
Synchronous Formalism and Behavioral
Substitutability in Component Frameworks

Sabine Moisan & Annie Ressouche
�

INRIA Sophia Antipolis, 2004 route des Lucioles
06902 Sophia Antipolis, France

Jean-Paul Rigault
�

I3S Laboratory, Univ. of Nice Sophia Antipolis and CNRS (UMR 6070)
06902 Sophia Antipolis, France

Abstract
When using a component framework, developers need to respect the behavior implemented
by the components. Static information about the component interface is not sufficient. Dy-
namic information such as the description of valid sequences of operations is required.
In this paper we propose a mathematical model obeying the Synchronous hypothesis and
a formal language to describe the knowledge about behavior. We focus on extension of
components, owing to the notion of behavioral substitutability. A formal semantics for the
language is defined and a compositionality result allows us to get modular model-checking
facilities. From the language and the model, we can draw practical design rules that are suf-
ficient to preserve behavioral substitutability. Associated tools may ensure correct (re)use
of components, as well as automatic simulation and verification, code generation, and run-
time checks.

Key words: component frameworks, protocol of use, behavioral
substitutability, synchronous models, model-checking verification

1 Introduction

The motivation for this work is the correct usage of an object-oriented component
framework. A component framework is dedicated to a family of problems (com-
piler construction, graphic user interface, knowledge-based systems, etc.). Basi-
cally, it is a well-defined architecture composed of top level classes and their re-
lationships. To use a component framework, a developer (or framework user) se-
lects, adapts, and assembles components to build a customized application. This�

Email: Sabine.Moisan@inria.fr, Annie.Ressouche@inria.fr�
Email: jpr@essi.fr

c
�����	��

������������������� �"!#���$��%&�'�)(+*�,��-� ./,)��0214351

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
customization process essentially involves deriving new classes from the frame-
work ones or composing them. The process should preserve the invariants that the
framework level guarantees. This implies to understand the nature of the contract
between the framework user and the components. The mere specification of a static
interface (list of operation signatures) is not sufficient since it misses the informa-
tion regarding the component dynamic behavior (state-based). In this paper, we
focus on framework adaptation through subtyping (more exactly, class derivation
used as subtyping). Thus derived classes must respect the behavioral protocol that
their base classes implement and guarantee. In particular, we want to ensure that an
invariant property at the framework base level also holds at the developer’s level.
Since the substitutability principle [15] offers a natural semantics for subtyping, we
propose here to enlarge its scope to state-related properties. Thus the notion of be-
havioral substitutability is central to our approach to framework correct usage. To
this end we elaborated a formal model of behavioral substitutability, where safety
properties are preserved during subtyping. Our model relies on the Synchrony Hy-
pothesis, a now classical means to represent behavior. Moreover, this hypothesis
allows to apply model-checking techniques and leads to models more tractable by
automatic tools. Our aim is to propose a verification algorithm as well as practical
design rules to ensure sound framework adaptation.

There is quite a variety of object-oriented frameworks, differing in particular
by the model of interaction between components: distributed, asynchronous, syn-
chronous, etc. We do not claim to address the whole generality. Moreover, we
restrict to a narrow case, although a very useful one: no distribution, no implemen-
tation level concurrency, communication through (synchronous) method calls. We
shall see that the Synchrony Hypothesis suits well this restriction.

The next section defines our notion of components and their protocol of use.
Section 3 presents the mathematical model and formal language to describe the
behavioral part of the protocol. Section 4 depicts the model-checking verification
we support in this work. Section 5 illustrates our approach on examples and shows
how safety properties can be proved. Finally, section 6 discusses some issues about
this approach and relates it to similar work.

2 Framework Protocol of Use

To describe how to use a component, we need to specify its protocol of use that
describes the relationship between the state of the component and the calls to the
component operations. This section is devoted to the description of this protocol.

In the object-oriented community a component framework is usually composed
of several hierarchies of classes. The root class of each hierarchy corresponds to
an important concept in the target domain. In this context, a component can be
viewed as the realization of a class hierarchy: this complies to one of Szyperski’s
definitions for components [24].

Framework users both adapt the components and write some glue code. To
achieve a given purpose, they will (non-exclusively) use these components directly

2

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
(like a library), specialize their classes by inheritance, compose classes together,
or instantiate new classes from predefined top level ones. Among all these possi-
bilities, class derivation is frequent. It is also the one that may raise the trickiest
problems, that is why we concentrate on it in this paper. When deriving a class,
users may either introduce new attributes and/or operations or redefine inherited
operations. These specializations should be “semantically acceptable”, i.e., they
should comply with the design hypotheses of the framework.

Our work on formalizing component protocols is motivated by our experi-
ence with a framework for knowledge-based system inference engines, namedL2J�7:D�M4; [20]. L2J�7:D�M4; ’s objective is to help developers create new inference en-
gines and reuse or modify existing ones. We shall draw the paper examples from
BLOCKS itself, just for illustration.

At BLOCKS top level there are presently three main components that may be
extended, leading to new components. For the extension to be possible, the plat-
form user needs information about component properties. For it to be safe, he or
she should commit to some protocol. For it to be even safer, we offer proof and
validity checking tools. The three high level components are associated with initial
sub-trees of the three main classes: Frame, Rule, and State.

Let us take an example: the Rule class in BLOCKS (figure 1(a)) is composed of
conditions and actions. Its implementation does not take into account fuzzy values
in conditions and actions. The developer may want to define the FuzzyRule class
as a derivative of Rule. He/she can access the static information (signatures of
methods and associations among classes) of the UML class diagram of figure 1(a)
and setup the inheritance graph shown on figure 1(b). Indeed, this information is
not (totally) present at run-time, but this is easy to compensate by setting up an
introspection facility.

The developer afterwards needs to redefine methods test_conditions and ex-

ecute_actions. But where to get the necessary information? This raises the prob-
lem of defining which behavior is acceptable for a safe redefinition of a method.
The needed information is certainly not in the UML class diagram(s).

Static information is not sufficient to ensure a correct use of a framework: spec-
ifying a protocol of use is required. This protocol is defined by two sets of con-
straints.

First, a static set enforces the internal consistency of class structures. UML-
like class diagrams provide a part of this information: input interfaces of classes
(list of operation signatures), specializations, associations, indication of operation
redefinitions, and even constraints on the operations that a component expects from
other components (a sort of required interface, something that will likely find its
way into UML 2.0). We do not focus on this part of the protocol since its static
nature makes it easy to generate the necessary information at compile-time.

A second set of constraints describes dynamic requirements: (1) legal sequences
of operation calls, (2) specification of internal behavior of operations and of se-
quences of messages these operations send to other components, and (3) behavioral
specification of valid redefinition of operations in derived classes. These dynamic

3

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K

Condition

+ test()

Rule

+ test_conditions()
+ execute_actions()

1..n1..n

Action

+ execute()

1..n1..n

File: D:\JPR\Recherche\Equipes\Orion\Papiers\Informatica\uml-blocks.mdl 19:04:50 16 mai 2001 Class Diagram: Logical View / Rule

Page 1

(a) Simplified diagram of
class Rule

Condition

Rule

1..n1..n

Action

1..n1..n

FuzzyCondition

+ test()

FuzzyAction

+ execute()

FuzzyRule

+ test_conditions()
+ execute_actions()

1..n1..n 1..n1..n

<< refines >><< refines >>

File: D:\JPR\Recherche\Equipes\Orion\Papiers\Informatica\uml-blocks.mdl 19:08:01 16 mai 2001 Class Diagram: Logical View /

FuzzyRule Page 1

(b) FuzzyRule extension

Fig. 1. Rule and FuzzyRule UML diagrams

aspects are more complex to express than static ones and there is no tool (as natural
as compiler-like tools for the static case) to handle and check them. While item (1)
and partially item (2) are addressed by classical UML state-transition models, the
whole treatment of the last two items is more challenging.

3 Behavior Description and Refinement

To cope with dynamic aspects, our approach is threefold. First, we define a math-
ematical model providing a consistent description of behavioral entities, which
may be whole components, sub-components, single operations, or any assembly
of these. Hence, the whole system is a hierarchical composition of communicat-
ing behavioral entities. Such a model complements the UML approach and allows
to specify class and operation behavior with respect to class derivation. Second,
we propose a hierarchical behavioral description language (BDL) to specify the
dynamic aspect of components, both at the class and operation levels. Third, we
define a semantic mapping to bridge the gap between the specification language
and its meaning in the mathematical model.

As already mentioned, our primary intent is to formalize the behavior side of
class derivation, in the sense of subtyping N . In the object-oriented approach, sub-
typing usually obeys the classical Substitutability Principle [14]. This principle has
a static interpretation leading to, e.g., the well-known covariant and contravariant
issues for parameters and return types. It may also be given a dynamic interpre-
tation, leading to behavioral subtyping, or behavioral substitutability [12]. This
is precisely the kind of interpretation we need to enforce the dynamic aspect ofO

Note that, in this paper, derivation, inheritance, specialization all refer to the subtyping interpre-
tation. In particular, we do not consider other uses or interpretations of inheritance.

4

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
framework protocols, since it provides a behaviorwise correct derivation.

Note that we focus on proving specifications, not implementations: although
we use concurrency for our specification, modeling a system as disjoint parts with
(more or less) independent execution, it is only a logical notion, not an implementa-
tion one. Moreover, this work does not address concurrent or distributed execution
models, as we already mentioned in the introduction.

3.1 Description of Behavior using the Synchronous Paradigm

To deal with behavioral substitutability, we need behavior representation formal-
ism, we propose to rely on the family of synchronous models [3,11], which are
dedicated to specify reactive systems [13], such as found, for instance, in Real
Time. Such systems are event-driven and discrete time: they interact with their
environment, reacting to input events by sending output events.

Furthermore, they obey the synchrony hypothesis, i.e., the corresponding reac-
tion is atomic; during a reaction, the input events are frozen, all events are consid-
ered as simultaneous, events are broadcast and available to any part of the system
that listens to them. A reaction is also called an instant. The succession of instants
defines a logical time. Because of synchrony, such a system is able to react to the
presence of an input event as well as to its absence at a given instant.

These synchronous models provide general representations of state behavior;
their semantics relies on classical finite automata theory. They are not restricted to
real time or hardware systems and they can apply to modeling software component
behavior as well. Moreover, they sport interesting properties to ease the verification
task and to make it more efficient.

Indeed, verification of synchronous models exhibits a lower computational com-
plexity than for asynchronous ones. Moreover, to describe complex behavior as
found in component protocols of use, a hierarchical modular description is natural.
Provided that certain “compositionality properties” hold, automatic proofs become
modular and thus more efficient.

3.2 Mathematical Model of Behavior

Input/output labeled transition systems [17] are usual mathematical models for syn-
chronous languages. In our approach, each reaction corresponds to a transition and
obeys the synchrony hypothesis. These systems are a special kind of finite deter-
ministic state machines (automata) and we shall denote them LFSM for short in the
rest of the paper.

In our model, a LFSM is associated with a behavioral entity: we use LFSMs
to represent the state behavior of classes as well as of operations. Each transition
has a label representing an elementary execution step of the entity, consisting of a
trigger (input condition) and an action to be executed when the transition is fired.
In our case an action corresponds to emission of events, such as calling an opera-
tion of some component, whereas a trigger corresponds to starting an operation (in
response to a call).

5

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
A LFSM is a tuple P QSRUTWV�XZY�V�[\V&]_^ where T is a finite set of states, X`YbacT is

the initial state,] is the alphabet of events from which the set of labels d is built,
and [is the transition relation [fegTihjdkhlT . We introduce the set m of input
events mneo] and the set pSeo] of output events (or actions).

Labelsd , the set of labels, has elements of the form q r�s , where steup is the action or
output events set and q is the trigger: q has the form Rvq)w2V&q)xy^ where q$w , the positive
(input event) set of a label, consists of the events tested for their presence in the
trigger, and qzx , the negative (input event) set, consists of the events tested for their
absence.
Moreover, we require that labels be well-formed which means that the following
conditions must hold: {|||} |||~

� w�� � x@�l� (trigger consistency)� w�� � x �j� (trigger completeness)� x �����l� (synchrony hypothesis)

The first condition means that an event cannot be tested for both absence and pres-
ence at the same instant. The second condition expresses that a trigger q contains
either a test of presence or of absence for each event in m (this corresponds to the
notion of a “completely specified” automaton). The synchrony hypothesis implies
that an event tested for its absence in the trigger cannot be emitted as output in the
same instant. It is clear that q���s (that is in fact q)w_��s) can be non empty: indeed in
the synchronous paradigm it is possible to test the presence of an event in the same
instant it is emitted; it is even the primary way of modeling communication.

Transitions
Each transition has three parts: a source state X , a label � , and a target state X��
(denoted X �� X �). There cannot be two transitions leaving the same state and
bearing the same trigger � . This rule, together with the label well-formedness
conditions, ensures that LFSMs are deterministic. Determinism constitutes one of
the fundamental requirements of the synchronous approach and is mandatory for all
models and proofs that follow. Moreover, LFSMs are reactive, i.e., there must be
a transition from any state for any input. Formally, given a LFSM P and an input

configuration q , for each state X in P , there is a transition X��-�$�� X�� in the transition
relation of P . Reactivity implies that LFSMs have at least one input event (the
input event set of any LFSM cannot be empty).

�
Formally, if there are two transitions from the same state � such that ���'���U�$�� � � and �����U�U�U�� � � ,

then ���� �¡£¢ �� .

6

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
Behavioral Substitutability
The substitutability principle should apply to the dynamic semantics of a behavioral
entity–such as either a whole class, or one of its (redefined) operations [12]. IfP and Pi� are LFSMs denoting respectively some behavior in a base class and its
redefinition in a derivative, we seek for a relation P �¥¤ P stating that “ P � extendsP in a correct way”. To comply with subtyping, this relation must be a preorder.

Following the substitutability principle, we say that P¦� is a correct extension
of P , iff the alphabet of Pk� (denoted as]"§_¨) is a superset of the alphabet of P
(denoted as]_§) and every sequence of inputs that is valid © for P is also valid
for P � and produces the same outputs, once restricted to the alphabet of P . Thus,
the behavior of Pk� restricted to the alphabet of P is identical to the one of P .
Formally, ª �¬« ª®­f¯ §±° ¯ § ¨�² ª´³�µ ��¶¸· ª �'¹ ¯ §�º
where Pi�¼»�]_§ is the restriction of Pk� to the alphabet of P and ½ µ ��¶ is a simula-
tion relation.

First, we define the restriction �v»�] of a label � over an alphabet (]) as follows:
let �+Qkq$r�s , ¾

¹ ¯ � {} ~ · � � ¯�¿ · �B� ¯ º if
� w ° ¯

À:Á#ÂÄÃ�Å otherwise

Intuitively, this corresponds to consider as undefined all the transitions bearing
a positive trigger not in] , and to strip the events not in] from the outputs. The re-
striction of P to the alphabet] (generally with]Æeo]"§) is obtained by restricting
all the labels of P to] , then discarding the resulting undefined transitions.

Formally, let P Q®RUTWVÇX�Y�V�[\V&]È§�^ be a LFSM,
ª ¹ ¯ � ·vÉ¥ÊÌË Y Ê$Í ¹ ¯ Ê ¯ § � ¯ º

where Í ¹ ¯ is defined as follows:

Ë � ¨Î Ë �4Ï Í ¹ ¯l­ÑÐ Ë �Î Ë �4Ï Í ²
¾
� �

¾
¹ ¯ÓÒ� À>Á#Â�ÃÇÅ

Second, the simulation relation we consider is the well-known Milner’s one [19],
adapted to LFSMs: let PÕÔ and PtÖ be two LFSMs with the same alphabet: P×Ô\QRUT5§�Ø�VÇX §ÙØY V�[¥§ÙØ	V&]_^ and PtÖbQÚRUT5§ÜÛ�VÇX §�ÛY V�[5§ÜÛ	V&]_^ . A relation ½ µ ��¶ eÓT5§ÙØ\hÝT5§�Û
is called a simulation iff ·vË §ÙØY ÊÌË §�ÛY º Ï ³ µ ��¶cÞZßIàá ·vË Ô ÊÌË Ö º Ï ³ µ ��¶¸â Ë Ô �Î Ë � Ô Ï Í §�Ø2ã Ð Ë Ö �Î Ë � Ö Ï Í §ÜÛ5² ·vË � Ô ÊÌË � Ö º Ï ³ µ ��¶
Simulation is the word used by R. Milner and unfortunately it may be given sev-

eral interpretations. We prefer to use “substitutability” to stress the fact that both
LFSMs operate under the same input scenarios, a kind of “plug-in” substitutability.ä

A path in a LFSM å is a (possibly infinite) sequence of transitions æ ¡ ��ç ��è �U�vè� � � �'���U�$�� � ��é�éêé
such that ë ¢Uì � �îí ¢ �ðï�ñ��ví � � � �&ò
óõô . The sequence ¢ ç ï�ñ ç í ¢ � ï�ñ � é�éêé is called the trace associated with
the path. When such a path exists, the corresponding trigger sequence ¢ ç í ¢ � í éêé�é is said to be a valid
sequence of å .

7

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
LFSMs are deterministic and it turns out that simulation coincides with trace

containment in such a case. But simulation is local, since the relation between two
states is based only on their successors. As a result, it can be checked in polynomial
time, which is not in general the case for trace containment; hence, it is widely used
as an efficient computable condition for trace-containment. Indeed, the simulation
relation can be computed using a symbolic fixed point procedure, allowing to tackle
large-sized state spaces.

Obviously, relation ¤ is also a preorder over LFSMs; we call it the substitution
preorder. We say that Pk� is substitutable for P iff Pi� ¤ P . Thus, a valid
sequence of P is also a valid sequence of PÓ� and the output traces are identical,
once restricted to]"§ . As a consequence, if Pk� ¤ P , Pi� can be substituted forP , for all purposes of P .

With such a model, the behavior description matches the class hierarchy. Hence,
class and operation refinements are compatible and consistent with the static de-
scription: checking dynamic behavior may benefit from the static hierarchical or-
ganization.

3.3 Behavior Description Language (BDL)

We need a language that makes it possible to describe complex behavioral entities
in a structured way. Similar to Argos [17], our language offers a graphical notation
close to UML StateCharts with some restrictions, but with a different semantics,
based on the Synchronous Paradigm. The language is easily compiled into LFSMs.
Programs written in this language operationally describe behavioral entities; we
call them behavioral programs. The mathematical model allows to express the
semantics of this language, permitting an easy translation into LFSMs.

The primitive elements, from which programs are constructed, are called flat
automata, since they cannot be decomposed (they contain no application of oper-
ators). They are the direct representation of LFSMs, with the following simplified
notation: only positive (i.e., present) events appear in triggers; all other events
are considered as absent. Moreover, labels are “concrete” and could involve valued
datas over basic data types (boolean, integer,..). The concrete syntax of label events
is detailed in [23]. The language is generated by the following grammar (where ö
is a flat automaton, X a state name, and ÷ a set of events):ø±ù¼ù Q¦ö úÈö�û ø r�X�üýú ø£þ�ø ú ø ÿ �
Parallel composition (

ø£þ��
) is a symmetric operator which behaves as the syn-

chronous product of its operands where labels are unioned. Hierarchical compo-
sition (ö@û ø r/X�ü) corresponds to the possibility for a state in an automaton to be
refined by a behavioral (sub) program. This operation is able to express preemp-
tion, exceptions, and normal termination of sub-programs. Scoping (

ø\ÿ �) where
ø

is a program and ÷ a set of local events, makes it possible to restrict the scope of
some events. Indeed, when refining a state by combining hierarchical and parallel
composition, it may be useful to send events from one branch of the parallel com-

8

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
position to the other(s), without these events being globally visible. This operation
can be seen as encapsulation: local events that fired a transition must be emitted in
their scope; they cannot come from the surrounding environment.

The language offers syntactic means to build programs that reflect the behav-
ior of components. Nevertheless, the soundness of the approach requires a clear
definition of the relationship between behavioral programs and their mathematical
representation as LFSMs (section 3.2). Let � denote the set of behavioral programs
and � the set of LFSMs. We aim at defining a semantic function to give a meaning
to each behavioral program. We want this function to be stable with respect to the
previously defined operators (parallel composition, hierarchical composition, and
scoping). However, the scoping operator semantics is computed from the seman-
tics of its body, where some events are hidden. Doing that, we are not sure that the
resulting model is still deterministic and reactive.

Programs whose semantics is neither deterministic nor reactive, or which have a
sub-program whose semantics is not either, are considered as incorrect. Following
[17] we introduce a specific value � to express the semantics of incorrect programs.
We denote ���¸Q	�
��
��� . In order to express the semantics of all behavioral
programs (included incorrect ones), we introduce a specific state named ERROR

and we denote ����������� the set of LFSMs whose state space may contain ERROR. We
have thus to define two semantic functions, first a complete one ��� ù ��� � �����������
and second the actual one � ù ��� � ��� that will discard incorrect behavioral
programs:

 · ! º � {} ~ � · " º$#&% ERROR not reachable in
 � · " º' (*),+.-0/�1 #32 -

Complete Semantic Function Definition
Basic flat automata are deterministic and reactive by construction and their inter-
pretation through �4� does not lead to an error (i.e. state ERROR is not reachable).
The parallel composition operator is the synchronous product of its operands, with
a suitable definition, it preserves determinism and reactivity. As said in [17], the
only operator that can raise an error is the scoping operator.�5� is structurally defined over the syntax of the language. Let

ø
and

�
be two

behavioral programs, with �764R ø ^
Q±R�T98WVÇX 8Y V�[:8WV&];85^ and �96¬R � ^BQSR�T9<WVÇX <Y V�[:<WV&]=< ^ :> For a flat automaton ö , �4�
RvöG^ is a LFSM with the same set of states, the
same initial state, and the same alphabet as ö . Its transition relation [5? is the one
of ö where each trigger has been completed with the test of absence of all input
events that the corresponding trigger of ö does not contain. This satisfies the trigger
completeness condition for LFSMs. Moreover, a data abstraction is performed on
concrete valued data involved in labels to get LFSM abstract labels (see [23] for a
formal definition of abstraction).> For parallel composition, �4�BR ø þ�� ^ is R�T98A@oT9<2V`RUX 8Y V�X <Y ^�V�[89B�< V&]=8C
c];<+^
where TD8E@ T9< is T98 h×XF< when ERROR Ga TD8 and ERROR Ga TD< . Otherwise,

9

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
T98H@ T9< is RUT98I�J� ERROR �Ä^Ùh¸RUT9<K�J� ERROR �Ä^D
L� ERROR � .

The transition relation [989B�< is defined by the following rules
øNMPO Ô , øNMPO Ö andøQMPO N , with respect to the equivalence: RUX/V ERROR ^
Q±R ERROR VÇX`�'^
Q ERROR.

Ë Ô �SRF�$��RTUT.TPT Î Ë � Ô Ï Í 8 ÊÌË Ö �SV¬�$��VT�T.TWT Î Ë � Ö Ï Í < Ê � 8 ¿ � 8YX � < ¿ � < Ò� À>Á#Â�ÃÇÅ
·vË Ô ÊÌË Ö º �SRF�$��R=Z��SV:�$�[VT\TPT.TWT.TPT.TPT.T Î ·vË � Ô ÊÌË � Ö º Ï Í 89B�< · "^]
_a` º

Ë Ô �3R:�$��RTbTPT.T Î Ë � Ô Ï Í 8 ÊÌË Ö Ï É <·vË Ô ÊÌË Ö º �3R>�$�[RTbTPT.T Î ·vË � Ô ÊÌË Ö º Ï Í 89B�< · "^]
_Fc º Ë Ô Ï É 8 ÊÌË Ö �3V:�$��VT�T.TWT Î Ë � Ö Ï Í < Ê·vË Ô ÊÌË Ö º �SV¬�$�[VTUTPT.T Î ·vË Ô ÊÌË � Ö º Ï Í 89B�< · "^]
_ed º
Rule

øQMPO Ô characterizes the synchronous hypothesis which allows the simul-
taneity of triggers. Here, the label of the resulting transition is the f of the respec-
tive label of each operands: the f operation is basically the union of trigger and out-
put sets respectively, with the additional property that determinism is preserved and
labels are well-formed. Concerning preservation of determinism, let mg8 and mh< be
the respective input event sets of �i�BR ø ^ and �5�BR � ^ . Assume q[8+rÄs
8jf q[< rÄs
< Qiq$r�s
then q � m*8 Qkqk8 and q � mh<ýQ q[< . Otherwise, the f operation results in lnmporqFs .> For hierarchical composition, �i�
R ø û � r/X�ü ^ is �_R ø ^ where state X in

ø
is

refined by �_R � ^ . The set of states of �76¬R ø û � r/X�ü ^ is of the form T98+»r�ÄXa�t
=�ÄXvu�X��� ú X��� aT9<4� . If X Q X 8Y , the initial state of �96¬R ø û � r/X�ü ^ is X 8Y uêX <Y , otherwise it is X 8Y . To
ensure error propagation, we consider that Xvu ERROR Q ERROR. The set of events
is]=8Q
õ]=< and the transition relation [D8:w < � µ�x is defined by rules yzqFsFÔ , yzqFsÄÖ , yzqFs N ,
and yzqFs � :

Ë �SRF�$��RTUT.TPT Î Ë Ö Ï Í 8 ÊÌË � � � ¨ V �$� ¨ VTUTPT.T Î Ë �|{ Ï Í <Ëe}�Ë �� �SRF�$��RTbTPT.T Î Ë Ö Ï Í 8:w < � µ�x · ~ ÃÇÅ ` º
Ë � R �$� RTUT.TPT Î Ë Ö Ï Í 8 ÊÌË � � � ¨ V �$� ¨ VTUTPT.T Î Ë � { Ï Í <Ëe}�Ë �� �SR>�$��R=Z"�SV:�$��VT\T.TPT.TPT.TWT.TPT Î Ë Ö Ï Í 8:w < � µUx · ~ ÃÇÅ c º

Ë �� � ¨ V �$� ¨ VTUTPT.T Î Ë �{ Ï Í < Ê � � w Ò� � 8
ËF}�Ë �� � ¨ V �$� ¨ VT�T.TPT Î ËF}�Ë �{ Ï Í 8:w < � µUx · ~ ÃÇÅ d º À � R �$� RTUT.TPT Î À Ô Ï Í 8 Ê À Ò� ËÀ � R �$� RTUT.TWT Î À � Ô Ï Í 8:w < � µ�x · ~ ÃÇÅt� º
Both yzqFsIÔ and yzqFsÄÖ are applied when a preemption transition can be fired.

The preemption of the enclosing state X is done whatever the transitions of
�

are.
Rule yzqFsIÔ expresses that the internal transition is not fireable (q$� < w does not hold)
and only external actions are emitted. On the other hand, yzqFsIÖ applies when the
internal transition is fireable (qU� < w holds) and both internal and external actions are
simultaneously performed. Rule yzqFs N applies when no preemption transition is

10

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
fireable, hence we keep the internal transition. Rule yzqFs � applies when the source
state is not the refined state. Two cases may occur: if the target state of the transition
in

ø
is the refined state (l Ô_Q X), the target state of the resulting transition is the

state corresponding to the initial state of
�

in the resulting LFSM (ly�Ô Q X.uêX <Y).
Otherwise, it is the target state of the initial transition in

ø
(l � Ô Q�l+Ô).> For the scoping operator, �i�BR øÜÿ � ^ is basically �4�BR ø ^ where some transitions

are discarded following a scoping principle and where occurrences of local events
are hidden in the labels of the remaining transitions.
We define �5�BR øÜÿ � ^ÝQ RUT98L
�� ERROR �FV�X 8Y VÌ[98a� � V&];8�� ÷�^ where [8 ÿ � is built
following the T��	sP� and T���sa� rules. In these rules, Rîq�8+r�sg8+^ ÿ � means Rîq[8���÷�^Ìr4R�sg8��÷�^ .

Ë �3R>�$�[RTbTPT.T Î Ë � Ï Í 8 ÊÒ Ð Ë � ¨ R �$� ¨ RT�TWT.T Î ERROR Ï Í 8 Ê � 8 Ò°��� w8 � �¦° � 8 Ê Ò Ð Ë � ¨ R �$� ¨ RTUT.TPT Î Ë � Ô Ï Í 8 1 #),+ � w8 � � � � � 8 w � �
Ë � �SR>�$��RW� � �T*TPT.TPT.T Î Ë � Ï Í 8a� � ·vÉ7� � ` º

Ë �3R>�$�[RTbTPT.T Î Ë � Ï Í 8 Ê
[

� w8 � �¦° � 8 ÞZßIà Ð Ë � ¨ R �$� ¨ RT�TWT.T Î Ë � Ô Ï Í 8 ÞZßIà � w8 � � � � � 8 w � �(e/ Ð Ë � ¨ R �$� ¨ RTbTPT.T Î ERROR Ï Í 8 (e/ � 8 °L�]

Ë � �SR>�$��RW� � �ThTWT.TPT.T Î ERROR Ï Í 8a� � ·vÉD� � c º
Rule T���sP� expresses the transition building rule when no errors occur. Let a

transition X �SRF�$��R�g��� � X�� aj[98 , to build a valid transition in
øÙÿ � , we require both that

there is no transition sourced in X raising an error and there is no other transition
sourced in X bearing a label whose positive trigger part is equal to q w8 for events not
in ÷ . Indeed, this last property preserves determinism.

Rule T���sa� expresses how an error is propagated, when a transition in [58 raises
itself an error or when determinism or reactivity are not preserved. Determinism
can fail when discarded local events leads to two transitions outgoing from the same
state and bearing the same trigger. Reactivity is not preserved when the input event
set of �5�BR ø ^ is included in the set ÷ of local events.

As shown in [17], for each operator, error detection and propagation is correctly
done.

The following theorem expresses that relation ¤ is a congruence with respect to

11

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
the language operators. The proof is out of the scope of the paper � and is obtained
by explicit construction of the preorder relation.

Theorem 3.1 Let
ø

,
� Ô and

� Ö be correct behavioral programs such that �"R � Ô�^ ¤�"R � ÖÇ^ and both
ø

,
� Ô and

ø
,
� Ö have disjoint outputs; the following holds:�_R ø û � Ô�r/X�ü ^ ¤ �_R ø û � ÖÇr/X�ü ^�_R ø þ�� Ô�^ ¤ �_R ø þ�� Ö�^�_R � Ô ÿ � ^ ¤ �_R � Ö ÿ � ^

4 Compositional and Modular Verification

To perform model checking of behavioral programs we need a modular and incre-
mental way to verify such programs using their natural structure: properties of a
whole program can be deduced from properties of its sub-programs. Scaling up
to large applications relies on this property. This makes it possible to deal with
highly complex global behaviors, provided that they result from composing ele-
mentary behaviors that can be verified, modified, and understood incrementally. In
particular it makes it possible to perform modular verification using some form of
temporal logics.

Temporal logics are formal languages to express properties of discrete logi-
cal time systems. In these logics, a formula may specify that a particular event will
eventually occur or will never happen. The formal system we consider (�:�"[Èd��) [6]
is based on first-order logics, augmented with temporal operators that make it pos-
sible to express properties holding for a given state, for the next state (operator X),
eventually for a future state (F), for all future states (G), or that a property remains
true until some condition becomes true (U). One can also express that a property
holds for all the paths starting in a given state (�). For efficiency reasons, �:�"[Èd �
does not introduce the existential path quantifier.

Following Clarke et al. [6], �:��[d�� is interpreted over Kripke structures in
order to get a sound definition of formulae satisfaction. Such structures belong
to the family of finite state machines. They possess a preorder relation (¤=�) that
preserves �:��[d � formulae: let �£Ô and �@Ö be two Kripke structures such that�£Ô ¤^� ��Ö , then �@Ö�úQY�A� �£Ô ú Q���V0�ýaA�:��[d�� .

Relying on these results, we associate a Kripke structure (�@RUP¦^) with each
LFSM (P) and we extend the notion of satisfaction of temporal logic formulae to
behavioral programs: let

ø
a behavioral program,

ø ú Q�� means that �@R��_R ø ^�^ ú Q� .

4.1 Compositional Verification

As already mentioned, our major requirement for model-checking is the ability to
be compositional. Indeed, the framework we want to check is a large set of rather
�

The interested reader can find the details of this proof and of all the forthcoming ones in our
technical report [23]

12

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
small entities, as it is often the case. Hence, we need a compositional verification
process and thus we prove the following theorem:

Theorem 4.1 Let
ø

and
�

two behavioral programs and � a �:�"[d�� formula:

if
ø ú Q�� then

ø û � r/X�ü2ú Q�� .

if
ø ú Q�� then R øgþ�� ^_ú QY� .

Sketch of the proof
To prove theorem 4.1, we rely on Clark et al. results concerning preorders and�:��[d�� preservation through “simulation” in Kripke structures context. Unfortu-
nately, the substitution preorder we defined is not the preorder defined by Clarke
et al.: let P and Pi� be two LFSMs, Pi� ¤ P does not imply �@RUPk�-^ ¤^� �@RUPÓ^ .
Thus, we search for a preorder relation ¤=� over LFSMs so that the substitution
preorder and the Kripke structures preorder are compatible.

In practice, we define this preorder as follows. Let P and PÓ� be two LFSMs,P �5¤�� P]È§ e¦]È§_¨P¡�P ¢¤£ ��¶ RUP � »�]È§�^ where ¢¤£ ��¶ is a simulation equiv-
alence. ¢n£ ��¶ is defined as follows: for two LFSMs PÕÔ and PtÖ , P¸Ô[¢¤£ ��¶ PtÖ if and
only if there is a pair R¥y Y£ ��¶ V0y Ô£ ��¶ ^ of simulation relations such that P×Ô¦y Y£ ��¶ PtÖ
and PtÖ0y Ô£ ��¶ P¸Ô .

Intuitively, if P is the LSFM model of a behavioral program
ø

and PÓ� the
LFSM of its derivative

ø � , then the substitutability principle we want to respect im-
plies that P simulates Pi�¼»�]_§ in Milner’s sense. Conversely, to preserve �:��[d��
properties through derivation, we need to ensure that P � »�]_§ simulates P , hence
the requirement for two simulation relations.

Then to prove theorem 4.1 we need the two following propositions:

Proposition 4.2 Let P and Pk� be two LFSMs thenPi� ¤;� P � �nR�Pi�¼»�]È§�^ ¤;§ �@RUPÓ^ .
Proposition 4.3 Let

ø
and

�
be two behavioral programs.

(i) �"R ø û � r�X�ü ^ ¤�� �_R ø ^
(ii) �"R ø£þ�� ^ ¤;� �"R ø ^

Theorem 4.1 has an important consequence: it allows bottom-up verification.
Properties are stable with respect to the language operators, thus a property proved
for a sub-program holds for the overall program.

4.2 Modular Verification

Dually, a top-down approach similar to assume-guarantee methods [6] is possible.
In such methods a property is decomposed into sub-properties according to the
structural decomposition of the system: when all sub-properties are valid, their
conjunction must imply the global property. Kripke structures support assume-
guarantee methods. In [6], the composition of two Kripke structures (denoted

þ §)
is defined and a sound assume-guarantee method can be expressed.

13

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
To extend the assume-guarantee methods to behavioral programs we rely both

on proposition 4.2 and on the following theorem:

Theorem 4.4 Let
ø

and
�

be two behavioral programs, then �@R��_R ø þ�� ^�^ is iso-
morphic to �nRU�"R ø ^Ì^ þ § �nRU�"R � ^Ì^

To prove this theorem we first show that there is a bijective mapping between
the respective set of states of �@R��_R ø þ�� ^�^ and �nRU�"R ø ^Ì^ þ § �nRU�"R � ^Ì^ . Then, we
prove that the respective initial states of these two Kripke structures map each other.
Finally, we check that each transition in the transition relation of �nRU�"R ø£þ�� ^�^ is
also a transition in the transition relation of �nRU�"R ø ^Ì^ þ § �@R��_R � ^�^ with respect to
the bijective mapping between state spaces, and conversely. ¨

The assume-guarantee reasoning can be applied in many different ways. For
LFSMs, an assume-guarantee scheme is the following: let] be a LFSM represent-
ing an assumption,

ø
and

�
two behavioral programs:

 · " º « � ¯¯N©«ª­¬ �¯®" ©«ª�¬ �¯®
For each formula � , a specific Kripke structure, the tableau of � (denoted °Üû±�#ü)

is defined such that for a Kripke structure � , if � ú Q²� then � ¤z§ ° û±�#ü [6]. The
soundness of this assume-guarantee rule is proved as follows.

First
 · " º « � ¯ ã ³ · · " º º « § ³ · ¯ º , applying proposition 4.2. Thus,³ · · " º º © § ³ · · ª º º « § ³ · ¯ º © § ³ · · ª º º (1), applying the Kripke structures com-

positionality result.
Second, following our definition of satisfiability:

¯Q©«ªY¬ �¯® ã´³ · · ¯Q©«ª º º ¬ �µ® .
Thus, applying theorem 4.4 and Kripke structures tableau property, we deduce:�nRî]"^ þ § �@R��_R � ^�^ ¤;§ ° û±�#ü . Then, from (1) and applying the transitivity of pre-
order, we know that ³ · · " º º © § ³ · · ª º º « §·¶i¸ ®W¹ . Thus, ³ · · " º º © § ³ · · ª º º ¬ �¯® .
From theorem 4.4, we get ³ · · " ©«ª º º ¬ �¯® and finally,

" ©«ªY¬ �µ® . ¨
The major drawback of assume-guarantee method is to find the decomposition

of the global property we want to prove. As a consequence, we choose this rule
scheme which is simpler than the one in [6],because a learning algorithm to com-
pute the assertion set exists [9].

5 Practical Issues

5.1 Application to BLOCKS Components

To illustrate our purpose, let us consider the Rule class in our BLOCKS frame-
work and its FuzzyRule extension. Their UML representations are shown in fig-
ure 1. Figure 2 presents the behavioral program for the whole Rule class. This
program specifies the valid sequences of operations that can be applied to Rule

14

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K

[!empty(Plist)] / test(Plist::car())

test_conditions()/

/execute()

local: test_conditions(), execute()

True/

initial state

(Fuzzy)Rule

activate()/test_conditions()

False

[empty(Plist)]/True

(Fuzzy)Action

end/

PFalse/False

PTrue/Plist::cdr()

(Fuzzy)Condition

 test(), PTrue, PFalselocal:

Fig. 2. Rule and FuzzyRule behavior description. Refinement is expressed by rectangular
boxes and encapsulation is specified by keyword local. The dash line represents the parallel
composition. FuzzyRule behavior diagram is Rule diagram where FuzzyCondition diagram
is substituted for Condition one (and FuzzyAction for Action one). Valued data in triggers
are displayed between square brackets ([]) and will be abstracted in LFSM models.

instances. The behavioral program associated with class Condition is a paral-
lel composition operand and will be launched simultaneously to emitting event
test(Plist::car()). The behavior of class Action is described in a refined state.
FuzzyRule is obtained by replacing sub-program Condition (resp. Action) by
FuzzyCondition (resp.FuzzyAction).

Figure 3(b) presents the expected behavioral program for class FuzzyCondi-

tion which derives from Condition. In particular, a state of Condition has been
refined to take into account fuzzy values in condition testing.

The behavioral program of FuzzyRule has been obtained from the one of Rule
by redefining the states corresponding to Condition and Action. To prove that
the extension is safe, we must ensure that

 · FuzzyRule º « · Rule º . Particularly, · FuzzyCondition º � · Condition º , according to both semantics definition of
hierarchical composition and data abstraction to get abstract labels from concrete
ones. Particularly, the abstraction on valued boolean expressions belonging to trig-
gers evaluates [P º Q C] and [P] to » O lpq and [P ¼ C] and [!P] to s M �vXeq (see [23] for
a detailed definition of the data abstraction definition). Hence

 · Condition º ³ £ �ê¶ · FuzzyCondition º ¹ ¯ Condition and
 · FuzzyCondition º « · Condition º . Sim-

ilarly, we could prove that
 · FuzzyAction º « · Action º . Thus, applying theo-

rem 3.1, we can deduce that FuzzyRule is substitutable for Rule. Therefore, the
extension of FuzzyRule has no influence when FuzzyRule is used as Rule. As a
result, every trace of Rule is also a trace for FuzzyRule.

But, proving substitutability implies running a possibly heavy algorithm. It re-

15

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K

test_condition_GO

FuzzyCondition

P/Proba

local:Proba

Proba>K/True

Proba<=K/False

test_condition_GO

P/valP

valP/True

~valP/False

Condition

local:ValP

so

s1 s2 s3

s0

s1 s2 s3

(a) Behavioral program
of class Condition.

test(P) /

P/Proba

Proba & [P <= C] /Ptrue

Proba & [P > C] /Pfalse

Probalocal:

FuzzyCondition

(b) Behavioral program of class FuzzyCon-
dition. It is similar to Condition with a
refined state, a local event Proba.

Fig. 3. Behavioral programs of classes Condition and FuzzyCondtion.

quires to compute the LFSM models of behavioral programs and to perform both
restriction and simulation operations. As a consequence, we introduce a set of
suitable design rules that we apply at language level to ensure behavioral substi-
tutability of behavioral programs.

5.2 Design Rules

We have drawn a set of practical design rules to avoid systematically applying the
behavioral substitutability algorithm described in section 3.2. These rules are ap-
plicable at BDL level. When a behavioral program

ø
(called the base program in

the following) is extended by another behavioral program
ø � (called the derived

program in the following), respecting these rules ensures that we obtain a new de-
terministic automaton for which behavioral substitutability holds (

ø � ¤ ø
). These

rules correspond to sufficient conditions that save us the trouble of a formal proof
for each derived program.

To express these practical rules, we shall use the following notations: as before,
for a program

ø
, me8 and pz8 denote respectively the input and output event sets ofø

, that is the input and output alphabets of
ø

. For a state X , ½ µ
(resp. ¾ µ

) denotes
the preemption trigger set (resp. the preemption action set) of X , that is the set of the
triggers (resp. of the actions) of all outgoing transitions of X ¿ . We also define the
set of triggers and of actions of a program

ø
, ½i8 and ¾Q8 , as well as the input and

output alphabets, m µ and p µ
, of a state X : À 8 �¯ÁÃÂ À µ ¬ Ë Ï É 85Ä , Å 8 �¯ÁÃÂ Å µ ¬ Ë Ï É 84Ä ,� µ �¯ÁÆÂ0Ç ¬ Ç Ï À µ Ä and È µ �¯ÁÆÂ0Ç ¬ Ç Ï Å µ Ä , where T98 is the set of states of

ø
.

For the time being we have identified eight practical rules, that are listed below.

É
Note that, since triggers and actions are themselves sets of events, ÊÌË and Í�Ë are sets of subsets

of events, whereas �«Ë , ÎiË , �ÐÏ , and ÎÑÏ are simply sets of events.

16

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
Some of these rules are illustrated with the base program presented on figure 4(a).

(i) No modification of the base program structure: no state, nor transition from
the base program should be deleted; in the same way, target and source state
of an existing transition should not be changed;

(ii) Addition of independent transitions: if a new transition » � r M � is added from an
existing state X in the base program, then its trigger should not belong to the
preemption trigger set of the state (» � ra$½ µ); there are no other constraints on
the states and transitions reachable through the new »Ì�-r M � transition;

(iii) Parallel composition with a program with different actions: it is allowed to
compose a new behavioral program

�
in parallel with the base program

ø
if

the output set of
�

is disjoint from the one of
ø

(pQ8n� pz< Q²Ò); figure 4(b)
shows a violation of this rule;

a/o

b/e

c
X

Y Z

(a) Original (base)
program

a/o

c

b/o

X’

Y’ Z’

a/o

b/e

c
X

Y Z

(b) The base program and the program in parallel
share the output event ñ . The original program
has the trace Ó«Ô ïÇñ�íkÕzï×Ö Ø whereas the new one hasÓ«Ô ïÇñ�íkÕzïÇñ0Ö Ø

Fig. 4. Counter-example for rule 3

(iv) Parallel composition with a program with a different initial trigger: it is al-
lowed to compose a new behavioral program

�
in parallel with the base pro-

gram
ø

if the preemption trigger sets of the initial states of both
ø

and
�

are
disjoint (½ µ

RÙ �Ú½ µ
VÙ Q­Ò);

(v) Parallel composition with a substitutable program: it is allowed to compose
a new behavioral program

�
in parallel with the base program

ø
if
�

is sub-
stitutable for

ø
(that is

� ¤ ø
); this is a consequence of the compositionality

property theorems (and of the fact that
øgþ�ø

is
ø

);
(vi) Hierarchical composition without auto-preemption: it is allowed to refine a

state X of the base program
ø

with a program
�

(
ø û � r/X�ü) if no action of

�
is also a trigger of X (¾Æ< �C½ µ QÛÒ); this means that the new nested program
cannot terminate the state it refines; figure 5(a) shows a violation of this rule;

(vii) Hierarchical composition with a program with different triggers or actions: it
is allowed to refine a state X of the base program

ø
with a program

�
(
ø û � r/X�ü)

if

17

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K

a/o

b/e

c
X

Y Z

a’/b

(a) Counter-example for rule 6:
in the base program, state Ü
was waiting for external event Õ ,whereas, in the refinement, Õ is
emitted from the inside

a/o

b/e

c
X

Y Z

b/o

(b) Counter-example for rule 7(b):
when state Ü is preempted by event Õ ,the action is Ö in the original program,
whereas it is ñ0Ö in the new program,
and with ñ belonging also to the base
alphabet

Fig. 5. Counter-example for rules 6 and7(b)

(a) either the set of triggers of
�

is disjoint from the preemption trigger set ofX (½7<��Ý½ µ Q­Ò),
(b) or the set of triggers of

�
intersects the preemption trigger set of X and the

output alphabet of
�

is disjoint from the output alphabet of X (pÆ<��õp µ QÒ); this prevents from adding spurious output actions of the base pro-
gram when preempting both the nested and the enclosing state; figure 5(b)
shows a violation of this rule,

(viii) No localization of global events: a global input or output event (be it a trigger
or an action) cannot be made local; thus, local events are acceptable if they do
not belong to the base program alphabet.

As a matter of example of design rules application, let us examine the problem
of the management of execution history in L2J�7:D�M4; . In our framework, a history
is composed of several successive snapshots, each one gathering the modifications
(or deltas) to object attributes that have happened since the previous snapshot (that
is during an execution step). As shown in figure 6(a), class Snapshot memorizes
the modification of objects during an execution step in its attached Delta set; it
displays several operations: memorize the deltas and other contextual information,
add a new delta, and add a child snapshot (i.e., close the current step and start a
new one).

The Snapshot class originally implements a linear history and does not take
into account a possible “backtrack”. However, in searching activities, a “branch-
ing” history is necessary: a common practice is to backtrack to past milestones in
order to try a different action or to modify some contextual information and see
what happens. To cope with such requirements, the user can introduce a BSnap-

shot class as a derivative of Snapshot (figure 6(b)). BSnapshot defines two new

18

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
Delta

History Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*0..*

0..1

+current

0..1

0..*
0..1

-children 0..*

-parent
0..1

(a) Simplified diagram of class Snapshot

BDelta

undo()
redo()

BSnapshot

regenerate()
search()

0..*0..*

<<refines>>

Delta
Snapshot

memorize()
add_child()
add_delta()

0..*0..*

0..*

0..1

-children
0..*

-parent

0..1

(b) BSnapshot extension

Fig. 6. Snapshot and BSnapshot UML diagrams

operations: regenerate that reestablishes the memorized values and search that
checks whether a condition was true in a previous state. The regeneration feature
implies that deltas have the ability to redo and undo their changes; hence the new
class BDelta replaces Delta (figure 6(b)).

Figure 7(a) presents the behavioral program for the whole Snapshot class. This
program specifies the valid sequences of operations that can be applied to Snap-

shot instances. Two states correspond to execution of operations (memorize and
add_child); they are to be refined by behavioral programs describing these oper-
ations. Figure 7(b) presents the expected behavioral program for class BSnapshot
which derives from Snapshot. In particular, BSnapshot necessitates a new opera-
tion, regenerate, called when backtracking the history (i.e., when search returns
success). The new class has the extra possibilities to search inside a sleeping
snapshot and to call regenerate when success occurs.

The behavioral program of BSnapshot has been obtained from the one of Snap-
shot by applying a combination of our design rules. Obviously no state nor transi-
tion have been deleted from Snapshot (rule 1). The new transition from inactive

to regeneration bears a completely new trigger (rule 2). The program that refines
state inactive has no trigger belonging to the preemption trigger set of this state
(rule (4a)). Finally, the local event success was not part of the Snapshot program
(rule 5). Thus, by construction, BSnapshot is substitutable for Snapshot; no other

19

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K

dead

error

open

sleep

sleep

Snapshot

active

inactive

memorize()

do:memorize()

memorization

add_delta()

add_child()

do:add_child()

(a) Behavioral program of class
Snapshot.

dead

open

error
BSnapshot

sleep

sleepy

searched

inactive

do:search()

do:regenerate()

success

active

memorize()

add_delta()

do:memorize()

memorization

regeneration

success/regenerate()

local:success

sleep

search() search_ko

search_ok/

add_child()

do:add_child()

end_regenerate

(b) Behavioral program of class BSnapshot. It is
similar to Snapshot with a refined inactive state,
a local event success, and the possibility of launch-
ing regenerate from the inactive state. RestrictionÞ ì BSnapshot ò�ß0à Snapshot is obtained by remov-
ing states and transitions displayed with thick lines.

Fig. 7. Behavioral programs of classes Snapshot and BSnapshot.

verification is necessary to assert that BSnapshot ¤ Snapshot. Therefore, the ex-
tension of BSnapshot has no influence when a BSnapshot is used as a Snapshot.
As a result, every trace of Snapshot is also a trace of BSnapshot.

Design rules act at language level and they offer an effective means to ensure
behavioral substitutability property. Hence, they are useful within an automatic
substitutability analyzer.

5.3 Stability of Properties

Continuing with the previous example, to prove that every temporal property in�:��[d � true for Snapshot is also true for its extension BSnapshot, we need to en-

20

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
sure that �"R Snapshot ^ ¤;� �_R Snapshot ^ . But, obviously �_R BSnapshot ^�»�] Snapshot Q�"R Snapshot ^ and so the proof is immediate.

For instance, suppose we wish to prove the following property: “It is possible
to add a child to a snapshot (i.e., to call the add_child() operation) only after
memorization has been properly done”. Looking at the behavioral program (fig-
ure 7(a)), this property (referred to as

øiáãâ � �åä) corresponds to the following behavior.
When exiting successfully from state memorization, if add_child() is received,
then control enters state active. Then label sleep leads to the inactive state.
Otherwise, operation memorize() emits error which provokes global preemption.

We decompose the
øiáãâ � �åä property into two �:�"[d � specifications:ápæ ·ãç è
è _ é�êtëgì è · º�í á�æ ·ãî7ïgðaðvñgð º º ã átò�óhô

ç
ô
ï � ë�õ ç é

ô ë÷ö ïápæ ·ãïgð
ð.ñFð ã á�æ ·ãî ó÷ô ç ô ï � ë�õ ç é
ô ë÷ö ï º º

Intuitively, the first formula corresponds to memorization success: if add_child()
is received and if no error occurs, then state inactive is reached. The second
formula corresponds to memorization failure: error occurred, and state inactive
will never be reached.

We are developing a tool that allows us to describe BLOCKS component be-
havior and to automatically achieve proofs of safety properties. In this example,
our tool automatically transforms the description of the behavioral program of
Rule and the above �:�"[Èd � specification into inputs acceptable for NuSMVmodel
checker [5]. The tool returns that the specification is true for Rule. Conversely,
if a formula turns out to be false, the diagnosis returned by NuSMV is a counter-
example. Our tool interprets and displays a user friendly version of this diagnosis
for the user.

In frameworks a component (a set/pattern of related classes in our case) usually
implements a given service, such as rule management in the example. Compo-
nents can be extended to satisfy users’ needs. Provided that they are small enough
to be individually verified by model-checking tools (a sound assumption in most
cases), the modularity property allows to verify a complex large scale framework
that would not be tractable as a whole.

6 Related Work and Discussion

Modeling component behavior and protocols and ensuring correct use of compo-
nent frameworks through a proof system is a recent research line. Most approaches
concentrate on the composition problem [16,1,7], whereas we are focusing on the
substitutability issue.

Many approaches use finite state machine to model the behavior of compo-
nents. In [8], interface automata are defined to model the “temporal” aspects of
components. This formalism intends to check the compatibility between compo-
nents viewed both statically and dynamically. However, the notion of refinement
defined for interface automata intends to prove that an implementation meets its

21

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
specification; it differs from our substitution preorder, since it addresses a kind of
“inverse” problem.

In the field of Software Architecture, most works on modeling behavior [2] ad-
dress component compatibility and adaptation in a distributed environment. They
are often based on process calculi [21,26,22]. In particular, works to formalize and
verify Statechart-like languages (UML state diagrams [27] and ø -Charts [10]) use
CSP process algebra. These approaches differ from our’s. First, UML state di-
agrams are intrinsically non-deterministic and formalizing them in CSP produces
automata larger than synchronous ones; hence, model-checking tends to be more
complex. Second, ø -Charts also differ from behavioral programs and their refine-
ment operation is not equivalent to our substitution preorder. Moreover, both works
use a model checker based on CSP refinement, not well-suited to verify temporal
logic properties. On another hand, in [25] the authors rely on synchronous formal-
ism to express models for UML state-machines. They define a language consisting
of synchronous transition systems with preorders and they provide a translation of
UML state-machines into this language. Hence they get models “much easier to
deal with than classical, non deterministic, asynchronous concurrency”. This ap-
proach allows to compile, optimize and verify distributed software. As we address
another kind of problem, this modeling does not fit our purpose.

Some authors put a specific emphasis on the substitutability problem. For in-
stance, in [4], the authors focus on inheritance and extension of behavior, using
the ù -calculus as formal model. Both consider a distributed environment. They
are more general in their objective than we are, although quite similar as far as
behavioral description is concerned. In contrast, we restrict to the problem of sub-
stitutability in a non-distributed world, because it is what we needed for BLOCKS.
Again, this restriction allows us to adopt models more familiar to software develop-
ers (UML StateCharts-like), easier to handle (deterministic systems), efficient for
formal analysis (model-checking and simulation), and for which there exist effec-
tive algorithms and tools. The Synchronous Paradigm offers good properties and
tools in such a context. This is why we could use it as the foundation of our model.

In the domain of modular model-checking, some authors address the problem
of modular verification of Argos programs [18]. Their approach is similar to ours,
but to establish their results, they relies on a cast of Argos programs into Boolean
Automata. Indeed Boolean Automata and Kripke structures are very close models
but we prefer to translate BDL programs into Kripke structures and to prove that
our translation preserves verification results. Doing that, we benefit from all model-
checking techniques available for Kripke structures.

7 Conclusion and Perspectives

The work described in this paper is derived from our experience in providing sup-
port for correct use of a framework. We first adapted framework technology to
the design of knowledge-based system engines and observed a significant gain in
development time. While performing these extensions, we realized the need to for-

22

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
malize and verify component protocols, especially when dealing with subtyping.
The corresponding formalism, the topic of this paper, has been developed in par-
allel with the engines. As a consequence of this initial work, developing formal
descriptions of BLOCKS components led us to a better organization of the frame-
work, with an architecture that not only satisfies our design rules but also makes
the job easier for the framework user to commit to these rules.

Our behavioral formalism relies on a mathematical model, a specification lan-
guage, and a semantic mapping from the language to the model. The model sup-
ports multiple levels of abstraction, from highly symbolic (just labels) to merely
operational (pieces of code); thus users can consider the specification level they
need. Whereas this model is a classical synchronous model, it is original in the
sense that it can cover both static and dynamic behavioral properties of compo-
nents. To use our formalism, the framework user has only to describe behavioral
programs, by drawing simple StateCharts-like graphs with a provided graphic in-
terface. The user may be to a large extend oblivious of the theoretical foundations
of the underlying models and their complexity.

Our aim is to accompany frameworks with several kinds of dedicated tools.
Currently, we provide a graphic interface to display existing descriptions and mod-
ify them. In the future, the interface will watch the user activity and warn about
possible violation of the design rules. Since these rules are only sufficient, it is
possible for the user not to apply them or to apply them in such a way that they
cannot be clearly identified. To cope with this situation, we will also provide a
static substitutability analyzer, based on our model (section 3.2) and a partitioning
simulation algorithm.

As already mentioned our notion of substitutability guarantees the stability of
interesting (safety) properties during the extension process. Hence, at the user
level as well as at the framework one, it may be necessary to automatically ver-
ify these properties. To this end, we have chosen formal verification and we prove
that usual model checking techniques can be applied in our model. The problem
with model checkers is the possible explosion of the state space. But, taking ad-
vantage of the structural decomposition of the system allows modular proofs on
smaller (sub-)systems, a key for scaling up. This requires a formal model that ex-
hibits the compositionality property, which is the case for our model (theorems 4.1).
At the present time we have designed a complete interface with NuSMV . This tool
makes it possible to represent synchronous finite state systems and to analyze spec-
ifications expressed in �:�"[Èdú� temporal logic. It uses both symbolic BDD-based
and SAT-based (based on propositional satisfiability) model checking techniques.
These techniques solve different classes of problems and therefore can be seen
as complementary. First, our description language can be translated into NuSMV
specifications, and our tool provides also a user friendly way to express the proper-
ties the users may want to prove. Second, NuSMV diagnosis and return messages
are displayed in a readable form: users can browse the hierarchies of behavioral
derivations and follow the steps of the proofs. The next step is to implement the
substitutability analysis tool.

23

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
The model has also a pragmatic outcome: it allows simulation of resulting ap-

plications and generation of code, of run-time traces, and of run-time assertions.
Indeed the behavioral description is rather abstract and may be interpreted in a va-
riety of ways. In particular, automata and associated labels can be given a code
interpretation. The generated code would provide skeletal implementations of op-
erations. This code will be correct, by construction—at least with respect to those
properties which have been previously checked. Furthermore, the generated code
can also be instrumented to build run-time traces and assertions into components.

Developing such tools is a heavy task. Yet, as frameworks are becoming more
popular but also more complex, one cannot hope using them without some kind of
active assistance, based on formal modeling of component features and automated
support. Our work shows that combining formal techniques issued from different
computer science domains can be of practical value to make the use of component
frameworks safer and easier.

References

[1] F. Achermann and O. Nierstrasz. Applications = Components + Scripts - A Tour of
Piccola. In Mehmet Aksit, editor, Software Architectures and Component Technology,
pages 261–292. Kluwer, 2001.

[2] R. Allen and D. Garlan. A formal basis for architectural connection. ACM
Transactions on Software Engineering and Methodology, 6(3):213–249, 1997.

[3] G. Berry. The Foundations of Esterel. In G. Plotkin, C. Stearling, and M. Tofte,
editors, Proof, Language, and Interaction, Essays in Honor of Robin Milner. MIT
Press, 2000.

[4] C. Canal, E. Pimentel, and J. M. Troya. Compatibility and inheritance in software
architectures. Science of Computer Programming, (41):105–138, 2001.

[5] A. Cimatti, E. Clarke, F. Giunchiglia, and M. Roveri. Nusmv: a new symbolic model
verifier, available at http://nusmv.irst.itc.it.

[6] E. M. Clarke, O.Grumberg, and D.Peled. Model Checking. MIT Press, 2000.

[7] J. Costa Seco and L. Caires. A Basic Model of Typed Components. In Elisa Bertino,
editor, ECOOP 2000, volume 1850 of LNCS, pages 108–128. Springer, 2000.

[8] L. de Alfaro and T. A. Henzinger. Interface automata. Proc. of the Foundation of Soft.
Eng., 26:109–122, 2001.

[9] D. Giannakopoulo, C. Pasareanu, and H. Barringer. Assumption generation for
software component verification. In Proc. of the 7th IEEE Int. Conf. on Auto.Soft.
Eng. IEEE Computer Society Press, 2002.

[10] D. Goldson. Formal Verification of û -Charts. In Proc. of the 9th Asia-Pacific Soft.
Eng. Conf., Gold Coast, Australia, 2002. IEEE Computer Society Press.

24

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
[11] N. Halbwachs. Synchronous Programming of Reactive Systems. Kluwer Academic,

1993.

[12] D. Harel and O. Kupferman. On object systems and behavioral inheritance. IEEE
Transactions on Soft. Eng., 28(9):889–903, 2002.

[13] D. Harel and A. Pnueli. On the development of reactive systems. In NATO, Advanced
Study Institute on Logics and Models for Verification and Specification of Concurrent
Systems. Springer Verlag, 1985.

[14] B. Liskov and J. Wing. A behavioral notion of subtyping. ACM Transactions on
Programming Languages and Systems, 16(6):1811–1841, November 1994.

[15] B. Liskov and J. L. Wing. A New Definition of the Subtype Relation. In ECOOP’93,
volume 707 of LNCS, pages 119–141. Springer-Verlag, 1993.

[16] K. Mani Chandy and M. Charpentier. An experiment in program composition and
proof. Formal Methods in System Design, 20(1):7–21, January 2002.

[17] F. Maraninchi. Operational and Compositional Semantics of Synchronous Automaton
Composition. LNCS: Concur, 630, 1992.

[18] A. Merceron and M. Pinna. Modular Verification of Argos Programs. In Proc. of the
6th Australasian Conf. on Parallel and Real-Time Systems (Part’99). Springer, 1999.

[19] R. Milner. An algebraic definition of simulation between programs. Proc. Int. Joint
Conf. Artificial Intelligence, pages 481–489, 1971.

[20] S. Moisan, A. Ressouche, and J-P. Rigault.
L2J�7¬D�M¬;

, a Component Framework with
Checking Facilities for Knowledge-Based Systems. Informatica, Special Issue on
Component Based Software Development, 25:501–507, 2001.

[21] O. Nierstrasz. Object-Oriented Software Composition, chapter Regular Types for
Active Objects, pages 99–121. Prentice-Hall, 1995.

[22] F. Plasil and S. Visnovsky. Behavior protocols for software components. IEEE
Transactions on Soft. Eng., 28(11), Nov 2002.

[23] A. Ressouche, S. Moisan, and J.-P. Rigault. A Behavioral Model of Component
Frameworks. Technical report, INRIA, December 2003. available at:
http://www.inria.fr.

[24] C. Szyperski. Component Software - Beyond Object-Oriented Programming. Addison
Wesley, 1998.

[25] Y. Wang, J-P. Talpin, A. Benveniste, and P. Le Guernic. A semantics of UML state-
machines using synchronous pre-order transition systems. In Int. Symposium on
Object-Oriented Real-Time Distributed Computing (ISORC’2000). IEEE Press, march
2000.

[26] D. M. Yellin and R. E. Strom. Protocol specifications and component adaptors. ACM
Transactions on Programming Languages and Systems, 19(2):292–333, March 1997.

25

687:9-;)<>=@?BA�;�;�7>C>D�EFAG?B9-H><ICFJ)K
[27] M. Yong and M. Butler. Towards Formalizing UML State Diagrams. In Proc. of

the 1st Conf. on Soft. Eng. and Formal Methods, Brisbane, Australia, 2003. IEEE
Computer Society Press.

26

	Introduction
	Framework Protocol of Use
	Behavior Description and Refinement
	Description of Behavior using the Synchronous Paradigm
	Mathematical Model of Behavior
	Behavior Description Language (BDL)

	Compositional and Modular Verification
	Compositional Verification
	Modular Verification

	Practical Issues
	Application to Blocks Components
	Design Rules
	Stability of Properties

	Related Work and Discussion
	Conclusion and Perspectives
	References

