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Abstract. This paper presents a new approach for building semantic
image indexing and retrieval systems. Our approach is composed of four
phases : (1) knowledge acquisition, (2) weakly-supervised learning, (3)
indexing and (4) retrieval. Phase 1 is driven by a visual concept ontology
which helps the expert to define low-level features useful to characterize
object classes. Phase 2 uses acquired knowledge and image samples to
learn the mapping between image data and visual concepts. Image index-
ing phase (phase 3) is fully automatic and produces semantic annotations
of the images to index. The symbolic nature of querying enables user-
friendly and fast retrieval (phase 4). We have applied our approach to
the domain of transport vehicles (i.e. motorbikes, aircrafts, cars).
keywords: Semantic-based retrieval; Learning in retrieval; Content anal-
ysis and understanding

1 Introduction

This paper presents a new approach for building semantic image indexing and
retrieval systems. We show how a priori knowledge provided by a domain expert
can lead to an efficient semantic image indexing system. Our approach is com-
posed of four phases : (1) a knowledge acquisition phase, (2) a weakly-supervised
learning phase, (3) an indexing phase and (4) a retrieval phase.
This paper is structured as following. Section 2 gives an overview of existing

semantic image indexing and retrieval approaches. Section 3 shows how the do-
main knowledge acquisition phase produces a hierarchy of classes described
by visual concepts. Section 4 details the weakly supervised learning phase
which consists of obtaining samples of the visual concepts used during knowledge
acquisition for training a set of visual concept detectors. Section 5 is dedicated
to the semantic image indexing and retrieval phases. Indexing uses the
visual concept detectors trained during the weakly supervised image indexing
phase. The retrieval phase is based on symbolic annotations computed during
the semantic indexing phase and does not require any image processing capa-
bilities. Section 6 is dedicated to results obtained on the problem of retrieval
of images containing transport vehicles. We finally conclude and sketch future
works in section 7.



2 Related Works

Image conceptual indexing and retrieval paradigm is now a topic of great inter-
est.This stems from the limits of the query by example paradigm where image
samples have to be provided : as explained in [1], one or several query image(s)
cannot capture the conceptual essence of the user query.
Some techniques use manual annotations of images [2]. In this case, retrieval

uses these annotations. Image processing is not used for indexing and retrieval.
In [3], querying is based on a logical composition of region templates. As

explained by the authors, this approach is at an intermediate semantic level.
One goal of the authors of this work is to reach a higher semantic level.
In [4], a statistical approach learns keywords describing images. A set of

manually annotated images is used to enable learning. Due to the fact that no
a priori knowledge is used, this approach often lead to semantically inconsistent
image annotation. As explained by the authors of [4], a rule-based engine should
be used to improve image interpretation consistency.
In [5], querying is based on an object ontology which defines the mapping

between low level descriptors and intermediate level semantic notions. The sys-
tem is used in two phases. Each concept (color, position, size, shape) of the
proposed ontology is defined by the appropriate range of numerical values of the
corresponding low level descriptors computed in image regions (e.g. luminance,
hue). These generic constraints lead to coarse retrieval results. User feedback is
then used to train support vector machines dedicated to constraint refinement.
This approach relies on a cumbersome numerical descriptor database and does
not propose a well defined formalism for high-level knowledge.
In [1], an image retrieval approach based on an extensible ontology is pro-

posed. Querying is achieved by combining ontological concepts (e.g. size, loca-
tion, color, semantic category). This combination is constrained by a grammar.
Mapping between image data and concepts is based on supervised machine learn-
ing techniques (i.e. multi-layer perceptrons and radial basis networks).
A look on the state of the art shows that the community is trying to find

a trade off between the amount of work needed to build image indexing and
retrieval systems (e.g. supervised learning, manual annotation) and semantic
richness. Our work also deals with this trade off and brings improvements on
the state of the art. We propose a well formalized high-level knowledge (e.g.
subsumption, part-whole and spatial relations) and we limit the amount of work
needed to build image indexing and retrieval systems by using weakly supervised
learning techniques.

3 Knowledge Acquisition and Formalization

First comes the knowledge acquisition phase which aims at capturing both high-
level semantic categories and their visual description. More details can be found
in [6]. This phase is driven by a visual concept ontology. As seen in fig. 1, knowl-
edge acquisition consists of achieving the following tasks : domain taxonomy



acquisition (i.e. hierarchy of domain classes) and ontology driven visual descrip-
tion of domain classes which leads to a domain knowledge base.
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Fig. 1. Knowledge acquisition phase overview.

The complete ontology is composed of 103 visual concepts (e.g. Granulated
Texture, Coarse Texture, Circular Surface,Dark, Elongated, Small, Circular,
Pink). The depth of the ontological tree is 8. This ontology is an extendible basis
that can be specialized depending on the application domain. Numerical features
are associated with visual concepts and define how visual concepts are computed
on image data. Examples of numerical features associated with visual concept
are : color coherence vectors [7] for visual concept Hue; co-occurence matrices
[8] for visual concept Pattern; Sift features [9] andMpeg-7 shape features [10]
for visual concept Geometry.

Definition 1 Let Θ be the set of all visual concepts. ¹Θ is a partial order be-
tween visual concepts. ∀(Ci, Cj) ∈ Θ2, Ci ¹Θ Cj means that Ci is a sub-concept
of Cj.

Definition 2 Let Φ be the set of domain classes. For α ∈ Φ, S(α) ⊂ Φ is the
set of subparts of α (i.e. subparts attribute).

Definition 3 Let A ⊂ Θ be the set of domain class intrinsic attributes. A is
a predefined subset of Θ. A = {Geometry, Size, Orientation, Position, Hue,
Brightness, Saturation, Repartition, Contrast, Pattern}. For a class α ∈ Φ,
Aα ⊆ A is the set of attributes of α. ¹Φ is a partial order between domain classes
(i.e. superclass attribute).

Definition 4 Let a ∈ Aα be an attribute of α ∈ Φ. Vα(a) is the set of possible
values of a so that ∀C ∈ Vα(a), C ¹Θ a and C 6= a.

Knowledge acquisition phase consists of defining Φ (i.e. the classes), ¹Φ (i.e.
the class hierarchy), S(α) (i.e. the subparts) and Vα(a) (i.e. the visual description
of domain classes). Φ, ¹Φ and S(α) belong to domain knowledge. This knowledge
is shared by the specialists of the domain. It is also independant of any vision
layer and can be reused for other purposes. Defining Vα(a) allows to reduce
the semantic gap between expert knowledge and image level. As explained in
the next section, this semantic gap is completely filled during a learning phase.
Examples of classes are shown in table 1. This example results from a knowledge



acquisition phase. For α = {OutdoorScene}, S(α) = {Background,Object}. For
α = {Sky}, Aα = {Hue, Brightness, Pattern} and the range of attribute Hue
is defined as V(Hue) = {Blue,Grey}. The aquired knowledge base also contains
the classes AerialScene and RoadScene which are subclasses of OutdoorScene.
AircraftShape is domain specific and is a sub-concept of PolygonalSurface.
This is the way to express that the geometry of an aircraft (e.g. sharp edges and
corners) is a specific case of a polygonal surface.
As explained in [6], the proposed visual concept ontology stands as a mean-

ingful user interface to a wide range of low-level image processing algorithms. A
strong advantage of our approach is that improvements at the image processing
level have no influence at the conceptual level.

Domain Class OutdoorScene

SubParts:
Background {Sky Asphalt Landscape}
Object {Aircraft Car MotorBike }
Relation Description :
Centered: {Object}
Top: {Background}
Bottom: {Background}

Domain Class Sky

ColorAttributes :
Hue: {Blue Grey }
Brightness: {Dark Bright}
TextureAttributes :
Pattern: {SmoothTexture}

Domain Class Aircraft

SuperClass: FlyingObject

SpatialAttributes :
Geometry: {AircraftShape}

Table 1. High level description of some domain classes. Attributes names are in bold

face. Attribute possible values are in italic. Expert terminology is in small caps.

4 Weakly Supervised Visual Concept Learning

In section 3, we have explained how the knowledge acquisition process leads to a
set of domain classes described by visual concepts. One remaining and difficult
issue is to fill the semantic gap between visual concepts and extracted low-
level image data. This section aims at showing how this gap is filled by machine
learning techniques which lead to a set of visual concept detectors. Note that our
goal is to obtain samples of visual concepts and not samples of domain classes.
In other words, we simplify the problem by addressing it at an intermediate
level of semantics. In [6], it is shown how region labeling by visual concepts is
achieved manually. Manual segmentation and annotation of regions of interest by
visual concepts was required. This tedious task is eased by clustering techniques.
Cluster labeling is divided into the following steps : automatic segmentation;
feature extraction; clustering and cluster visualization and labeling (fig. 2).
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Fig. 2. From images to semantically labeled feature vectors. One execution of the
sequence composed of steps (2),(3) and (4) corresponds to one visual concept of A.
Each visual concept contained in A is associated with different features. Depending on
the considered visual concept of A, feature extraction and clustering lead to different
types of clusters (e.g. clusters resulting from regions of similar hue or of similar size).

(1) All the images of the image database are segmented into a set of re-
gions {Ri}. Once the segmentation process is over, the sequence composed of
steps (2),(3) and(4) is executed for each a ∈ A used during knowledge acquisition
(i.e. ∃Aα so that a ∈ Aα).
(2) Let a be the current considered element of A. A set of feature vectors

{xi} is computed by feature extraction applied to all the regions of {Ri}. Feature
extraction result depends on the features associated with a. For example, if a =
Hue, a color coherence vector is computed for each Ri. Feature extraction result
is a set of couples {(Ri,xi)} where xi is the feature vector extracted from Ri.
(3) The clustering algorithm (e.g. k-means) is applied on {xi}. The result

of clustering is a set of triples {(Ri,xi, ki)}. ki is the numerical label associated
with xi and Ri. ki = kj implies that xi and xj belong to the same cluster.
(4) The cluster visualization and labeling step allows the user to assign a

semantics to the resulting clusters. The kth resulting cluster is visualized by
displaying the subset of {Ri} labeled by k. The output of cluster visualization
and labeling is a training set X = {(xi, Ci), Ci ¹Θ a and Ci 6= a}. Note that
modifiers (e.g. Not, Slight, Strong) provided by the visual concept ontology can
be associated with visual concepts to obtain new semantic labels. The modifier
Not is particularly useful to obtain negative samples of a visual concept. The
resulting training set is composed of feature vectors semantically labeled by
visual concepts (e.g. Granulated, Smooth, Not(Blue)).
During this interactive process, impure clusters may be obtained. By an

impure cluster we mean that this cluster results from regions representative of
several visual concepts. In this case, the clustering algorithm can be reapplied on
this cluster in order to improve its purity. For instance, a cluster containing both
Smooth and Granulated regions has to be splitted in two subsets in order to
obtain representative samples of these visual concepts. Cluster purity is currently
evaluated visually by the end-user. This approach does not require any manual
segmentation and allows to label several regions at the same time.

Visual concept learning is fully automatic and consists of training a set
of detectors D = {dCi} to recognize visual concepts involved in the labeling
phase. For a feature vector x, dCi(x) measures the confidence degree given to



the hypothesis ”x is a representative sample of Ci”. Visual concept detection is
seen as a two class decision problem (a one-versus-rest scheme).
Visual concept learning is composed of two steps : feature selection and train-

ing. Feature selection chooses the most characterizing features for better visual
concept detection. We use a Linear Discriminant Analysis (LDA) to perform
feature selection. A support vector machine (SVM) is then trained to obtain
each dCi by using the training set X = {(xi, Ci)}. To achieve training, both
positive and negative samples are required. The set of positive samples of Ci is
defined as the set of feature vectors labeled by Ck ¹Θ Ci. The set of negative
samples of Ci is defined as the union of the positive samples of the brothers of Ci

and of the feature vectors labeled by Not(Ci) during cluster labeling phase. The
next section shows how D = {dCi} is used to perform semantic indexing. The
combination of the domain knowledge base (fig. 1) and visual concept detectors
is called an augmented knowledge base.

5 Semantic Indexing and Retrieval

An overview of the indexing process is given in fig. 3. Semantic indexing uses a
categorization algorithm divided into four steps (fig. 4).
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Fig. 3. The input of the indexing process is a set of images to index. The output is the
same set of images coupled with semantic annotations.

(1) The categorization process is initiated by a categorization request

which contains an image to index. The list of domain classes used in the algorithm
corresponds to different hypotheses that have to be verified in the image.
(2) The hypothetic object of interest has to be segmented from the back-

ground. To achieve object extraction, we use a meanshift segmentation algorithm
[11]. If the algorithm tries to classify a subpart, the segmentation task consists
of extracting the subpart from the main object.
(3) Then comes local matching between current class attribute values (e.g.

CircularSurface for attribute Geometry) and visual concepts recognized by the
detectors trained during the learning process. Local matching value associated
with an attribute a of a class α is defined as mΘ(a) = max{dCi(x)} with Ci ∈
Vα(a) andmΘ(a) ∈ [0, 1]. Feature vector x used to compute local matching is the
result of feature extraction. The result of local matching is a set of confidence
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Fig. 4. Simplified version of the object categorization algorithm.

values associated with each attribute. For a subpart attribute, a recursive call
has to be made so as to compute its global matching value.

(4) Global matching consists of evaluating if current class matches the
object to be recognized. This matching is done by combining the results of lo-
cal matching. Global matching value associated with a class α is defined as
mΦ(α) =

∑
a∈Aα

mΘ(a)/Card(Aα) +
∑

β∈S(α) mΦ(β)/Card(S(α)). If mΦ is

greater than a predefined threshold thcompatibility ∈ [0, 1] then matching be-
tween current class and unknown object is validated. If object matches current
class, the classification algorithm tries to go deeper in the domain class hierarchy
defined by the partial order ¹Φ. If matching fails, current class is dropped.

The algorithm illustrated in fig. 4 is applied to all the images of the set of the
images to index. Each image is annotated by a set of annotations (one annotation
per object recognized in the image). For example, if an image of an outdoor scene
is composed of sky and one aircraft, three annotations are associated with the
image : one annotation for the object of class OutdoorScene, one annotation for
the object of class Sky and one annotation for the object of class Aircraft.

An annotation matches the structure of a domain class and contains the
following elements : the class α of the object o (e.g. α = Sky); the mask resulting
from automatic segmentation which locates o in the image; the visual description
of o (i.e. the value assigned to each a ∈ Aα associated with a confidence value)



(e.g. (Pattern = Smooth, 0.9)); the object of which o is a subpart; the objects
in spatial relation with o (e.g. if o is of class OutdoorScene, an object of class
Sky which is related to o by the spatial relation Top).
Retrieval is initiated by a symbolic query. The output of retrieval is the sub-

set of the indexed images which associated annotation(s) matches the query.
A query is structured as a logical composition (by using the logical opera-
tors {or,and}) of the elements composing annotations. For example the query
”Class = Sky and Hue = Blue” retrieves the images annotated as containing
blue sky. The query ”Class = OutdoorScene and Top = Sky and Bottom =
Asphalt” retrieves the images annotated as containing sky in the top part of the
image and asphalt in the bottom part of the image.

6 Results

We have used an image database freely available online1 to apply our methodol-
ogy. More precisely, the following object categories have been used for learning
and evaluation: motorbikes, airplanes and cars (fig. 5). Background images (fig.
5) have been used to evaluate the precision of the system. A background image
is defined as not containing any object of interest. The training set is structured
as following : 400 aircraft images, 200 motorbike images, 250 car images and
400 background images. The test set is structured as following : 500 aircraft
images, 500 motorbike images, 250 car images and 600 background images (1850
images). No image used for training is contained in the test set.

Fig. 5. Typical images of interest on the first row: aircrafts, cars and motorbikes in
their environment. Background images on the second row.

The weakly supervised approach described in section 4 has allowed us to
obtain clusters of positive and negative samples of the following visual concepts :
Blue,Grey,AircraftShape,MotorBikeShape, CarShape and Smooth. All the
images of the training set have been segmented into regions. Feature extraction,
clustering and labeling have been performed for the following visual concepts
of A : Hue,Geometry and Pattern. The number of clusters computed by the

1 http://www.vision.caltech.edu/feifeili/Datasets.htm



clustering algorithm is initially set to 15. The final number of clusters may be
different because of cluster purification. We have obtained about 2000 sample
regions from the training set (1000 positive region samples and 1000 negative
region samples) used for training the detector of the visual concept Blue (for
a = Hue). In this case, the initial number of regions resulting from segmentation
was about 11000.
A Recall/Precision curve has been obtained (by a variation of thcompatibility

from 0 to 1 with a variation step of 0.01) for the following domain classes :
Aircraft, MotorBike, Car and Sky (fig. 6). Precision is defined as the ratio
between the number of relevant retrieved images and the number of retrieved
images. Recall is defined as the ratio between the number of relevant retrieved
images and the number of relevant images in the image database. The results ob-
tained show that our methodology leads to efficient indexing : For a recall of 0.5,
precision is between 0.75 and 0.78 for the domain classes Aircraft, MotorBike
and Car and of 0.90 for class Sky. These results show that even with very little
effort of knowledge acquisition (6 visual concepts and 4 domain classes), the
approach offers both good results and semantic richness.
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Fig. 6. Recall/Precision curves obtained for some domain classes.

7 Conclusion and Future Works

We have presented a new approach for semantic image indexing and retrieval.
Our approach is based on both knowledge based techniques and machine learning
techniques. A priori knowledge is structured as a hierarchy of domain classes de-
scribed by visual concepts provided by a visual concept ontology. This ontology
provides an easy access to a wide range of low-level image processing algorithms



(e.g. color, texture and shape analysis algorithms). From a set of image sam-
ples, a weakly supervised learning phase allows to obtain region samples of the
visual concepts used during knowledge acquisition. These region samples are
used to train visual concept detectors capable of visual concept detection in any
image. Semantic indexing uses these visual concept detectors to produce sym-
bolic annotations of the images to index. During the indexing phases, the visual
concepts allow the system to extract the most distinctive visual characteristics
for better recognition of the domain classes. We have shown that our approach
leads to efficient image indexing. The semantic nature of the annotations en-
ables the user to express queries at a conceptual level that is difficult to reach
with classic query-by-example paradigm. Moreover, the retrieval process does
not have to cope with the issues (i.e. scalability and performance) encountered
with numerical databases.
In the short term, we aim at improving the weakly-supervised phase by us-

ing hierarchical clustering techniques which should ease cluster labeling. We also
aim at improving the retrieval phase by making better use of a priori knowledge.
Another important remaining challenge is to achieve semantically driven segmen-
tation which would use the visual description of the domain classes to choose the
most adapted segmentation algorithms and to improve the splitting/merging of
the image data resulting from segmentation.
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