ISRN INRIA/RR--4833--FR+ENG

ISSN 0249-6399

%I INRIA

INSTITUT NATIONAL DE RECHERCHE EN INFORMATIQUE ET EN AUTOMATIQUE

Flexible Point-Based Rendering on Mobile Devices

Florent Duguet — George Drettakis

N° 4833
Mai 2003

THEME 3

apport
derecherche

% I N RIA

SOPHIA ANTIPOLIS

Flexible Point-Based Rendering on Mobile Devices

Florent Duguet*, George Drettakis '

Théme 3 — Interaction homme-machine,
images, données, connaissances
Projet REVES

Rapport de recherche n° 4833 — Mai 2003 — 20 pages

Abstract: Point-based rendering is a compact and efficient means of displaying complex
geometry. For mobile devices which typically have limited CPU or floating point speed,
limited memory, no graphics hardware and a small display, a hierarchical packed point
based representation of objects is particularly well adapted. We introduce p-grids, which
are a generalization of previous octree based representations and analyse their memory and
rendering efficiency. By storing intermediate node attributes, our structure allows flexible
rendering, permitting efficient local image refinement, required for example when zooming
into very complex scenes. We also introduce a novel and efficient one-pass shadow mapping
algorithm using this data structure. We show an implementation of our method on a PDA,
which can render objects sampled by 1.3 million points at 2.1 frames per second;the model
was originally made up of 4.7 million polygons.

Key-words: point-based rendering, shadow maps

* http://www-sop.inria.fr/reves/personnel /Florent. Duguet
T http://www-sop.inria.fr/reves/personnel /George. Drettakis

Unité de recherche INRIA Sophia Antipolis

2004, route des Lucioles, BP 93, 06902 Sophia Antipolis Cedex (France)
Téléphone : +33 4 92 38 77 77 — Télécopie : +33 4 92 38 77 65

Rendu Flexible & Base de Points sur Plateformes Mobiles

Résumé : Le rendu a base de points est une méthode compacte et efficace pour I'affichage
de géométries complexes. Les plateformes mobiles ont typiquement un seul processeur et
des capacités de calculs en virgule flottante limitées, peu de mémoire, un affichage réduit et
aucun processeur dédié au graphique. Dans ce cadre, une représentation hiérarchique com-
pacte & base de points pour les objets graphiques est particuliérement bien adaptée. Nous
introduisons les p-grids, qui sont une généralisation des représentations & base d’octrees exis-
tantes, et nous analysons leur efficacité sur le plan de la mémoire et du rendu. En stockant
les attributs intermédiaires dans la hiérarchie (couleur, normale), notre structure permet un
rendu flexible, avec un raffinement local de ’image, ce qui est requis par exemple en exa-
minant des objets dans une scéne complexe. Nous introduisons aussi un nouvel algorithme
efficace de calcul d’ombres basé sur la technique des cartes d’ombres, utilisant notre struc-
ture et ne nécessitant qu’une passe de rendu. Nous présentons une implémentation de notre
méthode sur un PDA, pouvant rendre des objets échantillonnés & 1,3 millions de points & 2,1
images par secondes. Le modéle est originellement composé de 4,7 millions de polygones.

Mots-clés : rendu par points, cartes d’ombres

Flezible PBR 3

1 Introduction

Recent years have seen the proliferation of complex virtual environments with the deploy-
ment of the more ubiquitous computer, which we now use at work, in the household, for
leisure etc. With the increasing demand for detailed and high quality models, typical scene
size easily reaches millions of primitives. At the same time, display devices are becoming
more diverse, including mobile or embedded platforms such as PDAs or mobile phones, thus
significantly increasing the user base for complex virtual environments.

The main motivation of our work is to allow interactive display of complex scenes on
different kinds of platforms with heterogeneous rendering capabilities, and more precisely
on mobile devices. Even though embedded systems have decent computational capabilities
in terms of basic CPU operations, their memory is quite limited, they typically lack floating
point units, and their display is limited to around a hundred thousand pixels (resolutions
of 240x320 are typical). These elements change a number of our basic assumptions about
rendering tradeoffs.

For instance, the geometric complexity of scenes we want to render, often measured in
polygons, can be tens of thousands or even millions, whereas the number of pixels e.g., on
a PDA may be less than one hundred thousand. Using standard rasterization operations
on polygonal geometry would be a waste. To accommodate all the above constraints, i.e.,
limited memory and floating point speed as well as limited display size, we choose a packed
hierarchical point-based representation for rendering.

Hierarchical techniques have already been used for point-based rendering using very
efficient algorithms for both data storage[2] and rendering[15]. This work has inspired our
choices of data structures and rendering algorithms. However, we introduce a more flexible
structure, which allows locally adaptive progressive rendering. This is achieved by explicitly
storing intermediate attributes, as in [16, 15].

We generalize the octree structure presented by Botsch et al.[2], to a class of hierarchical
structures we call p—grids. In this context, i.e., the storage of intermediate attributes, we
show that the choice of a 3x3x3 subdivision scheme, which we call a tri-grid, is more efficient
in storage and rendering speed than an octree.

We introduce a multi-level rendering algorithm which stops the traversal of the hier-
archy at the appropriate level, and directly renders using the stored intermediate sample
attributes. For devices with limited resources, actually traversing the hierarchy is a very
costly operation. Our structure allows us to define an appropriate ordering for rendering
samples, resulting in a fast one-pass shadow map algorithm.

In this work we analyze the storage and rendering time complexity of our structure. We
show that our choice of data structure is based on a careful decision on the tradeoff between
the cost of traversing the hierarchy and the cost of processing a node (rendering in our case).

In the next section, we briefly present previous related work. We discuss the method
of Botsch et al.[2] in some detail, since we have been inspired by some of the choices made
there. In section 4 we introduce our general framework for packed hierarchical structure, and
present a comparative study for p-grids. In section 5 we describe our rendering algorithm.

RR n°® 4833

4 Duguet € Drettakis

We present results and a discussion of implementation issues in section 6, and conclude
(section 7).

2 Previous Work

For very complex scenes, the traditional graphics pipeline can be very wasteful, with much
effort spent transforming and rasterizing large numbers of geometric primitives which may
cover less than a pixel. Point based rendering, introduced as early as 1985 by Levoy and
Whitted [12], addresses this issue by point-sampling complex geometry [18, 17], and render-
ing an appropriate number of points depending on the screen size of the complex object.
Several papers have been published in this domain over the last few years. Grossman and
Dally [9] generated point representations of objects in a preprocess, and presented efficient
rendering algorithms of these point sets. Q-splat is an approach permitting the visualisation
of very complex models[15], in particular those that do not fit in main memory. This

Figure 1: (Left) Our structure used for hierarchical point-based rendering of a 4.7M polygon
model at 2.1 fps on a 200Mhz IPAQ, sampled at 1.3 M points total. The multi-level approach
restricts the number of points rendered depending on the view. Notice the shadows in the
scene. (Right) The dragon model at 2.3 fps.

INRIA

Flezible PBR)

approach was extended to handle network transmission[16]. Surfels[14], surface splatting[19]
and point-set surfaces[1] address, among other aspects, high-quality rendering issues. Other
approaches perform combined rendering of points and polygons|5, 4] or even lines[6].

The question of how to point-sample complex objects has been addressed by Pfister et
al.[14], who create an octree representation. Inspired by techniques related to geometric
coding[7], a more compact representation is presented by Botsch et al.[2], in which an octree
is used to code point positions implicitly. This approach is extremely efficient in memory, and
the authors present a very rapid rendering algorithm. This work has inspired our approach,
for our choices for both storage and rendering. We show how the octree structure used by
Botsch et al.[2] can be generalised to different kinds of subdivisions. We will also extend
their approach by storing intermediate attribute samples so that rendering can be flexible
and thus more efficient.

Our approach combines the advantages of hierarchical rendering of Q-splat[15, 16] and
the compact and efficient storage of Botsch et al.[2].

3 Overview

Our goal is to render complex scenes, containing hundreds of thousands or even millions of
primitives on mobile platforms. To achieve this goal we choose a point sample representation
coded in a hierarchical structure. We need this structure to be flexible, in terms of storage
and rendering. To develop such a structure, we introduce the class of recursive grids, which
we call p-grids. These are recursive grids with a regular and uniform subdivision at each
level. p-grids (with a subdivision of pxpxp for each cell) can be seen as a generalization of
the octree (subdivided into 2222 for each cell).

We first explain how we implicitly code point position, as in [2], and how we code
additional attributes such as color and normal information. To achieve flexible multi-level
display, we sample and store such attributes at intermediate levels of the hierarchy. If a
whole branch of the tree projects to a single pixel of the display, it can be represented by a
single sample. We analyze the memory consumption of this class of hierarchical structures
and demonstrate that the tri-grid is most efficient if intermediate attributes are stored, for
the range of bit-code sizes we use.

Our rendering algorithm is similar to [2], and is based on the efficient projection of
samples onto the screen. We introduce an efficient multi-level rendering approach which
directly renders intermediate nodes and uses frustum culling. We also introduce an efficient
one-pass shadow map algorithm using this structure. We analyze rendering times and show
that the tri-grid is the best overall choice when considering the tradeoff between rendering
and storage costs, for our range of sample attributes sizes.

Such compact and efficient structures become particularly important for mobile plat-
forms. We have implemented our structure on a 200Mhz Compaq iPAQ H3850 running
PocketPC 2002, and we describe implementation and system issues which were involved in
this effort.

RR n°® 4833

6 Duguet € Drettakis

4 Framework for structured point-sampled geometry

Before presenting the general recursive p-grid framework, we will discuss our sampling strat-
egy. We then analyze memory consumption of this class of structures.

4.1 Sampling

Our sampling strategy is simple and general: for each cell of the hierarchy, whether inter-
mediate or leaf, we sample the geometry at the point of the object closest to the center of
the cell. If the cell contains no object, the cell is flagged as empty. We can thus sample any
kind of object, as long as the following two operations are available:

o IntersectAzisAlignedBox: returns true if the object intersects, or is contained in, a
given axis aligned box.

e GetSampleAt: returns a sample and its attributes for a given input point (cell center),
and geometry primitive.

As discussed below, sample position is coded implicitly with the hierarchical data-
structure. In addition we can code normal and material indices. In what follows we use
a 16-bit code for a 13-bit quantized normal index (as in [2]) and for indexing 8 materials.
Evidently, we need more bits if we have more materials, or colors; these codes vary from 32
to 48 bits.

In our recursive grid structure, we store what we call intermediate sample attributes. By
this we mean normal and potentially material /color codes for interior (i.e., non-leaf) nodes of
the hierarchy. As discussed later, these intermediate samples allow us to effect efficient and
flexible multi-level rendering with limited computational and graphics processing resources,
such as on PDA’s.

Evidently, more involved sampling strategies could be employed, for example by using a
bottom-up filtering approach, similar in a way to texel approaches[13].

4.2 Recursive grids

Recursive grids were first introduced as acceleration structures for ray-tracing. The main
benefit of such structures is both the flexibility given by the hierarchical structure, and the
optimized algorithms for grid traversal at each level of the hierarchy [8, 11]. We will describe
here another usage of recursive grids, i.e., as a compact point-sampling structure.

An octree can be seen as the simplest recursive grid: each cell is subdivided into eight
subcells. We will focus on regular recursive grids, that is grids for which the number of
subcells is p?, with p the number of subcells per dimension, and with uniform subdivision.
The octree is this structure for p = 2. We call tri-grid, the recursive grid for p = 3.

As discussed previously, point based rendering samples can be structured in a hierarchy
which implicitly encodes their positions[2]. Sample positions are aligned with octree cell
centers, so that position does not need to be stored. Botsch et al.[2] describe a very compact

INRIA

Flezible PBR 7

\
N
N

P

.~

Figure 2: Illustration of dimension for a plane.

representation of the octree, minimizing storage cost. We extend these ideas to general p-
grids, and analyze storage cost and rendering time, depending on various parameters. The
hierarchy of a p-grid can be efficiently encoded using p* bits per intermediate cell. We use
the approach of Botsch et al.[2], in which 8 bits are used to code the subcells of an octree.
A bit is set if the sub-cell is non-empty. By extension the tri-grid requires 27 bits to code
position.

In addition to position however, we will consider coding of other attributes, notably
normals and colors.

4.3 Memory consumption for p—grids

We define a to be the number of non-empty sub-cells for a given cell. We denote a, the
average of o over all cells. For the tri-grid, and for a depth of subdivision 5 or greater, we
have observed that the value of a, is approximately 9, independent of the type of model
(see models and statistics described in Table 4). We define d = lff “2 Thus for the tri-grid,
and assuming an a, of 9, d = 2. Thus, intuitively, d is related to dimension of the models,
since all the models used are surfaces of dimension two. Another way to illustrate this is to
consider a horizontal plane (see Fig. 2) in a tri-grid, in which «, is exactly 9, and d is 2.

4.3.1 Structure Size

We base our analysis of memory consumption on n, the number of samples in the finest
representation of the model, that is the number of leaf cells. We will compute the cost of

RR n°® 4833

8 Duguet € Drettakis

the hierarchical structure accounting for both position and additional attributes needed to
represent intermediate levels (for multi-resolution rendering capabilities).

We note m the maximum depth of the p-grid, and N; the number of cells at depth i.
We have N,, =n, and N; = a, N;—1. The number of intermediate cells is the sum over all
levels but last, which is:

m—1
n—1
N:ZNi:pd_l
=0

The cost of the structure by sample is given dividing by n, and counting p? bits per cell:

P

S, =1
pt—1

This size increases with p indicating the octree is the optimal structure in storage, if we only
consider the coding of position as discussed in [2].

4.3.2 Intermediate samples

If we also store intermediate sample attributes however, this analysis needs to be generalized.
The number of intermediate samples is given by the number of intermediate cells. We note
o the size, in bits, of a sample attribute. The memory cost of the intermediate samples
attributes, per leaf sample, is thus given by:

o
s — pd _ 1
The total cost of the hierarchical structure is thus:

_ ot/
=

In Table 1 we show how memory consumption of our structures varies with ¢ and with
p. As we can see, the tri-grid has the lowest memory consumption for attributes coded with
between 4 and 16 bits. For a higher number of bits, 4- or 5— grids may be competitive, but
we show later that they are not as efficient for rendering.

5 Rendering

In the context of rendering on mobile devices, rasterization has a significant cost. But even
if rasterization were free, the projection of vertices in screen coordinates cost a 4x4 matrix
multiplication. This operation has to be done for each vertex of the model. Projecting
a vertex costs at least 16 multiplications and 12 additions. This underlines the fact that
polygonal representation of complex objects is unsuitable in the context of mobile devices.
An unstructured point based representation could be used, but the projection problem would

INRIA

Flezible PBR 9

o |p=2|p=3|p=4|p=5
0 | 2.66 | 3.38 | 426 | 5.21
4 4 3.88 | 4.53 | 5.375
8 | 5.33 | 4.38 4.8 5.54

12 | 6.67 | 4.88 | 5.06 5.71
16 8 5.38 | 5.33 | 5.88
32 | 13.33 | 7.38 6.4 6.54
48 | 18.67 | 9.38 747 | 7.21

Table 1: Variation of p-grid memory consumption per leaf sample with p and the number
of bits per sample attribute (¢). The bold numbers are the most efficient structure for a
given 0. =0 corresponds to no sample attribute, as in [2].

remain. Structured hiearchies of point samples are much more appropriate. In what follows,
we present an efficient algorithm for rendering which is a generalization of [2] to p-grids.
We then introduce our flexible rendering algorithm as well as a new one-pass shadow-map
rendering algorithm.

5.1 Basic Rendering Algorithm

The basic rendering algorithm is a generalization of the octree approach[2] to p-grids. It
proceeds as follows: given a p-grid, we project the center using a standard projection in
homogeneous coordinates. We then precompute a table of displacement vectors[2]. This
table is composed of p® vectors, corresponding to the relative sub-cell centers projected
in image space. Since homogeneous projections are linear (matrix multiplications), the
projection of a sub-cell center can be expressed given its projected parent center and the
projection of a displacement vector. This table of p? vector entries is precomputed for each
level (up to the precision of the model), and at each modification of the viewing position
(4x4 projection matrix).

Using this approach, the center of a cell in the p-grid can be computed with three
additions from the center of the parent cell. To get the final projection, the center has to
be dehomogeneized with two divisions, or using a more efficient approach as detailed in 6.1.
The table of displacements d; ; is precomputed as follows. The displacements giving the
first level from the root level are computed using standard projection. This is shown below,
Eq. (1): ' . B}

i
Te=odtid+-d 1)

with 4,7,k € [—”2;1; ”2;1] and €;, €, €}, the three projected unit basis vectors.

RR n°® 4833

10 Duguet € Drettakis

Subsequent levels are incrementally computed with a multiplication per vector, as shown
next (Eq. (2)).
&) =~ ©)
Then, for each subcell 7, j, k of a cell ¢, we compute the projected center with three additions:
dny=dm + Y

u,3,k
The recursive rendering algorithm is described next.

Render (cell, center, level)
if cell is a leaf
for each subcell
if sampled
compute position
Draw Sample
else
for each subcell
if exists
compute subcenter
Render (subcell, subcenter, level+1)

5.2 Flexible Rendering: Multi-level, Splats and Culling

The rendering algorithm described so far is efficient, but will always render the leaf nodes.
This is wasteful if the projected size of intermediate hierarchy cells is smaller than a pixel,
for example when zooming out of an object. Using a structure such as that described by
Botsch et al.[2], one could potentially reconstruct normals and surface/color properties, for
example by averaging up the attributes in the hierarchy. However, in this context of the
rendering algorithm described so far, this operation is more expensive than the rendering
(i.e., point projection, splats) itself. Indeed, for example, averaging quantized normals would
be surely more expensive than actually rendering sub-samples.

To render intermediate nodes, we compute a conservative approximation of the projection
of a cell (an axis aligned cube). In practice we compute the screen-space bounding rectangle
of the cell. This is done by computing a displacement table in a manner similar as for cell
centers. The screen-space bounds are given as (min,, min,, maz,, max,); we also compute
min. /,, which is the minimum homogeneous depth of the bounding box.

For each level, if the extent of the projected cell bounding box is less than a pixel, we
draw the intermediate sample. As with previous point-based approaches we render splats to
represent these samples. Denote dz = (max, —min,) the extent in z and s the splat size.
To determine whether we stop at this level we need to perform two tests in homogeneous
coordinates, which costs two multiplications and two tests, as shown next:

d
—xgs,w>0 (3)
w

INRIA

Flexible PBR 11

which is equivalent to
dr <w*s,w>0 4)

We can also perform an efficient frustum culling test using the same bounding informa-
tion: we test the bounds of the projected cell against the bounds of the screen in the same
manner. If the intermediate cell is outside the bounds of the screen, we ignore it and its

children.
If we do not do culling, we can precompute the extent S as:

S = maz,,y(max —min) (5)

for each level, thus avoiding all min-max computations for each cell.

5.3 Shadows

Our approach is well adapted to efficient shadow map computation. In addition, when
rendering the shadow map from the light source, we can use larger splats, since it is often
unimportant to capture highly detailed shadows, especially given the limited screen size of
our PDA’s.

If we use the standard shadow-map algorithm, for each pixel of the image (with depth),
we transform to the space of the light source using a 3x3 matrix. This operation needs 9
multiplications, 6 additions, and a test in the shadow map per pixel. For a typical iPAQ
screen, this step would require 690,000 multiplies, and 540,000 additions or tests.

In order to avoid expensive matrix multiplications, we perform the two passes of the
shadow-map as follows: first, we render to a depth map using the projection matrix of the
light source, and the associated projected displacement vectors. Each sample in light space
is rendered using the efficient incremental technique of Section 5.1. As a result, we avoid
the expensive matrix computation to transform the points into light space for the shadow
map comparison.

Then we render the scene computing projected positions for both the light source pro-
jection matrix and camera projection matrix. For each sample, we perform the usual test
against the depth map using light projected coordinates.

Using this approach requires 3 additions per intermediate or leaf cell. Assuming a multi-
plication is 3 times slower than an addition or a test [10], we could render 870,000 cells and
samples for the same processing time. Note that using flexible rendering, we rarely reach
this number of samples and cells.

A single pass method for shadow-map computations can also be used for directional light
sources. Given the light direction, we can attribute a strict order in the rendering of the
hierarchical structure. As show in Figure 3, we can define an ordering on subcells so that
cells are rendered in front to back order[2]. This ordering is precomputed once for the 27
cells for a given light source position, by projecting subcell centers onto the direction of the
light source. If we traverse the hierarchy in this order, we can guarantee that lit samples
are rendered first, and samples in shadow are rendered afterwards. Thus, we compute
the shadow map and the view from the camera at the same time, and perform the depth

RR n°® 4833

12 Duguet € Drettakis

Figure 3: Ordering for shadow map rendering.

comparisons as we render. We thus avoid the first rendering pass in shadow map coordinates
required by the previous algorithm. The computational gains compared to two-pass shadow
mapping are shown in Table 5.

It is important to note that these algorithms (multi-level, splatting and shadows) are
given for general p-grids and could be applied to any specific type of grid, the octree being
one of them. Our choice of the tri-grid for both storage and rendering is justified by Tables 5
and 1. Different grid types could be used within the same runtime environment with a
minimal overhead.

5.4 Rendering cost

In the case of the naive renderer, we traverse all samples, thus going through the entire
acceleration structure. The rendering cost is given by the number of cells to be rendered
and the number of operations for each cell. We have three additions per sub-cell visited
which is 3p?, and a shift per sub-cell which is p. The number of intermediate cells per
sample is pfj. Thus, number of operations per sample for naive rendering is given as
follows: y s
T— 3pd +p
p¢—1

This time calculation applies only to basic rendering, i.e., rendering all samples as points,
without splats or shadows. If we use other rendering algorithms such as rendering with
shadows, splats, frustum culling, the number of operations per cell grows. For example,
adding shadows with our single pass algorithm leads to 6 operations per cell.

Table 2 summarizes the rendering cost in terms of operations, for different values of p.

INRIA

Flezible PBR 13

P 2 3 4 5
basic (3) 66 | 6.7 | 7.5 | 84
shadows (6) || 10.7 | 10.1 | 10.6 | 11.5

Table 2: Rendering cost (in operations) for different values of p

As we can see from Table 2, the tri-grid is essentially as efficient as the octree, but more
efficient than the 4- or 5-grid. We thus see that the tri-grid is the best choice if one considers
both rendering and storage cost (Tables 5 and 1). The trade-off between hierarchy traversal
and node processing has also been studied in the context of ray tracing in [3].

Note also that using grids with larger values of p would lead to jumps when switching
levels. Rendering quality and performances have a smaller granularity when p increases.

However, we recognize that a larger branching factor results in jump in memory con-
sumption when switching levels, which may be problematic in certain context.

The precomputation of the displacement vectors consists of three multiplications per
level, and 3p> additions per level. This cost is negligable compared to the operations required
for all the samples (hundreds of thousands).

5.5 Pre-rendering indexed materials

For many types of models, the number of materials is small, compared to the number of
samples. In [2], shading is precomputed for each possible normal quantized direction; we use
213 = 8k directions. For each normal index, we compute the shading per material, giving a
table of evaluations of material properties for each lighting angle. Using this table, we can
shade a sample simply with a look up table.

Given the color quantization on mobile devices, the normal representation we used proved
to be largely sufficient. Indeed, the dynamic range available for colors is about 5-6 bits per
component, the precision for luminance is thus about 0.01. If we want to represent highlights,
with a Phong exponent of the order of 10, then we need a precision of about 0.001 for the
dot product of the normals. We estimated (with random tests) the precision of quantization
in Table 3, which justifies the choice of level 5 of normal quantization for 16 bits colors
displays.

level 3 4 5 6 7
error 0.017 0.004 0.001 26e4 6.4e5

Table 3: dot product error given normal quantification.

RR n°® 4833

14 Duguet € Drettakis

Figure 4: The five models we used (see Table 4 for statistics of the scenes). We have also
constructed a "Big Scene", containing all five objects and a ground plane, represented as a
point set.

6 Implementation and Results

In this section we present the results of our data structure construction and point-based
rendering. The tri-grids are computed on a workstation, and transferred to the iPAQ using a
PCMCIA Compact Flash card. The iPAQ we use has a 200Mhz processor with 64 Megabytes
of main memory. In practice however we have about 8-9 Mbytes available for our data
structure.

We have used five models, three from the Stanford database (Buddha, Dragon and
Blade) and two tree models. We have also used the Stanford Bunny as a reference for our

INRIA

Flezible PBR 15

explanation of the o parameter. All statistics are for 16 bit attribute samples, 13 bits for
normals and 3 bits for a material index.

Please also see the accompanying video (with sound) which contains additional results,
and examples of the system in action.

6.1 Implementation issues

Most mobile platforms do not have floating point units. As a result direct porting of graphics
code will have significantly reduced performance. In addition, certain complex instructions
may not be implemented; for example a division can be more expensive than a look-up in a
precomputed table. This was confirmed on the platform we use.

We implemented fixed point arithmetic for the purpose of our renderer, i.e., multiplica-
tions and additions. We also implemented an approximation of the inverse up to a given
precision using a look-up table. Since we use 32-bit fixed point numbers, a global look-up
table could not be used. We use a shift on numbers instead, with table size depending on
expected precision.

6.2 Basic Statistics

In Table 4 we present a set of statistics on memory usage of our data structures. We first
show the number of polygons contained in the original model, and then show the number of
samples created by the structure for different maximum levels of subdivision of the trigrid.
For example, the total number of polygons contained in the Blade model is 1.76 million; at
level 3 we have 17,000 samples, at level 4 we have 180,000 and at level 5, 1.7 million. Level
5 subdivision may not seem very useful, since it can even result in a higher number of points
than the number of polygons. However, it can be seen as a very simple level-of-detail data
structure, which allows flexible and efficient rendering. The cubic nature of the cells of our
hierarchy affects the number of samples. We thus see that trees, which are more “cubic”
than the blade for example, have a larger number of samples.

We next show the values of « (see Section 4) calculated on our tri-grids. The statistics
for the Bunny illustrate that for closed and “well-behaved” models, « is equal to 9. For other
models, for level 3, sampling is not fine enough, resulting in higher values. For level 5 we
see that the values stabilize around 9. The tree models do not seem to “converge” to 9, due
to the effect of the small leaves which create an “edge” effect in the data structure.

We next show the size of the tri-grid data structure when stored to disk. Note that the
core data structure size increases by about 25% since we store additional pointers. This
additional memory cost could definitely be reduced. As mentioned above, in practice we
have about 8Mb available on the iPAQ, thus we can fit all models at level 4, or a combination
of level 3, 4 and 5.

RR n°® 4833

16 Duguet € Drettakis
Samples @
Model | polygons 3] 4 | 5 || 3 | 4 5
Bunny 69 k 26 k 230 k 2.1 M 9.36 9.03 | 9.00
Dragon 870 k 18 k 170 k 1.5 M 9.75 9.19 | 9.04
Buddha 1.08 M 14 k 130 k 1.2 M 10.3 9.45 | 9.07
Blade 1.76 M 17 k 180 k 1.7 M 13.19 | 10.77 | 9.26
Arbre 540 k 40 k 370 k 32M 11.45 | 9.18 | 8.63
Saule 420 k 45 k 430 k 3.4 M 13.62 | 9.62 | 7.84
| Big Scene | 467M [[134k[128M[11.OM | - [- -
File Size
Model wrl.gz file 3 || 4 | 5 |
Bunny 858 kb 76.8 kb || 698 kb | 6.28 Mb
Dragon 8.90 Mb 54.5 kb || 506 kb | 4.60 Mb
Buddha 11.0 Mb || 41.5 kb || 396 kb | 3.65 Mb
Blade 14.4 Mb 46.2 kb || 520 kb | 5.06 Mb
Arbre 8.53 Mb 114 kb 1.1 Mb | 9.77 Mb
Saule 9.31 Mb 121 kb || 1.28Mb | 10.7 Mb
| Big Scene | 52.14 Mb || 377 kb || 4.5 Mb | 40 Mb |
Table 4: Basic model statistics. We show the number of polygons and the number of

samples generated for different maximum levels of refinement (3, 4 and 5) for the tri-grid.
The a parameter is computed for each of these levels, as well as the file size for the tri-grid

structure.
Model Points splats | shadows | One-Pass
Buddha (4) | 5.49 (4.15) | 3.47 2.65 2.99
Buddha (5) | 0.91 (0.63) | 3.33 2.46 2.85
Blade (4) 4.71 (3.30) | 2.63 1.99 2.32
Blade (5) 0.67 (0.47) | 2.40 1.89 2.21
Big Scene | 0.62 (0.30) | 2.38 1.83 2.11
Table 5: Rendering statistics for five variants of our rendering algorithm (in frames per

second). Points corresponds to direct display of points (shadowed version in parentheses),
splats is the rendering multi-level algorithm with splatting, shadows is the same with two-
pass shadows and 1-pass shadows uses the one-pass shadow algorithm.

INRIA

Flezible PBR 17

Figure 5: Above, a far view of the Buddha model shown (left) with points at level 4
(4.15 fps) (middle) with points at level 5 and (0.63 fps) (right) with splats at level 5 (2.85
fps). Below, a close view of the Buddha model shown (left) with points at level 4 (4.15
fps) (middle) with points at level 5 and (0.63 fps) (right) with splats at level 5 (1.42 fps).
Undersampling problems are evident at level 4 subdivision when using points only. At level
5, the increase in frame rate is notable.

6.3 Rendering Performance and Shadows

In Table 5 we show statistics for the four variants of the rendering algorithm using the tri-
grid structure. The statistics are average frames per second on the iPAQ. An example of
the kind of view chosen is shown in the top row (“far view”) of Fig. 5. As expected, overall
rendering all the points is more expensive than the multi-level display, especially at maximum
subdivision level 5. Nonetheless, for level 4 subdivision, the expense of computing the splats

RR n°® 4833

18 Duguet € Drettakis

0.55 fps 2.28 fps

Figure 6: Quality and speed of shadows. View of the Dragon model shown (left) with points
at level 5 with shadows and (right) multi-level display with one-pass shadows multi-level.
Notice that shadows generated with multi-level rendering are practically indistinguishable
from shadows generated with full point resolution.

can outweigh the gain from multi-level rendering (Buddha(4) and Blade(4) in Table 5). Note
however (Fig. 5 upper left) that Buddha at level 4 has visible undersampling artefacts with
pure point rendering.

In Fig. 5, we show the problem of undersampling for a close view of a model, which is
remedied using splats. In addition, we show the effect on frame rate of multi-level display.
Recall that multi-level display is possible because we store intermediate samples.

7 Conclusion

In this paper we have presented a general framework for point-based sampling of complex
models, which we call p-grids. We have performed a theoretical analysis of the storage
requirements of these structures, and we have shown that the tri-grid is the most memory
efficient when we store sample attributes for intermediate nodes.

We have used the tri-grid structure for efficient rendering of very complex models on
memory, computation and display-size limited mobile devices. We have introduced a flexi-
ble multi-level rendering algorithm which allows efficient rendering when zooming into the

INRIA

Flezible PBR 19

model, and an efficient one-pass shadow mapping algorithm. Our implementation on a 200
Mhz Compaq iPAQ PDA allows the display of 1.3M point-based representation of a 4.7
million polygon model at 2.1 frames per second.

In future work, we will be examining better reconstruction algorithms, and a progres-
sive transmission approach which will take into account network parameters. We will also
investigate hybrid rendering combining different representations such as polygons, lines and
points, taking into account the specific constraints of mobile devices.

8 Acknowledgements

The first author is supported by an AMX doctoral fellowship. The authors wish to thank
Alexandre Olivier-Magnon for modelling the tree; the Buddha, Bunny, Blade and Dragon
model are from the the Stanford 3D Scanning Repository http://graphics.stanford.edu/data/3Dscanrep.
Thanks to M. Stamminger and F. Durand for their insightful comments on an early draft.

References

[1] M. Alexa, J. Behr, D. Cohen-Or, S. Fleishman, D. Levin, and C. T. Silva. Point set
surfaces. In IEEE Visualization 2001, pages 21-28, 2001.

[2] M. Botsch, A. Wiratanaya, and L. Kobbelt. Efficient high quality rendering of point
sampled geometry. In Rendering Techniques 2002 (Proceedings of the Eurographics
Workshop on Rendering 02). Springer Verlag, 2002.

[3] F. Cazals and C. Puech. Bucket-line space partitionning data structures with applica-
tions to ray-tracing. In Symposium on Computationnal Geometry, 1997.

[4] B. Chen and M. Nguyen. Pop: A hybrid point and polygon rendering system for large
data. In IEEFE Visualization 2001. IEEE, 2001.

[5] J. Cohen, D. Aliaga, and W. Zhang. Hybrid simplification: Combining multi-resolution
polygon and point rendering. In IEEE Visualization 2001. IEEE, 2001.

[6] O. Deussen, C. Colditz, M. Stamminger, and G. Drettakis. Interactive visualization of
complex plant ecosystems. In Proceedings of the IEEE Visualization Conference. IEEE,
October 2002.

[7] O. Devillers and P.-M. Gandoin. Geometric compression for interactive transmission.
In Proc. of IEEE Visualization 2000, pages 319-326, 2000.

[8] A. S. Glassner. Space subdivision for fast ray tracing. IEEE Computer Graphics and
Applications, 4(10):15-22, October 1984.

[9] J. P. Grossman and W. J. Dally. Point sample rendering. In Rendering Techniques 98,
EG workshop on rendering, pages 181-192. Springer-Verlag, 1998.

RR n°® 4833

20

Duguet € Drettakis

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

Intel Corp. http://www.intel.com/design/pca/ applicationsprocessors/1110 _brf.htm,
2001.

D. Jevans and B. Wyvill. Adaptive voxel subdivision for ray tracing. In Proceedings of
Graphics Interface '89, pages 164-72, Toronto, Ontario, June 1989. Canadian Informa-
tion Processing Society.

M. Levoy and T. Whitted. The use of points as display primitives. Technical Report
TR 85-022, Univ. of North Carolina at Chapel Hill, 1985.

Fabrice Neyret. Modeling animating and rendering complex scenes using volumetric
textures. IEEE Transactions on Visualization and Computer Graphics, 4(1):55-70,
January—March 1998. ISSN 1077-2626.

H. Pfister, M. Zwicker, J. van Baar, and M. Gross. Surfels: surface elements as ren-
dering primitives. In Proceedings of the 27th annual conference on Computer graphics
and interactive techniques, pages 335-342. ACM Press/Addison-Wesley Publishing Co.,
2000.

S. Rusinkiewicz and M. Levoy. Qsplat: a multiresolution point rendering system for
large meshes. In Proceedings of the 27th annual conference on Computer graphics and in-
teractive techniques, pages 343-352. ACM Press/Addison-Wesley Publishing Co., 2000.

S. Rusinkiewicz and M. Levoy. Streaming gsplat: a viewer for networked visualization
of large. In Proceedings of the 2001 symposium on Interactive 8D graphics, pages 63—68.
ACM Press, 2001.

M. Stamminger and G. Drettakis. Interactive sampling and rendering for complex and
procedural geometry. In K. Myskowski and S. Gortler, editors, Rendering Techniques
2001 (Proceedings of the Eurographics Workshop on Rendering 01), 12th Eurographics
workshop on Rendering. Eurographics, Springer Verlag, 2001.

M. Wand, M. Fischer, I. Peter, F. Meyer auf der Heide, and W. Strafser. The randomized
z-buffer algorithm: Interactive rendering of highly complex scenes. In SIGGRAPH 2001
Conference Proceedings, pages 361-370, 2001.

M. Zwicker, H. Pfister, J. van Baar, and M. Gross. Surface splatting. In Proceedings
of the 28th annual conference on Computer graphics and interactive techniques, pages
371-378. ACM Press, 2001.

INRIA

/<

Unité de recherche INRIA Sophia Antipolis
2004, route des Lucioles - BP 93 - 06902 Sophia Antipolis Cedex (France)

Unité de recherche INRIA Futurs : Parc Club Orsay Université - ZAC des Vignes
4, rue Jacques Monod - 91893 ORSAY Cedex (France)
Unité de recherche INRIA Lorraine : LORIA, Technopoble de Nancy-Brabois - Campus scientifique
615, rue du Jardin Botanique - BP 101 - 54602 Villers-lés-Nancy Cedex (France)
Unité de recherche INRIA Rennes : IRISA, Campus universitaire de Beaulieu - 35042 Rennes Cedex (France)
Unité de recherche INRIA Rhdne-Alpes : 655, avenue de I'Europe - 38334 Montbonnot Saint-Ismier (France)
Unité de recherche INRIA Rocquencourt : Domaine de Voluceau - Rocquencourt - BP 105 - 78153 Le Chesnay Cedex (France)

Editeur
INRIA - Domaine de Voluceau - Rocquencourt, BP 105 - 78153 Le Chesnay Cedex (France)
http://www.inria.fr

ISSN 0249-6399

