade and the corresponding 3D model. Bottom: the
extracted texture. Notice how the windows at the extremities have been distorted by per-
spective unfolding.

perspective transfrom and editing is typically performed in this space. Although unfolded
texture intuitively correspond to object space, and can be convenient for some editing tasks,
artists are used to clone-brushing directly in image space, and can find directly editing
the image more convenient. Unfolding textures is fundamentally a inverse projection and
resampling problem, and thus is very sensitive to the algorithms used. The unfolded texture
can have insufficient resolution in certain regions, and its shape can be unintuitive if a
texture is assigned to compound objects (see Fig. 2).

View-dependent viewing can also be effected, by displaying the reconstructed model
using multiple textures, one per view. We have implemented this and used it in a vir-
tual/augmented reality system [11]; however the construction and editing of the scenes is
very cumbersome and the requirements in texture memory extremely high.

5 Creating Visibility and Image Layers

We now describe our new image layering approach. The first step is to create a set of images
with calibrated cameras, and a corresponding coarse 3D model of the scene (Fig. 3). Our
goal is to create a set of layers for each input image of the set, which will be subsequently
used as projective textures for display. These layers have the following property: for any
object in the first layer, no other object in the scene occludes it; for the second layer, once

RT n◦ 5016

10 Reche & Drettakis

Figure 3: First row, 2 of the 3 input photographs used in this example. Second row, the
3D model extracted, viewed from the same viewpoints (snapshots from ImageModelerT M .
Third row, one intermediate views before texture editing and one after texture editing.

the objects of the first layer have been removed, the same property applies, and so on for
each layer. Once these layers have been created, we can use projective texture mapping
without the need to subdivide geometry, since we create a separate projective texture map
for each layer.

As mentioned previously, we tightly integrate the creation of these layers with a standard
image editing program, so that an artist can fill in the missing parts of a given layer use
standard techniques such as clone brushing etc.

To create these image layers, we first perform a visibility sort in 3D, to create what we
call visibility layers, which are groups of polygons. We then create what we call image layers,

INRIA

VDLPTM 11

which are true image-editing-programme layers, usable in an image-editing programme such
as Adobe PhotoshopTM [7] or GIMP[25].

For the first step, we adapt an existing visibility sorting algorithm and then optimize the
layers so that we do not waste image resolution. The second step is achieved by sending the
output of the visibility sorting algorithm to the editing program which then creates standard
image-editing 2D layers, so that an artist can subsequently edit the result.

5.1 Visibility Layers

To compute the visibility layers we adapt the visibility algorithm of Krishnan [9]. Initially,
we render the entire scene into an item buffer, i.e., we use a unique identifier for each object
in the scene. We then read this buffer to create an initial working set of potentially visible
polygons, which thus contains all objects with at least one visible item buffer pixel containing
its id.

The algorithm then iteratively constructs a set of visibility layers. For each iteration,
the item-buffer of the working set is rendered into the color and the stencil buffer, and
the z-test inverted (GL LESS). For each pixel with a stencil value greater than 1, the object
corresponding to the item-buffer value of the pixel is partially hidden, and thus the object is
removed from the working set. The working set is then rendered iteratively, until the stencil
buffer contains values less than or equal to 1. The remaining objects are those completely
visible, so they will be the objects for the current layer. However, an additional test is
done to the set of objects to solve a problem in the algorithm of Krishnan [9]. We can
see an illustration of this problem in Fig. 4. In this case the algorithm chooses objects A
and C as objects for the first layer. However, the only completely visible object is object
A. The additional test consists in a comparison between the first normal rendering pass
and an additional normal rendering pass with all the selected objects. All objects that are
visible in the final pass and not completely visible in the first pass, cannot be considered as
completely visible. Thus, they are removed from the current working set. All the objects
selected are then inserted into the current visibility layer, and removed from the working
set. The current layer is saved, then set to empty, and the iteration continues.

The output of this algorithm is a set of visibility layers. In each visibility layer we have
a set of polygons, which are used to build layered images.

In our implementation we have optimized this process hierarchically thanks to the struc-
ture of the scene which is provided by the image modelling programme. In particular, the
scene provided by ImageModeler is organised into objects which contain a set of faces or
polygons. Initially, identifiers are given to objects rather than faces, and the algorithm is
performed on objects, rapidly eliminating large objects. When we can no longer proceed
with objects, we split them into their constituent polygons. In our examples this is enough
to resolve the visibility in the scene. Nonetheless, cycles can occur, even at the level of
individual polygons/triangles, and in this case we would need to identify the cycles and cut
the geometry using an algorithm such as that of Newell et al. [13].

RT n◦ 5016

12 Reche & Drettakis

B

C

D

A

1 2 3 2 1

D

Stencil Buffer

Z−Inverse (GL_less)

B

A

Frame Buffer

Liste de candidats
{ A,B,C,D}

B

C

D

A

{ A,C}
Liste de candidats

Rendu Normal

Rendus 1ere Iteration

Rendus 2eme Iteration
Stencil Buffer

Z−Inverse (GL_less)

A

B

1 1

{ A,C}
Liste de candidat

definitive

Figure 4: Illustration of the problem in the original [9] algorithm, and our solution.

5.2 Creating Image Layers

To create the image layers, we start with the set of visibility layers. For each visibility layer,
we project each constituent polygon into image space, resulting in a 2D contour for each.
We then perform a simple clustering algorithm for the set of contours. We take advantage
of the fact that due to OpenGL restrictions, each texture has to have resolution of a power
of 2. For a pair of contours c1 and c2 we merge c1 and c2 into the same layer, if:

A12 < A1 + A2, (1)

where Ai is the minimal bounding box with resolution in x and y powers of two, with area
greater than the area of the bounding box of the projected contour ci. Thus each layer is
potentially split into several layers. Examples of image layers can be seen in Fig. 1 and
Fig. 5.

This results in an increase of the number of layers, but is required to reduce the texture
memory requirements of our projective textures. This is because very distant objects can
belong to the same visibility layer, which would result in textures with large areas of empty
space, wasting texture memory. The final set of layers is then ready for image editing in
the appropriate program. These layers consist of a 2D bounding box in image space for the
image being treated. This process is shown in Fig. 5.

The layers are then sent to the image-editing program (GIMP [25] in our case), which
creates a 2D image layer corresponding to the input image. An example of such layers is
shown in Fig. 5.

INRIA

VDLPTM 13

Figure 5: Left: A visibility layer before optimisation. All objects shown are in the same
layer. Right: The resulting layer after optimisation to avoid empty spaces, and reduce
overall texture memory.

6 Image Editing

Once layers have been created in the editing program, an artist can perform standard opera-
tions required to fill in missing details, or to create transparency maps, which are particularly
effective for multiple-view rendering.

We return to the example of the facade cited earlier (Fig. 2). Using our new approach, the
artist now can use all standard image-editing, such as clone brushing in the usual manner,
directly in image space.

In Fig. 6, we see the layers corresponding to the facade and to the posts in front. The
artist works in the layers of the facade, performs clone-brushing and the work is complete.

This approach is particularly useful for small details. Perspective correction in the style
of [14] could be easily added in this case and would render the tool even more useful and
efficient.

Another useful kind of edit which is practical in this context is the manual creation of
alpha maps. Again, artists are used to working in perspective image space, and thus creating
alpha-maps is easier.

7 Layered View Dependent Projective Texture Display

After creating the visibility layers and manually editing the texture layers for the objects in
the scene we can now use projective texture mapping to display the captured real scene.

For any viewpoint corresponding to the camera of a photograph, all we need to do is to
render the geometry, and for each object assign as a texture the corresponding layer. To

RT n◦ 5016

14 Reche & Drettakis

Figure 6: Top row: the layers of the facade and the posts in front. Bottom row: the result
after clone brushing on the facade.

allow viewing from other viewpoints, we will blend between textures in the spirit of [4]. We
explain this process in detail in what follows.

INRIA

VDLPTM 15

7.1 Data Structures for Layered View Dependent Projective Tex-
tures

As mentioned previously we have designed our approach to fit into a typical scene-graph
based rendering system such as OpenGL PerformerTM [8]. We thus describe the data struc-
tures in terms of scene graph nodes and traversals.

For standard projective texture mapping, a scene-graph based implementation can have
the form shown in Fig. 7(a). An image texture node is created, and associated to the
geometry nodes (typically polygons). The texture node contains the texture, its width and
height and the texture projection matrix (i.e., position of the camera, view direction, up
vector, field-of-view near and far).

For layered projective texture mapping, the graph is modified to contain a sub-image
texture node, which in addition to the information of a “standard node” described above,
contains the image-coordinates of the sub-image (xi, yi, wi, hi) Fig. 7(b).

To render the layers, we need to apply a sheared perspective, transformation, shown
in Fig. 8. This can be directly implemented using the OpenGL command glFrustum with
parameters:

x′min = xmin + xi(xmax−xmin)
w

x′max = xmin + (xi+wi)(xmax−xmin)
w

y′min = ymin + yi(ymay−ymin)
w

y′may = ymin + (yi+wi)(ymay−ymin)
w

7.2 Rendering Multiple Views

To render multiple views, we need to further modify our scene graph structure. We create
a view-dependent projective texture node V DP which contains a list of view-dependent
texture nodes, associated with each (unique) geometry.

When encountering such a node during graph traversal, the renderer chooses the blending
factors for each appropriate texture, sets up the texture matrix for the nodes with non-zero
blending factors, and renders the associated geometry in as many passes are required.

8 Results

We show here results of our system; our submission is accompanied by an electronic movie
with captures of an interactive session of our system. We use the same example as that
presented in previous sections, which is a reconstructed model of Place Massena in Nice. This
capture has been performed in the context of a virtual/augmented environment simulation
of the Tramway project in Nice. The Tramway will pass between the building shown here
and a station will be placed at this location.

RT n◦ 5016

16 Reche & Drettakis

Figure 7: Left: scene-graph implementation of standard projective texturing. Right: scene-
graph implementation of layered projective texturing.

Figure 8: Left: Standard perspective frustum, Right: sheared frustum for use with layers.

In Fig. 9, we show intermediate views (i.e., different from the input photos of resolution
2160x1440) using our view-dependent projective texture method. The algorithm creates a

INRIA

VDLPTM 17

Figure 9: Top row: two intermediate (non-input) views, using our new, layered projective
texture display. Lower row (right): Closeup of input image; (left) closeup of rendering of
our system from a different viewpoint.

total of between 98 and 160 (optimized) layers for each image, many of which are very small
and require no editing. The total texture memory required is between 10-12 Megabytes,
depending on the image. The algorithm to create the layers takes less than 3 minutes to
complete (most of which is spent in interprocess communication between GIMP and our
system). The entire process of editing and cloning the layers took about two days; using a
texture extraction-based approach, with the same scene and the same views required three
weeks.

As we can see, the quality of the images, and in particular the zoomed-in images is better
using our approach, since textures have not been altered with inverse perspective distortion.

RT n◦ 5016

18 Reche & Drettakis

9 Discussion and Conclusions

We have presented a new workflow for displaying captured real scenes, using projective
texture mapping. We create image-layers of the input photographs, which can be edited in
a standard image-editing program to fill in missing texture. The layers are then used as
projective textures of the geometry. This is done for a small number of multiple views, and
the rendering algorithm blends between the closest views to the current viewpoint.

Compared to the initial interactive projective texture mapping approach [4], we avoid
the need to subdivide geometry for visibility, and we introduce more traditional artist inter-
vention to manually fill in missing textures, rather than depending on interpolation. Thus
the advantages of our approach are that we avoid increasing the polygon count of the scene,
and that the approach fits well with traditional workflows, where artist’s control over image
quality is paramount; the disadvantage is that hole-filling is no longer automatic.

Compared to texture-extraction methods, our approach significantly reduces texture
memory requirements and results in better texture quality, since inverse perspective results
in large textures and quality loss due to resampling.

In addition, for some image-editing tasks, artists are used to working directly in image-
space, rather than in inverse perspective space, and thus the image-editing process is faster
overall.

The high image quality very important. Informal observation of our system in use has
shown that the user is much less sensitive to parallax errors due to the high quality of the
projective textures used, and thus a much smaller number of input photographs is required,
compared to previous methods.

This is just the first step in building complete and usable solutions to effective, high-
quality renderings of captured real scenes for immersive systems.

On the capture side, there are many preprocessing tasks which require care and manual
intervention, such as colour balancing between multiple views, or ensuring that shadows are
in the right place due to motion of the sun. We are investigating ways to make these tasks
automatic or semi automatic. Similarly, given that we have multiple views, texture synthesis
approaches could be used to avoid manual clone brushing to some extent.

For rendering, we will be integrating this approach into our immersive virtual environ-
ment system and we will be investigating how many views are required using an experimental
approach.

10 Acknowledgements

The first author is funded by a CIFRE doctoral fellowship, in partnership with the Centre Scien-
tifique et Technique du Batiment (http://www.cstb.fr). This research was partially funded by the
EU IST project CREATE, IST-2001-34231, http://www.cs.ucl.ac.uk/create. ImageModeler was
gracefully provided by REALVIZ in the context of the CREATE project. Thanks to our lab artist
Alexandre Olivier-Mangon for his helpful comments and for editing of part of the example images.
Thanks to Frédo Durand for reading and commenting on an early draft.

INRIA

VDLPTM 19

References

[1] C. Buehler et al. Unstructured lumigraph rendering. In SIGGRAPH 2001, Computer Graphics
Proc., Annual Conference Series, pages 425–432, 2001.

[2] S. E. Chen and L. Williams. View interpolation for image synthesis. Computer Graphics,
27(Annual Conference Series):279–288, 1993.

[3] P. Debevec et al. Modeling and rendering architecture from photographs: A hybrid geometry-
and image-based approach. In Proc. SIGGRAPH 96, pages 11–20, August 1996.

[4] P. Debevec et al. Efficient view-dependent image-based rendering with projective texture-
mapping. In Rendering Techniques ’98, 9th EG workshop on Rendering, Vienna, Austria,
June 1998. Springer Verlag.

[5] O. Faugeras et al. 3-d reconstruction of urban scenes from image sequences. CVGIP: Image
Understanding, 1997.

[6] S. J. Gortler et al. The lumigraph. In SIGGRAPH 96 Conference Proc., Annual Conference
Series, pages 43–54, Aug. 1996.

[7] http://www.adobe.com/products/photoshop/main.html.
[8] P. S. L. http://www.sgi.com/software/performer/.
[9] S. Krishnan et al. A Hardware-Assisted Visibility-Ordering algorithm with applications to

volume rendering. In Data Visualization 2001, pages 233–242, 2001.
[10] M. Levoy and P. Hanrahan. Light field rendering. In SIGGRAPH 96 Conference Proc., Annual

Conference Series, pages 31–42, Aug. 1996.
[11] C. Loscos et al. The CREATE project: Mixed reality for design, education, and cultural

heritage with a constructivist approach. In Proc. of ISMAR 2003 (Poster), 2003.
[12] L. McMillan and G. Bishop. Plenoptic modeling: An image-based rendering system. Computer

Graphics, 29(Annual Conference Series):39–46, 1995.
[13] M. E. Newell et al. A solution to the hidden surface problem. In Proc. of the ACM Nat. Conf.,

pages 443–450, 1972.
[14] B. M. Oh et al. Image-based modeling and photo editing. In SIGGRAPH 2001, Computer

Graphics Proc., Annual Conference Series, 2001.
[15] M. M. Oliveira et al. Relief texture mapping. In Proc. of SIGGRAPH 2000 (New Orleans,

La), July 2000.
[16] P. Poulin et al. Interactively modeling with photogrammetry. In Eurographics Rendering

Workshop 1998, pages 93–104, June 1998.
[17] K. Pulli et al. View-based rendering: Visualizing real objects from scanned range and color

data. In Rendering Techniques ’97 (Proc. of the 8th EG Workshop on Rendering) held in St.
Etienne, France, pages 23–34, 1997.

[18] J. W. Shade et al. Layered depth images. In SIGGRAPH 98 Conference Proc., volume 32 of
Annual Conference Series, pages 231–242, 1998.

[19] J. Snyder and J. Lengyel. Visibility sorting and compositing without splitting for image layer
decompositions. In SIGGRAPH 98 Conference Proc., 1998.

[20] C. J. Taylor and D. J. Kriegman. Structure and motion from line segments in multiple images.
IEEE Trans. on Pat. Analysis and Mach. Intelligence, 17(11):1021–1032, 1995.

[21] D. N. Wood et al. Surface light fields for 3D photography. In SIGGRAPH 2000, Annual
Conference Proc., pages 287–296, 2000.

[22] www.aliaswavefront.com.
[23] www.canoma.com.
[24] www.discreet.com/products/3dsmax/m.
[25] www.gimp.org.
[26] www.photomodeler.com.
[27] www.realviz.com.

RT n◦ 5016

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Lorraine : LORIA, Technopôle de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lès-Nancy Cedex (France)

Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rĥone-Alpes : 655, avenue de l’Europe - 38330 Montbonnot-St-Martin (France)

Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Éditeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)

http://www.inria.fr

ISSN 0249-0803

	Introduction
	Related Previous Work
	View Dependent Texture Mapping
	Image-based Modeling and Rendering
	Visibility Ordering and Image-Editing

	Overview
	Real Scene Capture
	Creating Visibility and Image Layers
	Visibility Layers
	Creating Image Layers

	Image Editing
	Layered View Dependent Projective Texture Display
	Data Structures for Layered View Dependent Projective Textures
	Rendering Multiple Views

	Results
	Discussion and Conclusions
	Acknowledgements

