
UNIVERSITÉ DE NICE - SOPHIA ANTIPOLIS

École Doctorale STIC

Sciences et Technologies de l’Information et de la Communication

THÈSE

pour obtenir le titre de

Docteur en Sciences

de l’Université de Nice - Sophia Antipolis

Mention Informatique

présentée et soutenu par

Muhammad Uzair KHAN

A Study of First Class Futures:
Specification, Formalisation, and

Mechanised Proofs
Thèse dirigée par Ludovic HENRIO et Denis CAROMEL

au sein de l’équipe OASIS,

équipe commune de l’INRIA Sophia Antipolis, du CNRS et du laboratoire I3S

soutenue le 25 Février 2011,devant le jury composé de:

Président du Jury Yves Bertot INRIA-Sophia Antipolis

Rapporteurs Jean-Bernard Stefani INRIA Grenoble-Rhône-Alpes, France

Christian Perez INRIA-ENS Lyon, France

Carlos Canal ETSI Informática

Universidad de Málaga, Espagne

Directeur de thèse Denis Caromel INRIA-CNRS-Université de Nice

Sophia Antipolis
Co-directeur Ludovic Henrio INRIA-CNRS-I3S–Sophia Antipolis

0.1 Acknowledgment

Last thing to do :-)

Contents

0.1 Acknowledgment . i

1 Introduction 1
1.1 Motivation . 2
1.2 Results and Contributions . 3

1.2.1 Specification and Implementation of Future Update Strategies 4
1.2.2 Formalisation of Component Model and Proofs 4

1.3 Impact of Thesis . 5
1.4 Thesis Outline . 5

2 Related Works 9
2.1 Background: Why Futures ? . 10

2.1.1 Some basic questions about futures 11
2.2 Distributed and Concurrent Programming 13
2.3 Distributed Concurrent Programming with Futures 14

2.3.1 Futures in Multilisp World 14
2.3.2 Futures in ABCL/1 and ABCL/f 17
2.3.3 Futures in Alice ML and λ(fut) 19

2.4 Distributed Concurrent Programming with Futures and Objects . . . 20
2.4.1 Future in Java-verse . 20
2.4.2 Futures in Creol . 22
2.4.3 Futures in ASP, ProActive and ASPfun 24
2.4.4 Futures in AmbientTalk . 25

2.5 Component Models and Frameworks 27
2.5.1 Common Object Model (COM) and DCOM 28
2.5.2 Enterprise Java Beans . 28
2.5.3 CORBA Component Model (CCM) and GridCCM 29
2.5.4 Common Component Architecture (CCA) 30
2.5.5 Service Component Architecture (SCA) and FraSCAti 31
2.5.6 SOFtware Appliances Component Model (SOFA) 32
2.5.7 Fractal component model . 33
2.5.8 Grid Component Model (GCM) 34

2.6 Summary of Related Works and Positioning 36

I Future Update Strategies: Specification and Implementation 41

3 First Class Futures: Specification of Update Strategies 43
3.1 Background: Futures in ASP-Calculus 45
3.2 Background: Update Strategies for Futures 47

3.2.1 Classification of Future Update strategies 47

iv Contents

3.2.2 Eager Forward-based Strategy 48
3.2.3 Eager Message-based Strategy 49
3.2.4 Lazy Message-based Strategy 51

3.3 Semi-Formal Specification of Update Strategies 52
3.3.1 General Notation . 52
3.3.2 Eager Forward-based Strategy 55
3.3.3 Eager Message-based Strategy 56
3.3.4 Lazy Message-based Strategy 58

3.4 Analysis of Future Update Strategies 59
3.5 Remarks on Semi-formal Specification of Strategies 62

4 Implementing Future Update Strategies in ProActive 65
4.1 Background: First Class Futures in ProActive 66

4.1.1 First Class Futures in ProActive: Automatic Continuation . . 68
4.2 Missing Future Update Strategies . 70

4.2.1 Eager Message-based Strategy 70
4.2.2 Lazy Message-based Strategy 72

4.3 Experimental Evaluation . 74
4.4 Concluding Remarks on Future Update Strategies 79

II Formal Reasoning on Components: Semantics and Proofs 81

5 A Framework for Reasoning on Component Composition 83
5.1 Background: Isabelle/HOL . 85

5.1.1 Isabelle/HOL Syntax . 86
5.2 An Asynchronous Component Model with Futures 89

5.2.1 Component Model Overview 90
5.2.2 Component Structure . 90
5.2.3 Communication Model . 92
5.2.4 Component Behaviour . 93
5.2.5 Why First Class Futures in GCM ? 94

5.3 Formalisation of a Component Model in Isabelle/HOL 96
5.3.1 Component Structure . 97
5.3.2 Efficient Specification of Component Manipulation 98
5.3.3 Component State . 103
5.3.4 Correct Component . 106
5.3.5 Basic Properties on Component Structure and Manipulation . 107
5.3.6 Properties on Component Correctness 109

5.4 Runtime Reconfiguration of Components 111
5.4.1 Complete Component . 112
5.4.2 Reconfiguration Primitives: Unbind and Replace 113

Contents v

6 Asynchronous Components with Futures : Semantics and Proofs 117
6.1 An Asynchronous Component Model with Futures 119
6.2 Run time Semantics for GCM-like Components 121

6.2.1 Structure and Notations . 121
6.2.2 Semantics of Component Model 126

6.3 Formalisation in Isabelle and Properties 133
6.3.1 Semantics . 134
6.3.2 Properties and Proofs on Eager message-based Strategy . . . 135

7 Positioning and Concluding Remarks on Formalisation 139

8 Conclusion 143
8.1 Final remarks . 150

9 Future Works 153
9.1 Applied Aspects . 153
9.2 Theoretical Aspects . 157

A Summary of terms and notations 161

B Semantics of Lazy message-based Strategy 167

Bibliography 171

List of Figures

3.1 Futures propagate throughout the system 46
3.2 Eager forward-based: Future updates follow the flow of futures . . . 48
3.3 Eager message-based: All future recipients register 50
3.4 Lazy message-based: Register only on wait-by-necessity 51
3.5 Future-update in eager forward-based strategy 56
3.6 Future-update in eager message-based strategy 57
3.7 Future update in lazy message-based strategy 58

4.1 Anatomy of an Active Object . 67
4.2 Active objects and futures in ProActive 68
4.3 A small example tree configuration 75
4.4 Comparison of strategies for a tree configuration 76
4.5 Pipe of varying length . 77
4.6 Comparison of strategies for a pipe configuration 78

5.1 High level view of a GCM component [1] 90
5.2 Component composition . 91
5.3 Structure of a primitive component 92
5.4 Example composite component . 92
5.5 Behaviour of primitive components 94
5.6 First Class Futures in GCM (a) . 94
5.7 First Class Futures in GCM (b) . 95
5.8 First Class Futures in GCM (c) . 95
5.9 First Class Futures in GCM (d) . 96
5.10 Composite Component . 98

6.1 Future registration . 120
6.2 Future update . 121
6.3 Structure and behaviour of a primitive component 123
6.4 Primitive Component Semantics . 127
6.5 Component Communications . 129
6.6 CompositeCall . 129
6.7 Semantics of the component composition (a) 130
6.8 CommBrother . 131
6.9 CommChild rule . 132
6.10 CommParent . 132
6.11 Semantics of the component composition (b) 133

B.1 Primitive Component Semantics (Lazy message-based) 167
B.2 Semantics of the component composition (a) 168
B.3 Semantics of the components . 169

Chapter 1

Introduction

Contents
1.1 Motivation . 2
1.2 Results and Contributions . 3

1.2.1 Specification and Implementation of Future Update Strategies 4
1.2.2 Formalisation of Component Model and Proofs 4

1.3 Impact of Thesis . 5
1.4 Thesis Outline . 5

2 Chapter 1. Introduction

1.1 Motivation

Ever since the introduction and first serious applications of computer networks in
1970-1980s, the field of distributed computing has been growing enormously. Start-
ing from their humble roots as E-mail application of ARPANET and the Usenet
discussion system, distributed systems have become prevalent in modern life. Every
aspect of modern life is somehow influenced by one or more applications of dis-
tributed computing. At the same time, the computational capabilities of individual
microprocessors have grown exponentially. Today’s processors used in standalone
machines are more powerful than some of the earliest mainframes. To better harness
the available processing power, and to optimise the computational efficiency, a lot
of effort has been put on studying concurrency, parallelism and distribution.

Distributed systems have been described in literature in a number of ways, de-
pending upon factors such as distribution model, communication model, etc. We
view a distributed system as a set of concurrent communicating processes. Such a
view allows us to benefit naturally from distribution and is somewhat close to the
Actor Model [2] for concurrent computation. Traditionally, concurrency is achieved
by creating separate tasks/processes or threads that execute some part of the code
in a concurrent manner. While such constructs do allow the programmers to specify
which sections of the code may be executed in parallel, they are very intrusive to the
business logic. Problems abound relating to concurrency and special attention has
to be paid on access to shared resources and synchronisation between the various
concurrently executing tasks/threads/processes to ensure that the behaviour of the
concurrent/parallelised program stays correct with respect to the specification.

Futures were introduced to simplify creation of concurrent applications. For
concurrent distributed applications, futures enable an efficient and easy to use pro-
gramming paradigm. A future is a placeholder for a result of a concurrent execution.
When the concurrent execution finishes, the produced result replaces the placeholder
object. First introduced in Multilisp [3] and ABCL/1 [4], futures provide an easy no-
tation style construct for converting sequential code to concurrent code, abstracting
away complexities of concurrency management. Although not traditionally a part
of popular industrial use programming languages, futures appear widely in litera-
ture. A number of languages and formalisations have been proposed which benefit
from futures. These range from Multilisp, ABCL/f, λ-(fut) [5] to Creol [6], ASP-
calculus [7], and AmbientTalk [8], etc. Java supports the future construct through
java.util.concurrent package.

Futures can be treated as first class objects. First class futures act as nor-
mal objects and may be passed as method arguments. Similarly, return values from
method calls may also contain futures. First class futures allow us to manipulate (to
some extent) the yet-to-compute results of concurrent executions. In a distributed
application, first class futures can be transmitted between the communicating re-
mote processes. Consequently, futures may spread everywhere. This is indeed the
case for ASP-calculus for example, which allows first class futures. When the con-
current execution corresponding to a future finishes, the produced result has to be

1.2. Results and Contributions 3

communicated to all processes/objects which have received that future. Additional
mechanisms are implemented to facilitate transmitting the produced result values
to where they are needed. We refer to those mechanisms as future update strategies.

First class futures and by extension future update strategies are somewhat ne-
glected in literature. Even in case of works such as Creol, not much attention is
paid to the role of future update strategies. On the other hand, ASP-calculus ex-
plicitly discusses different future update strategies; those strategies can be applied
to other frameworks with first class futures as well, such as Creol. Under reasonable
hypothesis it has been shown that the order in which results are returned has no
influence on the computation. This opens the possibility of improving the efficiency
of result transmission under different application and network configurations. Con-
sequently, this thesis focuses on the study and formalisation of different
future update strategies.

1.2 Results and Contributions

The work presented in this thesis can be split into two broad parts. In Part I, we
study the transmission of results for first class futures. We present the protocols
for future update strategies in detail, and provide a semi-formal specification of
those update strategies. Our presented specification is generic and language or
framework independent; it can be adapted to other frameworks/languages with first
class futures. Mainly, in Part I we focus on:

• a semi-formal specification of future update strategies.

• an implementation of future update strategies in ProActive.

Part II of this thesis deals with more theoretical aspects. We formalise a compo-
nent model with asynchronous communications, and futures. Our intent is to build
an infrastructure which is sufficient for proving properties on component models in
a theorem prover. We aim for an expressive platform with a wide enough range of
tools and support lemmas to help design of component models, the creation of adap-
tive procedures, and proof of generic properties on component models. Using the
developed infrastructure, we present formal runtime semantics of our components.
Our component semantics include formalisation of future update strategies. It pro-
vides a reliable and strong basis for reasoning on components, and on future update
protocols. Our work serves to prove the correctness of the underlying middleware
implementation. To summarise, in Part II we:

• formalise a component model and mechanically prove the correctness of prop-
erties on our formalised model.

• give a runtime semantics for our components including the specification of a
future update strategy. We prove properties on correctness of future update
mechanisms.

4 Chapter 1. Introduction

1.2.1 Specification and Implementation of Future Update Strate-
gies

Future update strategies are somewhat neglected in literature and to our knowledge,
ours is the only work that focuses on future updates. A high level specification of
update strategies appear in [7]. However, the specification is abstract, and lacks
details on working of the various strategies or their underlying data structures.
Consequently, it is not very useful for insight into a real implementation of update
strategies. We present a semi-formal specification which is more precise and is
detailed enough to be used as basis for a real implementation. Additionally, our
specification can also be used to analyse the efficiency of strategies. Our semi-
formal specification is generic and language independent. Consequently, outside
ASP and ProActive, this work could be adapted to other frameworks that use first
class futures, for example, Creol and AmbientTalk.

We aim to evaluate and to study the efficiency of the specified future update
strategies. Based on our semi-formal specification, we provide an implementation of
those strategies in ProActive distributed programming library. We carry out some
experiments to measure the efficiency of future update strategies under different
configurations. Our goal is to show that no single strategy provides optimal per-
formance for all situations. Having multiple strategies allows the selection of the
most suited strategy for a particular application configuration. Although, we pro-
vide some insights on which strategy is more more suited in certain context, we do
not provide a large scale experimental case study. Such a case study is out of the
scope of this thesis and is left as part of future work.

Our work on semi-formal specification of future update strategies and their ex-
perimental evaluation is published in [9, 10].

1.2.2 Formalisation of Component Model and Proofs

As already stated, the theoretical part of our thesis focuses on following goals:
formalisation of a component model, and reasoning on components at runtime; In
particular we prove properties on the future update protocols.

We formalise a subset of GCM [11], and build a framework for reasoning on
distributed components with futures using Isabelle/HOL [12] theorem prover. Com-
ponent models ensure that components have a well-determined structure which fa-
cilitates reasoning on component interactions. We mechanically prove properties on
correctness of components, explaining our design choices along the way. To demon-
strate that our reasoning infrastructure is sufficiently detailed, we also show some
initial proofs on component configuration and reconfiguration. The details on our
framework for reasoning on components are published in [13].

Proving correctness of protocols is a complex task. To accomplish this goal in
the special case of future update protocols, we formally specify runtime semantics of
distributed components with futures, incorporating formalisation of future update
strategies. Formalising future updates is of little interest concerning the language

1.3. Impact of Thesis 5

properties, but is crucial to study the implementation of this language. In order to
prove the correctness of our implementation of GCM, we formalise one future update
strategy and prove correctness of future updates. We prove two main properties
concerning futures. The first property ensures the correctness of future update
operation and verifies that a future update removes all references to a given future.
The second property establishes the correctness of formalised future update protocol
and verifies that given a correct component system, the global reduction maintains
complete future registrations. More details on future update strategies appear in
Chapter 3, while Chapter 6 describes the proofs. Our work on runtime semantics
and correctness proofs of future update protocols is published in [14].

1.3 Impact of Thesis

Concurrency and distribution are widely studied topics in the research communi-
ties. A large body of work exists dealing with various aspects of concurrency and
distribution. In this thesis, we study efficient transmission of results in distributed
systems with futures. As stated, there are no directly competing works on future
update strategies.

We provide a semi-formal specification, which we believe is detailed enough to
be used as basis for a real implementation. We give our semi-formal specification
of future update strategies through a language independent approach that makes it
applicable to various existing frameworks that support first class futures, for example
Creol and AmbientTalk. We provide an implementation of our update strategies in
ProActive which may serve as reference for supporting similar strategies in other
frameworks using first class futures.

We formalise our future update strategies in the context of GCM component
model. Ours is the only formalisation available for GCM, and can be used for prov-
ing correctness of its reference implementation ProActive/GCM. To the best of our
knowledge, our work is the only one which focuses on efficient transmission of future
values, and attempts to formalise the value-transmission mechanisms for first class
futures with the goal of providing mechanised proofs on the properties of update
strategies. This serves to prove correctness of the corresponding implementation
of future update strategies in ProActive library [15]. We believe that our formal-
isation can directly benefit other similar component models as well; for example
FraSCAti component model which has a lot of similarities with GCM. More details
on component models and their relationship to our work appear in Chapters 2 and
Chapter 7.

1.4 Thesis Outline

As stated before, our contributions are grouped in two different parts. Chapter 3 and
Chapter 4 form Part I, which is concerned with specification and implementation of
future update strategies. Part II is more formal and contains: Chapter 5, Chapter 6

6 Chapter 1. Introduction

presenting our formalism and proofs, and Chapter 7 which positions our work with
respect to other works on component models and formal reasoning on components.
The thesis is organised as follows:

Chapter 2. Related Works
We evaluate other works that make use of futures or similar constructs as
means for providing concurrency and parallelism. We study the various ways in
which the futures or similar constructs are implemented/reasoned on, and dis-
cuss how those works relate to the work presented in this thesis. We overview
the more common component models and their formalisation, aimed at large
scale distributed systems and computational grids. Finally, we position our
work with respect to existing works on futures and distributed component
models.

Chapter 3. First Class Futures: Specification of Update Strategies
We present a semi-formal event-like notation to model the future update
strategies. For our specification, we build upon the high level definitions pro-
vided in [7] to present a detailed semi-formal specification of update strategies
using a generalised, language independent notation. We particularly study the
efficiency of each strategy, and present a basic cost model (w.r.t. number of
message exchanges) to evaluate each of the presented strategies.

Chapter 4. Implementing Future Update Strategies in ProActive
We use the semi-formal specifications shown in Chapter 3 to demonstrate
how such strategies may be implemented. We implement the future update
strategies in ProActive, a distributed programming library based on ASP-
calculus. We aim to better evaluate the various future update strategies, and
to study when a particular strategy might be more suitable. We carry out
initial experiments, comparing the efficiency of each strategy to validate the
results and analysis of previous chapter. We only present initial experimental
results, leaving a large scale and exhaustive experimental evaluation for future
work.

Chapter 5. A Framework for Reasoning on Component Composition
We present the formalisation in Isabelle/HOL of a component model with fu-
tures, focusing on the structure and on basic lemmas to handle component
structure. Correctness of component composition is well understood formally
but existing works do not allow for mechanised reasoning on composition and
component reconfiguration. A mechanical support improves the confidence
in the existing results. Our objective is to present the basic constructs, and
the corresponding lemmas allowing the proof of properties related to struc-
ture of component models and the handling of structure at runtime. First
proofs on component configuration and reconfiguration are also presented to
demonstrate the expressiveness of underlying reasoning infrastructure.

1.4. Thesis Outline 7

Chapter 6. Components with Futures : Semantics and Proofs
We give a formal semantics to the component model formalised in Chapter 5.
The runtime semantics of our component model incorporate formalisation of
one future update strategy from Chapter 3. We only show proofs on one future
update strategy and present the semantics of a second strategy in Appendix B,
showing that our approach is well adapted to specify and reason on different
future update strategies. Our model has been mechanically formalised in
Isabelle/HOL, together with the proof of properties on future update strategy.
This demonstrates the correctness of update strategy and validates the actual
implementation of the strategy itself.

Chapter 7. Positioning and Concluding Remarks on Formalisation
We summarise our work on formalisation of a component model with first class
futures and its runtime semantics. We contrast this work with the previously
existing work, and clearly distinguish between previous work and our con-
tribution. We highlight the properties that distinguish our formalised model
from GCM and its reference implementation ProActive/GCM. The goal of the
chapter is to position our work with respect to previously published work work
on components models and formalisations that support reasoning on them.

Chapter 8. Conclusion
We summarise the work presented in thesis; in particular we focus on the main
contributions of this thesis, and their impact. We briefly discuss how our work
relates to other languages/frameworks (already presented in other chapters),
and provide concluding remarks for the thesis.

Chapter 9. Future Works
The work presented in the thesis is not exhaustive. Rather we hope to provide
a strong basis for further research on future update protocols. We present
some perspectives for future efforts, discussing some short term and long term
objectives, and future directions.

Chapter 2

Related Works

Contents
2.1 Background: Why Futures ? 10

2.1.1 Some basic questions about futures 11
2.2 Distributed and Concurrent Programming 13
2.3 Distributed Concurrent Programming with Futures 14

2.3.1 Futures in Multilisp World 14
2.3.2 Futures in ABCL/1 and ABCL/f 17
2.3.3 Futures in Alice ML and λ(fut) 19

2.4 Distributed Concurrent Programming with Futures and
Objects . 20

2.4.1 Future in Java-verse . 20
2.4.2 Futures in Creol . 22
2.4.3 Futures in ASP, ProActive and ASPfun 24
2.4.4 Futures in AmbientTalk . 25

2.5 Component Models and Frameworks 27
2.5.1 Common Object Model (COM) and DCOM 28
2.5.2 Enterprise Java Beans . 28
2.5.3 CORBA Component Model (CCM) and GridCCM 29
2.5.4 Common Component Architecture (CCA) 30
2.5.5 Service Component Architecture (SCA) and FraSCAti 31
2.5.6 SOFtware Appliances Component Model (SOFA) 32
2.5.7 Fractal component model . 33
2.5.8 Grid Component Model (GCM) 34

2.6 Summary of Related Works and Positioning 36

10 Chapter 2. Related Works

Concurrency and distribution are widely studied topics in the research commu-
nities. A large body of work exists dealing with various aspects of concurrency and
distribution. In this chapter, we try to situate our work and present an overview
of our research domain. We study efficient transmission of results in distributed
systems with futures. As there are no directly competing works on future update
strategies1, we instead focus on works that fall in same research area. We start by
evaluating other works that make use of futures or similar constructs as means of
providing concurrency and parallelism. We study the various ways in which the
futures are implemented/reasoned on, and point out how they relates to our work
on future updates. In the later half of this chapter, we present some of the more
common component models and the works formalising them (if any), aimed at large
scale distributed systems and computational grids. We evaluate these systems with
the aim of validating our chosen component model. We formalise a component
model for distributed components, with components as units of concurrency, and
asynchronous communications with futures. We give a formal semantics for our
components that incorporates one future update protocol. The theoretical part of
our work focuses on formalisation of such a component model, along with formal
semantics for future-update mechanisms.

To the best of our knowledge, our work is the only one which focuses on effi-
cient transmission of future values and attempts to formalise the value-transmission
mechanisms for first class futures with the goal of providing mechanised proofs on
the properties of update strategies. This serves to prove the correctness of the corre-
sponding implementation of future update strategies in ProActive library [15]. We
finish by positioning our work in relation to already existing works and point out
why we think that our work can directly benefit other languages and frameworks
that use futures.

Finally, we use Isabelle/HOL [12] theorem prover for our formalisation and rea-
soning. This thesis is focused on futures, components, and the interplay between
them. A comparative analysis of various theorem provers is neither the intent of
this thesis, nor is very useful in our context. We do benefit from a lot of features
provided in Isabelle/HOL, however we believe that the choice of a theorem prover
is secondary; similar formalisation and proofs could be achieved using some other
higher-order theorem prover like Coq [17].

2.1 Background: Why Futures ?

Distribution and concurrency have attracted a lot of research in computer sci-
ence. Traditionally, concurrency is achieved by creating separate tasks/processes
or threads that execute some part of the code in a concurrent manner. While such
construct do allow the programmers to specify which sections of the code may be
executed in parallel, they are very intrusive to the business logic. Special attention

1 [16] presents some experimental evaluation with different future update strategies, and a part
of our work extends that paper. Further details appear in Chapter 4.

2.1. Background: Why Futures ? 11

has to be paid on access to shared resources and synchronisation between the various
concurrently executing tasks/threads/processes; ensuring that the behaviour of the
concurrent/parallelised program stays correct with respect to the specification.

Futures first appeared as language constructs in functional programming lan-
guages to provide a simple and easy to use programming model for concurrent and
parallel applications. While the actual details and semantics of futures may vary
between various languages/frameworks, most programming languages/frameworks
support some variation of futures as proposed in Multilisp [3] and ABCL/1 [4]. How-
ever, it should be noted that although Multilisp and ABCL/1 were among the first
languages to support and popularise the use of futures, the ideas introduced were
not new. Similar ideas on parallel execution of code blocks had already appeared
in literature. One important work that proposes a similar idea is Hibbard [18]; the
eventual value of Hibbard were roughly equivalent to futures in Multilisp. However,
a key difference between the eventual values and a future is the type of return value.
The eventual values were represented as a separate type, similar for example, to the
future type in java concurrency API [19]. On the other hand, a future in Multilisp
has the same type as the result it represents.

2.1.1 Some basic questions about futures

In order to establish the context for a review of works relating to futures, we use
the the following paragraphs to answer some basic questions about futures as they
are used in various programming models.

What is a future? Futures are programming language constructs providing concur-
rency and data flow synchronisation. Simply put, a future is a placeholder for the
result produced by a concurrent/parallel computation which is yet to produce the
result value. Futures introduce concurrency in programs by allowing the current
executing thread/process to continue its execution without waiting for the result
from a concurrent computation.

How are futures created? Mechanisms for creating futures depend on the particular
programming language/framework, however they all fall into one of the two
categories; explicit or implicit creation. Some languages/frameworks require futures
to be created in an explicit manner. This means that the language/framework
contains specific language constructs that allow creating futures. Programmer has
to modify his sequential program to explicitly mark which sections of the code
should benefit from concurrency. Examples of such languages/frameworks include
Multilisp [3], ABCL/1 [4] and ABCL/f [20], Alice ML [21] and λ(fut) [5], Creol
[6], Java [19], etc. The second option is to have futures that are created in an
implicit manner. The language/framework itself is responsible for deciding when
to use futures to introduce concurrency, or at least for the creation of futures.
Examples of such works include ASP [7] and ProActive [15], AmbientTalk [22], etc.
In the above mentioned languages/frameworks there are no explicit constructs to

12 Chapter 2. Related Works

create futures. Instead, futures are created implicitly, as a consequence of invoking
asynchronous method calls on remote processes.

How are futures manipulated and accessed? The languages where futures are
explicit and exist as a separate type allow the programmer to manipulate futures
using a variety of constructs. Usually, three such operations are supported. A
future creation operation future/spawn to create new futures, touch/get operation
to fetch the value when it is available, and peek operation to check if the future
value is available. On the other hand, the languages/frameworks that use implicit
futures make no difference between a type τ and the type of a future that will be
filled with a value of type τ (future τ). Implicit futures are accessed and used the
same way as the results they represent.

What happens to a future when the concurrent execution finishes? When the
concurrent task computing the value of the future is finished and a result value
is available, it should be transmitted back to the thread/task which spawned this
task. However, the various languages/frameworks differ in how future values are
fetched. In Multilisp for example, the future value is fetched in an implicit manner.
The underlying language compiler itself places the necessary touch operations
in the program body. On the other hand Creol and Java require the touch/get
operations to be explicitly invoked. Yet another approach is taken by ASP and
ProActive, where future are not only implicit but transparent as well. The future
value is fetched and the future gets replaced by its value transparently.

What happens when a program tries to access a future for which the value is not
yet available? A future for which the value is not yet available, usually because the
concurrent computation is not yet finished, is said to be unresolved or undetermined.
When an attempt is made to access the value of such a future, the currently executing
task/thread is blocked until the value is available. Indeed this is the behaviour of
futures in majority of languages and frameworks, for example Multilisp, ABCL/f,
Creol, ASP all block on access to an undetermined future. AmbientTalk is an
exception to this widely followed semantics, and future access in AmbientTalk [22]
is non-blocking.

To summarise, a future is a placeholder for the result of some concurrent ex-
ecution, and may be created either explicitly or implicitly. Explicit futures exist
as separate type in the language and provide operations to manipulate them; the
result has to be acquired explicitly when the concurrent execution terminates. Im-
plicit futures are created by the underlying language implementation, without the
intervention of the programmer. Such futures share the same type as the result value
they represent. When a result is available, an implicit future may be transparently
resolved. Finally, access to an unresolved future is a blocking operation; the exe-
cution thread is blocked until the result value becomes available (AmbitentTalk is
an exception). Having established a brief context for futures as means of providing

2.2. Distributed and Concurrent Programming 13

concurrency and parallelism, we now review the various existing works that employ
futures.

2.2 Distributed and Concurrent Programming

Distributed and concurrent programming has attracted a lot of attention from the
research community. A huge amount of research has been done in the domains of
distributed and concurrent programming. It is not possible to summarise all the
works in these domains, neither is it very useful in the context of our work. There-
fore, in this section we only focus on various programming constructs that have
been developed and are used in popular programming languages to support distri-
bution. Similarly, we look at how concurrency is supported in modern programming
language and what kind of programming abstractions are provided for concurrency.
It should be noted here that distributed by default does not mean concurrent or
vise versa. It is very much possible to have a distributed system where processes
are blocked waiting for the execution to finish on other machines, hence giving rise
to a distributed systems that on the whole or in part acts as a sequential system.
Similarly, a concurrent system need not be distributed. Hence, the key element
of development of distributed concurrent applications is to maximise the amount of
work that can be done concurrently/in parallel. The less time that is wasted waiting
for remote processing to finish, the higher is the efficiency.

Traditionally, concurrency is achieved via processes, tasks or threads [23]. How-
ever, executing multiple sections of code in parallel raises the question of ‘how the
concurrently executed processes or threads should communicate with each other’?.
Based on the answer to this question, two broad concurrency models may be iden-
tified. In shared memory model, the various concurrently executing processes or
threads have access to some shared memory locations. These locations are used for
communication. However, use of shared memory leads to race conditions among
competing processes/threads. A number of constructs at various levels of abstrac-
tions have been proposed to avoid race conditions as well as to avoid situations that
can potentially lead to deadlocks. These include various types of locks, semaphores,
monitors, etc. The programming languages that support shared-memory concur-
rency model include, C, C++, Java, Multilisp etc.

As opposed to shared memory model, themessage-passing communication model
ensures that all communications take place in the form of messages. Various exist-
ing APIs provide support for both synchronous and asynchronous communications.
With asynchronous messages, the sender can continue its execution without waiting
for the reply. The support for asynchronous message-passing has given rise to Actor
[2] or Active Object [7] model of concurrency. Simply put, these models support
concurrency in the form of parallel processes that communicate via asynchronous
messages. Examples of such languages include ABCL/1 [4], Creol [24], ASP and
ProActive [7], etc.

Although, threads and processes are widely used in modern languages to provide

14 Chapter 2. Related Works

concurrency, they are cumbersome to use for implementing large scale distributed
systems. Programmer have to be extra careful to ensure that access to shared re-
sources does not cause race conditions. While effective, these are low-level constructs
that require careful manipulation.

Futures were introduce to simplify creation of concurrent applications; specially
in the context of functional languages without side-effects they provide an easy an-
notation style construct for converting sequential code to concurrent code. The
following section (Section 2.3) deals with how futures are handled in various lan-
guages/frameworks.

2.3 Distributed Concurrent Programming with Futures

Futures enable an efficient and easy to use programming paradigm for distributed
applications. In the following sub-sections we briefly present how futures are imple-
mented and supported in the various functional and non-functional languages and
formal calculi. The goal of this section is to position our work on future update
mechanisms in the wider context of how futures are currently implemented and
to point out the differences and similarities between our work and other existing
approaches.

2.3.1 Futures in Multilisp World

Multilisp [3] along side ABCL/1 [4] was among the first to introduce futures as lan-
guage constructs to support parallel execution. Multilisp is a dialect of the functional
programming language Scheme [25], which itself is a dialect of Lisp programming
language[26]. Scheme is a functional language providing features such as lexical
scoping of variables, first class continuations, delayed execution, etc. Multilisp ex-
tends support for parallel execution and shared memory. Even though Multilisp is
a functional programming language, it also contains language constructs that allow
side effects, i.e., it supports modifications to already computed values. This differs
from pure functional programming style, where the output of a function depends
only on the value of the arguments passed to it, thus ensuring that two different calls
to the same function, with same argument values, always returns the same result.

Multilisp uses the construct future to support parallelism. Given an expression
X, (future X), immediately returns a future which acts as a placeholder for the
eventual value of expression X. At the same time, a new task is created to start
evaluating the expression X concurrently. Once the expression X is evaluated, the
resulting value is used instead of the future. The use of future allows the program
to continue its execution, in parallel to the evaluation of the expression X, instead
of waiting for the result to be evaluated. This can lead to significant improvement
in the amount of parallelism between code blocks.

Initially, when a future is created, its said to be undetermined or unresolved ;
the future has not yet received the computed result value. A future is resolved/de-
termined, only when it receives the computed value. Any operation that tries to

2.3. Distributed Concurrent Programming with Futures 15

access/use the value of an undetermined future results in the calling task being
blocked until the future becomes determined/resolved. Such operations are referred
to as touching primitives [27]. Once the value is computed for the future, its status is
changed to determined and all tasks waiting for this future are notified. In Multilisp,
this is achieved by associating with each future, a list of tasks that are interested in
the value of the future. When the value is received, all tasks in the list are notified.
This allows for data-flow synchronisation. On the other hand, operations such as
argument or parameter passing does not need to know the computed value of the
future. Therefore in Multilisp these operations can be performed on undetermined
futures.

Future in Multilisp are created explicitly. In addition, Multilisp provides con-
structs like touch to fetch the value of a future. Futures are first class entities, i.e.,
they can be passed as arguments and parameter values. In Multilisp, all tasks share
the same address space, which results in a shared memory model. While the future
creation is explicit, the computed value is associated with its relevant future in an
implicit manner, i.e., futures are resolved implicitly.

Multilisp also supports the concept of lazy evaluation, through the use of delay
construct. The delay construct works the same as future construct, except that
with delay, the execution is only started when some other computation requires the
value, indicated through an implicit touch.

Futures and continuations In [27], the authors discuss a key problem which may
arise from using the Multilisp future construct with continuations. A continuation
refers to the remaining steps to be performed in the execution of a program. When
a programmer makes the scheme call call-with-current-continuation (...),
the continuation captures the remaining steps to be performed in the program. A
continuation contains information such as current program stack and current point
in the execution. This continuation is provided to the programmer for manipulation
through reification [28], and may be used to resume the program from that particular
instance. The process of applying a reified continuation is referred to as throwing
that continuation.

Continuations are a powerful language construct and allow for greater flexibility,
however they pose some interesting problems. Continuations allow the execution to
return to a previous point multiple times. This would normally not be a problem
in languages which do not have side effects. In the presence of side effects, the exe-
cution following the throw (resume from continuation) may differ from the original
execution. Also, as the control may return to a point in execution multiple times,
this means that a future may end up being computed more than once. This violates
the computed only once principle of Multilisp. The correct semantics in this case is
to indicate an error.

The paper [27] identifies two main problems as a result of using futures with
continuations. The first is the possibility of having multiple result values assigned
to a single future construct as a result of resuming from a continuation. This is

16 Chapter 2. Related Works

resolved by improving the implementation of the default future construct, ensuring
that all returns after the first one are handled in a different manner, ensuring correct
behaviour. The second problem deals with the possibility of having multiple values
returned by a single program. This is resolved by introducing the concept of legiti-
macy of each thread. A thread is legitimate if the code it executes is the one that
would have been executed in a sequential implementation without futures. Only
the results returned by the legitimate thread/task are considered while all results
from illegitimate threads may be safely ignored. Authors claim that with the two
proposed improvements, it is guaranteed that the program which uses both futures
and continuations, produces the same results on a parallel machine as would be
produced on a sequential machine. However, no formal reasoning is provided.

Formal semantics Formal semantics for futures in Multilisp appear in [29, 30]
in the context of an idealised functional language. Four operational semantics are
presented with the goal of analysing the programs using futures and optimising the
program by eliminating unnecessary touch operations. The first semantic defines
future to be a semantically transparent annotation; semantics are defined using a
sequential evaluator function – evals from program to results. The second semantic
validates that a future expression interpreted as process creation is correct. The
authors prove this by defining the semantics of a parallel machine through a paral-
lel evaluator function – evalp – and showing the equivalence of the two evaluators.
This ensures that the parallel machine correctly implements the sequential machine
in that they both define the same semantics for the source language. The third
semantics explicates the coordination of parallel tasks by introducing placeholder
objects and touch operation. The last semantic is used to derive a program analysis
algorithm, resulting in a touch optimisation algorithm. Authors present the correct-
ness proofs of their algorithm, and show that their algorithm can produce significant
speedups using tests carried out on benchmarks. The experiments are carried by
incorporating the proposed algorithm in Gambit Scheme compiler [31]. Similarly,
[32] presents the formal operational semantics for futures for a scheme-like language
that supports both side-effects and first class continuations.

Comments Most of the modern languages that support futures, offer some variant
of futures as presented in Multilisp. However, important difference exist; ranging
from how and when futures are created, to what granularity of concurrency they
represent? Futures in Multilisp can be very fine grained, created only for evaluation
of single expressions. In contrast, our work deals with futures that correspond to a
more coarse-grained concurrency model, and are created in response to asynchronous
method invocations. As opposed to Multilisp, we view futures as both transparent
and implicit. The underlying framework is responsible for transparently fetching
the value of the future, and replacing the future reference with the actual value.
Finally, all Multilisp tasks live in the same shared memory space and can use shared
data structures for communication; while our communication model is based on

2.3. Distributed Concurrent Programming with Futures 17

a asynchronous request-reply paradigm, with no shared memory. Absence of any
shared memory leads naturally to a coarse-grained concurrency model that is centred
on method invocations.

2.3.2 Futures in ABCL/1 and ABCL/f

ABCL/1 [4] is an object-based language for parallel computing. The computation
model of ABCL/1 is inspired by the actor model [2, 33]. Objects in ABCL/1 are
autonomous entities, having their own processing power (execution thread) and local
persistence memory representing object state. The objects communicate with each
other via messages-exchanges. An object in ABCL/1 can be in one of the following
modes: dormant, active or waiting. Upon creation, objects are initially dormant.
They become active on receiving messages, as defined by the description in the
deployment script. Each object has an associated script, which defines the messages
it can accept, and what actions to take upon receiving them. Once an active object
has completed the actions it needs to execute in response to the accepted message,
it becomes dormant again–until the arrival of next message. While active, an object
may need to wait for the arrival of a specific message for synchronisation. In this
case, the active object may go into the waiting mode, until it receives the required
message. All the processing by an object takes place while in active mode. An
active object may transmit a message to any other known active object, regardless
of the mode of the target object.

To facilitate the communication between objects, each object has two message
queues associated with it. One is the ordinary mode message queue, while the
second is for the express mode message queue. Express mode message queue is used
for messages that require priority handling. ABCL/1 also supports a future type
message. This roughly corresponds to future construct of [3]. It should however
be noted that the future construct of Multilisp [3] is more fine-grained than the
implementation in ABCL/1 (message level). When a future type message is sent, a
private future object is created at the sender side which corresponds to the not-yet
received result. The sender can then continue its execution until it actually requires
the future result. Language constructs are provided to check whether result of a
future is available or not. If no result is available, the sender has to go into waiting
mode, until the message with the result arrives.

ABCL/f [20] is a further development from ABCL/1. However, unlike ABCL/1,
ABCL/f allows for usual function/procedure invocations and method calls as well.
Additionally, ABCL/f is a typed language in contrast to the untyped ABCL/1.
The basic syntax of ABCL/f is derived from Lisp. Concurrent objects in ABCL/f
communicate via asynchronous method invocations. To accommodate this style of
communication, ABCL/f provides a object-based variant of the future construct,
as proposed by Multilisp [3]. An object can send a message or make a call to a
target at any time, regardless of mode/state of the target. On the receiver side,
a concurrent object uses a queue to store the calls/messages and treats them one
by one. ABCL/f supports three types of invocations, Past, Now and Future. Past

18 Chapter 2. Related Works

type invocation is purely asynchronous without any result or callback involved,
and the invoker immediately continues its execution. For an invocation of type,
Now, the invoker send the message (makes the call) and waits for a result to arrive
before continuing its execution. Future type invocation, creates a placeholder object
for the result on which the invoker waits for the result when needed. After the
placeholder object has been created, invoker can continue its execution. When the
invoker requires the result, it can perform a touch operation on the placeholder.
Future object in ABCL/f are treated as a first class object. Touch is a blocking
operation that fetches the results for the future object being touched. If the result
is not available, the process calling touch operation is blocked. When the value
arrives, the invoker is unblocked and can receive the value. Optionally, the peek
operation may be used to check if the future value has already arrived or not.
Each target that receives a future type invocation, implicitly receives the future
object. It uses this object to send back the computed value. In addition to this
implicit return, ABCL/f also allows for explicitly returning the future value through
a explicit (reply value {:to future }) notation. In case of multiple replies, all
replies after the first one are simply ignored. Consequently, the futures in ABCL/f
are not strictly tied to a concurrent execution and any process with access to future
can produce the value of a given future, using the explicit reply construct.

Comments ABCL/f is a descendant of the ABCL/1 language and is based on the
notion of concurrent object that communicate via asynchronous method/function
calls. While the programming and communication model of ABCL/f has some
similarities with the model used in our work, a number of important differences
exist. Futures in ABCL/f are created explicitly, using the future keyword. Access
to the value of future is also explicit. This differs significantly from our work, which
is based on notion of futures which are both transparent and implicit. Similar to
our approach, futures in ABCL/f are created as a consequence of asynchronous
method calls; this represents a more coarse-grained granularity level than Multilisp.
However, future creation in both ABCL/1 and ABCL/f is explicit, whereas we rely
on implicit future creation. Access to unresolved futures is a blocking operation
in both our work and in ABCL/f, however the implementation differs significantly.
ABCL/f futures are resolved through explicit touch operations. A similar future
update semantics is supported by our work, however, we are not restricted to this
model. We also support other eager approaches which allow future values to be
fetched as soon as the concurrent asynchronous execution is completed. Therefore,
we provide much greater flexibility in the mechanisms used for getting the result
values. Finally, ABCL/f supports explicit replies to futures, any process can produce
the value of a known future. This is sharply in contrast to our work where each future
is associated with strictly one unique process that evaluates its value. Decoupling
a future from its value-producer may lead to a situation where multiple values are
produced by different processes for the same future. Such a situation is not possible
in our case, where only one unique asynchronous method call may produce the result

2.3. Distributed Concurrent Programming with Futures 19

for a given future.

2.3.3 Futures in Alice ML and λ(fut)

Alice ML [21, 34] is a typed functional programming language based on Standard ML
[35] and Oz [36]. Alice ML extends the standard ML language to support concurrent
and distributed programming in a modular manner. The language provides a rich set
of features including concurrency, modularity, support for components and high-level
support for distribution. The concurrency model of Alice ML is based on futures
[3] and Promises [37]. Alice relies on futures to provide a light-weight concurrency
model. Futures are created explicitly, and can be of either concurrent or lazy variety.
A concurrent future is created using the language construct spawn, resulting in a
future whose value is calculated in a concurrent thread. Presence of lazy futures
provide support lazy evaluation. A future created using lazy allows the programmer
to defer the concurrent evaluation until it is actually needed by some process, i.e.,
computation begins only when the value of the future is requested. An Alice program
may utilise both eager and lazy evaluations inside the same program. Futures in
Alice are first class entities and can be passed around as values. Similar to other
frameworks/languages like Multilisp, ABCL/f, etc., access to a future, which is yet
to be computed results in the calling thread/process being blocked, until the future
value has been computed. While the future creation is explicit through the use of
spawn or lazy, they are eliminated transparently once the results become available.
Once the value of a future is available, it is sent to where it is required. In addition
to this implicit synchronisation on future access, the synchronisation can also be
done explicitly by using the await construct.

Alice ML also supports Promise to provide explicit and more fine-grained control
over creation and resolution of futures. A Promise is an explicit handle to the future,
and provides a decoupling between future creation and resolution. Each promise has
an associated future, which can be accessed by programmer through the promise.
A Promised future is not replaced automatically but has to be resolved explicitly
through a fulfill function. However, fulfilling a promise does not mean that its
associated future is also determined. A promise may be full-filled by any thread with
any future, unlike simple futures which may only be computed by their associated
asynchronous thread. Finally, a promise may be full-filled only once.

Formal semantics A formal semantics for Alice ML is presented in [5] in the form
of a lambda calculus with support for futures λ(fut). λ(fut) provides concurrent
futures, and handled futures. Concurrent futures correspond to the futures in Alice
ML, except they permit recursive use of future in the evaluating expression. handled
futures, are similar to the promise construct of Alice ML. Handled futures provide
a once-only write permission for the future value with a given handle. The future
values may be computed in eager or lazy manner. However, the computed values
are fetched on need. The authors present a static type system for λ(fut) and
identify a confluent fragment of λ(fut) which they prove to be uniformly confluent.

20 Chapter 2. Related Works

A liner type system (type system for single-reference objects; useful for immutable
datatypes like futures) for λ(fut) is presented. Authors show that the system is
rich enough to type definitions of various concurrency constructs used in Alice ML,
with the aim of showing that they cannot be corrupted in a well typed context.

Comments Alice ML and its formalisation λ(fut) uses a concurrency model
where all synchronisations are data-flow synchronisations, and are based on futures.
This is somewhat similar to our currency model, except our concurrency model is
more coarse-grained. As opposed to Alice, we only allow execution of asynchronous
method calls in parallel. Also, we view futures as transparent and implicit. Unlike
our model, Alice requires the creation of futures to be explicit. Access to future is
similar to our model, and future values are fetched implicitly. Access to an unre-
solved future is similarly blocking. Alice ML also provides the promise construct,
providing more fine-grained control over future creation and resolution. Each pro-
cess has an associated future. However, unlike simple futures, a promise may be
full-filled by any thread, with any future. This creates the possibility of leaving the
future associated with that promise undetermined. In our work, we use futures that
are associated with only one unique asynchronous method call. Our futures can
only be determined once, i-e., there is only one value corresponding to a future and
only one unique concurrent execution may produce that value.

λ(fut) provides a type system for type definitions of concurrency constructs.
The future values are computed in either eager or lazy manner, but the results are
fetched in a lazy manner, i.e, futures are resolved only when their value is needed. In
contrast, our work supports different future update strategies, allowing the results to
be fetched in either lazy or eager manner. We focus on providing semantics of future
update mechanisms, and on having first proofs on correctness of these mechanisms
without providing a type-system. λ(fut) on the other hand does not deal with the
exact semantics of future update mechanisms.

2.4 Distributed Concurrent Programming with Futures
and Objects

Object-oriented programming is now a well established part of distributed and con-
current programming landscape. In this section we present the more popular object-
oriented approaches which support concurrency through futures.

2.4.1 Future in Java-verse

Java [38] is a popular object oriented programming language, developed at Sun
Micro-systems (now Oracle), that is widely used in distributed systems. Support
for futures was introduced in Java as part of java.util.concurrent package, with
the goal of facilitating light-weight concurrent programming in java. Futures in java
are explicit; i.e., the programmer has to use explicit programming construct to create

2.4. Distributed Concurrent Programming with Futures and Objects21

and manipulate futures, similar to Multilisp, ABCL/f, and Promise in Alice ML. The
key class providing support for futures in Java is the FutureTask class, containing
a number of useful methods for manipulating futures. For example, it provides
methods like isDone() and get(), corresponding to peek and touch operations
as specified in [20, 29]. Access to future value is also explicit. Programmers can
attempt to acquire the future value using a get() operation, which blocks until the
value becomes available. Another interesting characteristic of Java’s implementation
of future is the support for cancelling the concurrent computation. The cancel()
method of the FutureTask class allows the programmer to attempt cancelling the
concurrent execution. Only computations that have not been completed may be
cancelled. The method isCancelled() provides a feedback mechanisms to the
programmer to check if the task was cancelled successfully before completion or
not.

Other works Futures were first devised for improving concurrency in functional
programming languages. In the context of a functional programming language, it
is expected that a program with futures will provide the same results as a program
that is executed sequentially. This is made possible by the lack of side-effects and
mutation. Java is an imperative language where frequent access to shared memory
containers is made and results are obtained and updated via mutation of container
objects, like arrays and heaps. The current java implementation does not prevent
problems arising from access to shared memory containers. The programmers have
to ensure that concurrent access due to futures, does not violate correctness prop-
erties.

In [39], the authors present a Safe Future API, which ensures that injection of
futures in an existing serial program does not violate any existing data dependencies.
This is achieve through a compiler and run-time infrastructure, that relies on Object
versioning and task revocation techniques to identify safety violations and remedy
program execution when such violations are detected. Experimental results are
provided to evaluate the performance overhead of safe futures.

In [40], introduces a framework for simplifying concurrent programming in java
through the use of transparent proxy objects. Static analysis is used to allow the
programmer to use future without making invasive changes to the program for satis-
fying type restrictions. The flow of futures in the program is tracked, and claims are
inserted in the byte code where the actual value is required rather than the future
variable itself. A claim is essentially a touch/get operation, which may cause the
current thread to be blocked until the value is available. The analysis is based on
qualifier inference, and is formalised to prove its soundness. Experimental evalua-
tions are carried out to test the framework.

Directive-based lazy future [41] aims to further simplify the usage of futures in
java. The framework makes use of Java’s annotation mechanism to label the local
variables that receives results from function calls that may be executed in parallel.
The annotation mechanism makes it easier for the programmer to use futures for
exploiting parallelism in previously sequential programs at the cost of little extra

22 Chapter 2. Related Works

overhead, and is much closer to how futures are used in functional programming
languages. However, unlike side-effect free functional languages, programmer still
needs to ensure that any race conditions between concurrently executing threads
is handled correctly. An extension to the framework for handling exceptions and
failures is presented in [42].

Comments Java is a widely used programming language; a number of works exist
on futures in java. However, all of the works presented above deal with explicit
futures. Programmers explicitly specify which tasks/functions should be executed
concurrently. Similarly, futures are accessed and resolved explicitly; this differs
from futures in our work which are implicit and transparent. Futures in our work
are created in response to asynchronous method invocations, and have the same
type as the type of result they represent. Our approach treats future of a result of
type X the same way as a variable of type X. This means no further changes are
needed to the methods which might receive futures as arguments or return futures.
On the other hand, as future is a explicit type in java, method signatures have to be
changed to enable them to receive futures as arguments or return values. Finally,
while approaches like Safe future API attempt to resolves problems introduced due
to shared memory, this still involves overheads in java. We deal with a message-
passing only communication paradigm with no shared memory, thus removing the
problems arising from shared memory.

2.4.2 Futures in Creol

Creol [24, 6] is a high level object-oriented programming language, addressing con-
currency and distributed systems. The language is based on the notions of concur-
rent objects typed by behavioural interfaces, that communicate by asynchronous
method calls and processor release-points. The asynchronous method calls are sup-
ported through futures. Active objects in Creol may be multi-threaded, although
only one thread may be active at any given time. The various intra-object threads
cooperate explicitly using processor release points, which essentially are await state-
ments. This allows the currently executing thread to assume that no other thread
is accessing the object’s attributes, leading to a programming and reasoning model
resembling monitors [43]. Futures in Creol are explicit. Specific language constructs
are provided for creating futures. Additionally, futures are non-transparent, i.e.,
futures have a separate type than the value they represent. In order to manipulate
futures, explicit operations like touch are used. Creol uses the get operation to
allow all processes interested in the future value, to register as observers. Once the
value of a future is available, all observers are notified. The future-value retrieval
mechanism of Creol is somewhat similar in concept to ABCL/f and Java futures.

Creol also offers components; the paper [44] presents a framework for component
description and testing. A simple specification language over communication labels
is used to enable the expression of the behaviour of a component as a set of traces at
the interfaces. Creol’s component model does not support hierarchical structure of

2.4. Distributed Concurrent Programming with Futures and Objects23

components. In [45], the authors present a formalisation of the interface behaviour of
Creol components. Creol’s operational semantics use rewriting logic based system
Maude [46] as a logical support tool. The operational semantics are expressed
in Maude by reduction rules in a structural operational semantics style, enabling
testing of model specifications.

Formal semantics A number of works exist on formalising various aspects of
Creol. In [6], a nominal type system (equivalence of types is determined on name
of types) is introduced for Creol programs. The authors show that execution in ob-
jects typed by behavioural interfaces and communicating by asynchronous method
calls is type safe. Additionally, the paper also presents an executable semantics
for Creol. A formal semantics for an object-oriented language based on Creol is
presented in [47], comprising notions like active objects, asynchronous communica-
tions and futures. The paper extends the core language and adds support for first
class futures. The authors provides operational semantics for the core Creol lan-
guage, with first class futures, using an extension of Featherweight Java [48]. The
concurrency model allows multiple concurrent threads to exist inside each active
object, although the Creol constraint of having only one thread active at a time is
maintained. Asynchronous method calls are used to trigger concurrency, each call
results in a method being executed by a concurrent thread in the target object.
Each object holding a shared future, may completely block for the future, or it may
use the await construct to release control only for the thread awaiting the value
for the future. In Addition to the operational semantics, a formal proof system
for proving properties relating to concurrency is also presented. The proof system
relies on a two-tier assertion model. A local assertion language is used to describe
the local state of the object in monitor invariants (monitoring the release points)
for intra-object synchronisations. While a global assertion language describes the
invariants for inter-object synchronisation.

Comments Creol is similar to our work in the sense that both comprise simi-
lar programming constructs and notions; such as, concurrent active objects, asyn-
chronous method calls and futures. However, there a number differences between
our work and Creol. In contrast to our work, futures are created explicitly in Creol.
Also, future manipulation and access is also explicit and controlled by programmer.
On the other hand, we deal with futures that are both transparent and implicit.
Creol has been extended to support first class future, similar to futures in our work.
However, the works on Creol do not explicitly specify the different update mecha-
nism for first class futures. We focus on future updates and provide specification and
implementation of three main future update strategies. This work can potentially
be applied to Creol as well. Finally, our formalisation supports concurrent execu-
tion of multiple requests (asynchronous method invocations) as opposed to ‘only
one thread active at a time’ model of Creol. However, our real implementation is in
ProActive [7] which only allows one execution thread per object; other threads may

24 Chapter 2. Related Works

be created to deal with tasks such as result communication, etc.

2.4.3 Futures in ASP, ProActive and ASPfun

The Asynchronous Sequential Processes (ASP) [49, 7] is an imperative distributed
calculus, derived from ς−calculus [50], and models an object-oriented programming
language based on the notions of active objects that communicate via asynchronous
method calls with transparent first class futures. However, each active object itself is
sequential and contains only one execution thread. In ASP, an object can either be
an active object or a passive (simple java) object. Each activity wraps a single active
object, which may contain other passive objects. Activities may communicate via
asynchronous method calls (requests). Any request sent to an activity is in fact sent
to its active object. The activity serves each of the received requests one after the
other. All received requests are stored in a pending request queue. Communication
between activities is solely based on asynchronous method calls and there is no
shared memory between active objects. Any passive object passed as arguments of
method calls or return values are passed using copy-by-value semantics. In contrast
to Creol, activities in ASP are mono-threaded, i.e., there is only one request being
served at a given time. ProActive distributed programming library [7, 15] may be
considered as one possible implementation of ASP-calculus.

One of the main features that distinguishes ASP and ProActive from other works
is the support for transparent implicit futures. Futures in ASP and ProActive
are completely transparent and there are no explicit instructions to manipulate
futures. Futures are created as a result for asynchronous method invocations, i.e,
an invocation on an active object. From a programmer point of view, the remote
invocations are expressed in the same manner as local invocations, and there is no
change required in the code. Familiar ‘.’ notation is used for both local and remote
invocations. Additionally, a future for a type X may be used in all expressions
and locations where a value of type X may appear. Again from a programmer
point of view, there is no distinction between a future and a value. There are no
specific operations for fetching the future value. Futures are first class; they may be
communicated between active objects. Access to an unresolved future is a blocking
operation; the calling execution thread is blocked until the result for that future
is available. This is referred to as a wait-by-necessity, and is an implicit data-flow
synchronisation on the future. Wait-by-necessity occurs when an active object tries
to access a future for which there is no result available yet. At some stage the
execution of the request – corresponding to that future – terminates and a result is
produced. The produced result is sent back to the caller (which received the future)
where the result transparently replaces all occurrences of the future object. Unlike
futures in java, future in ASP and ProActive are resolved implicitly, without the
need of a touch or get operation. ASP allows the possibility of having partial results
and replies; the result value may itself contain other futures.

In [7] a number of possible mechanisms for retrieving the value of a future are

2.4. Distributed Concurrent Programming with Futures and Objects25

discussed. ProActive implements2 one such approach while an initial implementa-
tion of other approaches appear in [16]. Our work may be considered an extension of
[7, 16] through a language independent approach that makes it applicable to various
existing frameworks with futures. We improve upon the initial implementation and
provide some experimental results on performance of future update strategies. The
details on futures in ASP and ProActive appear in Chapter 4.

Formal semantics ProActive may be considered as a possible implementation
of the formal model presented in ASP-calculus. The model defines a small step
semantic for ASP using parallel reduction rules, in addition to well formedness
rules. To manage the complexity of reasoning about distributed and concurrent
systems, the presented language is restricted to a subset of features to insure that
the reductions are confluent and deterministic.

ASPfun [51, 52] is a complimentary calculus to ASP, and presents a distributed
calculus which uses some of the same notions as ASP, for example, activities which
are units of concurrency and distribution, communication via asynchronous method
invocations, and first class futures. However, unlike ASP, ASPfun is typed and
presents a functional version of ASP, i.e, in ASPfun there are no side-effects. Method
calls operate on a copy of the objects passed to them. Finally, ASPfun model and
its properties are formalised and proved mechanically using Isabelle/HOL theorem
prover [12], whereas properties on ASP were mostly proved by hand.

Comments ASP and ProActive provide an easy to use programming paradigm
for concurrent and distributed programming. It can be stated that our work is an
extension of ASP and ProActive and aims to extend the future update mechanisms
proposed there. For example, ASP discusses the possible update strategies but does
not provide a formalisation of how they work, nor does it study the properties of
future update mechanisms. On the other hand, ProActive only provides one future
update strategy. ASPfun is closely related to our work on formalisation of future
update mechanism. It formalises functional language featuring active objects, asyn-
chronous communication, first class futures and a type system. However, although
ASPfun supports first class futures, it does not incorporate formalisation of various
future update mechanisms, which is one of the goals of our work.

2.4.4 Futures in AmbientTalk

In [8, 22, 53], authors introduce a new language AmbientTalk aimed at loosely
coupled small devices communicating over an adhoc network. The language aims
to address four key phenomena that are inherent to mobile adhoc networks. These
are connection volatility: the connection is not stable; Ambient resource: remote
resource may become dynamically unavailable, possibly due to movement of the
user; autonomy: every device acts as an autonomous unit, there may not be a

2See Chapter 4 for details on future update in ProActive, and how our work provides additional
mechanisms for future updates. This work in published in [10, 9].

26 Chapter 2. Related Works

server or client ; and concurrency: in order to maximise concurrency, waiting for
a result should be avoided. To overcome these limitations, AmbientTalk adopts
a concurrent programming model based on [4]; active objects that communicate
by asynchronous message passing. Upon reception, the messages are scheduled in
the receiver’s message queue and are treated one by one. Similar to ASP and
ProActive, there is only a single thread of execution per active object. Also, the
model differentiates between active and passive (normal) objects. Each active object
may contain other passive objects. Passive objects can only be accessed by the
wrapping active object to avoid shared objects between active objects, and can be
passed between active objects using a deep-copy semantics. The language allows
for both synchronous –using ‘.’ notation– as well as asynchronous invocation –
using ‘o←m()’– on a passive object. Asynchronous invocation on a passive object
is enqueued in the encapsulating active object. For active objects, all invocations
are asynchronous.

The communication model adopted by AmbientTalk is based on E [54], and relies
on asynchronous communications. All communications between active objects are
asynchronous. An active object may continue to send messages to another active
object even if the target is unavailable at the time. The messages are queued and are
delivered when the object is again reachable. In contrast to a single message-queue
of ABCL/1 and ASP, active objects in AmbientTalk compose up to eight different
message queues, referred to as mailboxes. These mailboxes are used to track various
types of messages; for example, outgoing messages(separate mailboxes for messages
that are received /not received), incoming messages (mailboxes for received and
processed /not yet processed messages), etc. Similarly, there are separate mailboxes
for allowing collaboration with other active objects (broadcast messages, etc).

An interesting feature of AmbientTalk which distinguishes it from other works
on futures like Multilisp, ASP, Creol, etc., is the way futures are accessed. The
future access is completely asynchronous, and allows to transparently forward any
messages sent to a future, to its resolved value. The messages sent to a future are
forwarded once the future is resolved using a when (afuture,closure) construct.
Closures are blocks of code that are applied to a future once it is resolved.

Comments AmbientTalk uses a concurrency and communication model that is
somewhat similar to ASP, ProActive and Creol. However, unlike these framework-
s/languages AmbientTalk is specifically aimed at mobile devices. The main differen-
tiating feature of AmbientTalk from our work is the way futures are accessed. Unlike
our work, future access in AmbientTalk is non-blocking. This lack of synchronisation
in theory, ensures that there are no deadlocks. However, there are no formal seman-
tics available for AmbientTalk and thus this property cannot be formally proved.
AmbientTalk also differentiates between asynchronous and synchronous invocation;
each type of communication uses different notation (only asynchronous messages
can be sent to active objects). In contrast, ASP and ProActive make no distinc-
tion (syntactically) between the two types of calls. All method invocations use the

2.5. Component Models and Frameworks 27

same ‘.’ notation. ProActive ensures causal ordering of request messages, which
is not guaranteed in AmbientTalk. Finally, the asynchronous communications in
ASP and ProActive are implemented with rendezvous style; the sender is blocked
until the request/message is received at the target. No such requirements exist for
asynchronous communications in AmbientTalk.

2.5 Component Models and Frameworks

Component modelling is a vast domain of research and a number of component
models have been proposed over the years. A significant amount of semi-formal and
formal works exist in literature, supporting the various component models. Due
to the vastness of the domain, an exhaustive treatment is neither possible nor the
intent of this chapter. We only cover the more well-known component models in the
research and industrial domains, with the intent of introducing them in sufficient
detail to be able to validate our choice of (a subset of) Grid Component Model
(GCM) for our formalisation.

Why components and component models? Components provide an easy to
use programming paradigm allowing for better reusability of application code. Com-
ponent models focus on program structure and improve reusability of programs. In
component models, application dependencies are clearly identified by defining in-
terfaces (or ports) and connecting them together. Component have strictly defined
structure (COM, DCOM are an exception). This strict adherence to structure make
components ideally suited for structural reasoning. This structure can also be used
at runtime (not supported in all component models) to discover services or modify
component structure, which allows for dynamic adaptation; these dynamic aspects
are even more important in a distributed setting. Since a complete system restart is
often too costly, a reconfiguration at runtime is mandatory. Dynamic replacement of
a component is a sensitive operation. Reconfiguration procedures often entail state
transfer, and require conditions on the communication status. A suitable compo-
nent model needs a detailed representation of component organisation together with
precise communication flows to enable reasoning about reconfiguration.

In the following, we give an overview of some of the more common component
models used for developing software applications for distributed computing. We
start with models like COM, DCOM and Enterprise Java Beans which have been
developed in industry and enjoy widespread usage. We discuss why these models
are not particularly suited for large scale distributed systems, and in particular for
Grid computing. Moving from those purely industrial models, we review CORBA
Component Model (CCM), Common Component Architecture (CCA), and Service
Component Architecture (SCA). Oriented towards industry, significant amount of
research work exists on these models. We contrast those models with our formalised
component model. SOFA and SOFA 2 component models provide a good example of
some of the academic component models. We discuss the similarities and differences

28 Chapter 2. Related Works

from our approach. Finally, we present Fractal Component Model and its grid
extension, the Grid Component Model(GCM). Fractal and GCM have inspired lot
of interest in research community, in particular the grid computing community. The
two models share a lot of similarities; we only cover the points which are significant
to our work. We discuss why in our opinion, GCM is a good candidate for our
formalisation.

2.5.1 Common Object Model (COM) and DCOM

The Common Object Model (COM) [55] was developed by Microsoft in the 90’s and
still enjoys wide usage today. COM is a binary standard and as a result is not tied
to any particular language. It specifies how components interact at a binary level
by specifying a number of key services. COM does not attempt to define what a
component or an Object is. Rather a component is defined in terms of three key
concepts. A component is uniquely identified and can implement multiple inter-
faces. Each implemented interface is uniquely identified and is immutable, i.e, the
component interface may not change. Components provide a discovery mechanism
through which the various interfaces (services) may be discovered. As COM is a
binary standard, there is no specification on how the component should be struc-
tured internally. The aim of a well-defined COM component is to allow the reuse
of the component without any knowledge of the internal structure, which empha-
sises the importance of clear and precise definition of component interfaces. The
Distributed Component Object Model (DCOM) [56], is the distributed extension
of COM. DCOM adds support for Remote Procedure calls to COM and solves the
additional issues that arise due to distribution. These include marshaling/unmar-
shaling of method arguments and return values, distributed garbage collection, and
distributed discovery service.

Comments Although COM and DCOM both enjoy wide usage on Microsoft win-
dows platform, neither are particularly suited for large scale distributed systems.
Both are aimed primarily at desktop application development and do not address
the needs of high performance distributed computing; primarily because they lack
support for efficient parallel communication between components. COM does not
support popular object oriented constructs such as inheritance and polymorphism.
Although, support for inheritance may be added through aggregation, it is inefficient
and cumbersome to business logic.

2.5.2 Enterprise Java Beans

The Enterprise Java Beans (EJB) [57] is a server-side component architecture for
java platform, developed by (former) Sun Micro-systems3. The EJB specification
aims to provide a standard way to implement the server-side code; the program-
mer focuses on implementing the business logic or the functional code, while non-

3Sun Micro-systems has since then been acquired by Oracle.

2.5. Component Models and Frameworks 29

functional services like persistence, fault-tolerance, transaction support, life cycle
management, security, etc., are provided by the application container. The EJB
model makes a distinction between two types of server-side beans (components):
The session beans which could be stateless, stateful, or singleton; and the message
driven beans, which provide support for event-based programming model. All the
server side business code is implemented using these two types of beans. A third
type of component entity beans was used to represent component state stored in per-
sistence storage; entity beans have now been removed from the EJB specification
(3.0). The Enterprise Java Beans target large scale transaction-intensive enterprise
scenarios, with a special emphasis on scalability.

Comments Although, the EJB architecture is designed with distribution in mind,
it is more focused on enterprise applications, with components deployed on server-
side application containers. The EJB model only allows components/beans to be
implemented in java, and no other language is supported. In addition, the model
lacks support for interoperability with the various other existing component models
for distributed systems. The model is also not suitable for large scale distributed
systems, in particular when the available resources belong to different administra-
tive domains. EJBs also does not support important design features like com-
ponent composition (component hierarchies) or dynamic features such as runtime
configuration-reconfiguration.

2.5.3 CORBA Component Model (CCM) and GridCCM

The CORBA Component Model or CCM [58] is a standard defined by Object
Management Group (OMG) [59]. The CCM specification provides business com-
ponents that are distributed, heterogeneous, and are programming language and
platform (operating system) independent. The component specification clearly sep-
arates functional and non-functional aspects. CCM supports a complete cycle of
component definition, production, deployment, and execution through four mod-
els. These include, abstract, programming, deployment and execution models. The
CCM abstract model allows the developers to define component interfaces and prop-
erties of components. The component communication takes place through various
types of ports. Two synchronous ports, facet and receptacle define what services the
component provides (facet) and what services it requires (receptacle). CCM compo-
nents may also generate events via event source port, while they may receive event
notifications on event sink ports. The CCM programming model part defines the
Component Implementation Definition Language (CIDL) and is used for describing
the component structure, system requirements, implementation classes, component
state, etc. The CCM deployment model focuses on how components are deployed;
components are deployed in the form of software archives containing the component
code and a Open Software Description Language (OSDL) descriptor. Lastly, the
CCM execution model focuses on the containers as run-time environments for CCM
components. Containers provide a variety of non-functional services like persistence,

30 Chapter 2. Related Works

transaction, security, etc.
The CCM model is quite detailed and provides a solution to dealing with vari-

ous problems encountered in large scale distributed systems, particularly grids. It
supports language heterogeneity, dynamic connection and disconnection of compo-
nents, component versioning, etc. The model does not support parallel entities
encapsulated into components. Similarly, it lacks support for runtime features such
as component reconfiguration.

GridCCM In [60, 61], authors introduce an extension of the CORBA Compo-
nent Model, aimed at overcoming some of the perceived shortcomings of CCM. The
extended model, named GridCCM, introduces the concept of a parallel component,
which encapsulates sequential components. A GridCCM component can offer par-
allel execution of all or some of the services it offers. The model supports SPMD
(Single Program Multiple Data) style parallel codes. In SPMD code, each process
executes the same program but on different data set. The presented framework
aims to achieve this with minimal modification to the parallel codes. The definition
of the parallel component is provided in an XML file, which describes the parallel
methods of the component and how data arguments are distributed among these
methods. To support data distribution, a new layer is introduced into CCM model
to transparently manage data parallelism. This layer is automatically generated by
the compiler using the XML descriptor file defining the parallelism and the IDL (In-
terface Description Language) descriptor, defining the component. GridCCM makes
use of PadicoTM [62] communication layer to support multi-point communications.

Comments The CORBA Component Model CCM and particularly its extension
for parallel components GridCCM is an interesting model with respect to large scale
distributed systems and computational grids. It supports the heterogeneous nature
of grid resources and provides specifications of models concerning component defi-
nition, deployment and execution. However, the models does not support reflective
features, which are required for dynamic component reconfiguration.

2.5.4 Common Component Architecture (CCA)

The Common Component Architecture (CCA) [63, 64] is a component model driven
by CCA forum [65], aimed specifically at scientific components, targeting paral-
lel and distributed infrastructure. The key focus areas for the model are high-
performance and federation of resources. CCA is a set of specifications that describe
various aspects of the model; for example a scientific interface definition language
(SIDL), and the ports that define the communication model. The idea of SIDL is
drawn from the CCMmodel. CCAmodel does not impose a runtime environment for
execution of components, making CCA model portable across a wide range of plat-
forms. The specifications consist of a general model which specifies the component,
the framework which executes these components, and ports that form the access

2.5. Component Models and Frameworks 31

points for components. Components are in fact software modules, with strictly de-
fined client and server interfaces. CCA allows the runtime assembly of components
using scripts that interact with the CCA framework, for example Gscript presented
in [66]. Ports can be added, removed or connected to other components at run-
time. A number of CCA implementations, tailored to specific needs are available.
Once such implementation CCA Toolkit (CCAT) is presented in [67]. The toolkit
is designed to operate over a number of grid middleware systems, including Globus
[68]. This is achieved by exposing various grid services like authentication, discov-
ery, creation, etc., themselves as CCA components. An XML extension to IDL is
presented to show how the concept of an Interface Description Language (IDL) may
be extended for describing software components. It permits component description
and deployment using an XML descriptor.

Comments The intent behind models like CCA is the efficient building, con-
necting and running of components. However, CCA does not support component
hierarchies ,nor does it provide support for reflective features. The CCA components
cannot be statically typed. Finally, no formal operational semantics are available
for CCA components, thus making it impossible to reason on the component model
or its implementations.

2.5.5 Service Component Architecture (SCA) and FraSCAti

The Service Component Architecture (SCA) [69] is adapted to Service Oriented Ar-
chitectures (SOA) [70] . It enables modelling service composition and creation of
service components. SOA provides a way for exposing coarse-grained and loosely
coupled services which can be remotely accessed. However, this approach does not
address how these services should be implemented. SCA model defines a com-
ponent model for SOA applications. The main entities in SCA are components
that communicate via interfaces. An interface may be provide-interface (server) or
require-interface (client).

SCA model supports component composition; a component may be service com-
ponent (primitive) – providing some functionality, or a composite – assembled from
other components. The model supports implementation of primitive components
using languages such as Java, C++, Bpel and spring. The specification also allows
mixing of components implemented in different languages in the same application.
Composite components in SCA are configured and assembled using a XML-based
assembly language, referred as Architecture description language (ADL). In addi-
tion to services, references and components, the other main SCA abstractions are
wires and properties. Wires are essentially connections between services (service
interfaces) and references (client interfaces). In contrast to Fractal [71], SCA is
a concrete specification with a precisely defined syntax of its ADL, semantics etc.
The SCA specifications are centred around the task of describing the assembly and
configuration of components which compose the application. This assembly is pro-
vided as input to the deployment service which then creates the components and

32 Chapter 2. Related Works

instantiates the application.

FraSCAti SCA specification does not address the issue of runtime management
of the application, for example, runtime monitoring of applications and reconfigura-
tion. These issues are addressed in the FraSCAti Platform [72, 73]. The FraSCAti
platform supports an extended SCA component model, where components can be
equipped with reflective capabilities for their introspection, monitoring, control and
dynamic configuration. This is achieved by using interception techniques for ex-
tending the SCA components with non-functional services, which are themselves
implemented as SCA components.

A number of approaches exist on applying semi-formal and formal methods
to service oriented architectures and in particular to SCA. One such example is
the European Union SENSORIA project [74], which proposes Architectural Design
Rewriting to formalise development and reconfiguration of software architectures
using term rewriting [75].

Comments The SCA model attempts to merge distributed component based pro-
gramming paradigm with Service oriented paradigm. SCA model specifies a pro-
gramming model which is independent of any particular programming language or
communication protocol used. Additionally, the model supports hierarchical com-
position of components. However, there is no support for reflective features such as
introspection, monitoring or dynamic reconfiguration in SCA model. These short-
comings are somewhat addressed in the FraSCAti model where SCA is extended
to support these missing features. The FraSCAti model is built upon Fractal com-
ponent model making it close to GCM. Due to the similarities between the two
component models, our formalisation can be considered as a good approximation of
formalisation of FraSCAti implementation as well.

2.5.6 SOFtware Appliances Component Model (SOFA)

The SOFtware Appliances component model [76] is aimed specifically at addressing
the problem of dynamic component update at runtime, by providing a component
model with strong support for versioning. This is achieved by separating the com-
ponent interface from the component architecture. SOFA architecture supports
component composition and component hierarchies.

SOFA 2 [77, 78] is a further enhancement of SOFA, and extends the base model
to support dynamic reconfiguration of hierarchical components, better modelling of
the control part of the component, and support for different communication styles.
An application may be viewed as a hierarchy of components. Therefore, a SOFA
2 component can either be a primitive component or it can be a composed com-
ponent, which essentially means that the component is composed from a number
of subcomponents. All business logic is contained in the primitive components. A
SOFA 2 component is described by its frame and its architecture. The frame defines
the component interfaces, indicating which services are provided by the component,

2.5. Component Models and Frameworks 33

and which services it requires. The component frame can then be implemented by
one or more architectures. The architecture of a composed component describes the
structure of the component by instantiating direct subcomponents and specifying
the subcomponents interconnections via interface ties. The architecture defines the
first level of nesting in a component hierarchy. A tie which connects two inter-
faces is realised via a connector. A connector [79] is the mediator of an interaction
between components, and establishes the rules that govern component interaction.
Connectors have protocol specifications defining their properties. For convenience,
the simple connectors, expressing procedure (method) calls are implicit so that they
do not have to be specified in an architecture specification. The whole application’s
hierarchy of components (all levels of nesting) is described by an application deploy-
ment descriptor. Components are bound through connectors, which are first-class
entities in SOFA 2 [77] and allow the connections to be modelled in an extended
way, for example by providing support for different communication styles. A partic-
ularity of SOFA 2 is that behaviour protocols [80] are central to the model, to the
point that typing relationships are defined by behaviour protocols.

Comments SOFA2 is a academic component model as opposed to models like
CCM and CCA which enjoy wide industrial support. The model is close to the
Fractal component model as it is aimed at the similar kinds of applications, providing
support for hierarchical components, separation between control and business part
of the components and dynamic runtime reconfiguration.

2.5.7 Fractal component model

The Fractal component model [81, 71], is a modular and extensible component model
proposed by INRIA and France Telecom, that can be used with various program-
ming languages to design, implement, deploy, and reconfigure various systems and
applications. To accommodate these aims, Fractal specification provides support
for hierarchical components, shared components for modelling shared resources, in-
trospection for monitoring runtime components, and configuration-reconfiguration
support. In contrast to component models like SCA, Fractal only provides an ab-
stract component model. This means that the Fractal specification only defines the
general concepts and different implementations can be derived from those specifi-
cations. Fractal provides an Abstract API that can serve as a road map for a real
implementation.

The main abstractions in fractal are interfaces, components and bindings. In-
terfaces in fractal model may be client or server, which corresponds to requires-
interfaces and provides-interfaces in SCA and SOFA2. As fractal is a hierarchical
component model, components may either be primitive (leaf level components) or
composites (composed of other components). Bindings are the connections between
components and correspond to connectors or wires. Fractal model requires that
all bindings must be explicitly defined. Additionally, in contrast to SCA, fractal
model further divides a component into functional and non-functional parts. The

34 Chapter 2. Related Works

functional part is the component content part; while the non-functional part is the
control-part, referred as the component membrane in Fractal model. The membrane
manages the non-functional aspects and can intercept calls on the functional inter-
faces. All interfaces however belong to the membrane. The interfaces themselves are
classified either as a functional interface or as a non-functional interface. Functional
interfaces expose the underlying services through client or server interfaces, while
the non-function interfaces are server interfaces providing aspects like binding, in-
trospection etc. Finally, external interfaces refer to a client/server interface exposed
by a component to other components. For a composite component, there are also
internal interfaces, exposed only to its subcomponents. A method call arriving at
the external interface of a composite component is passed on to the subcomponent
via internal interface of composite component. Another key aspect in which Fractal
differs from SCA is the notion of shared components that represent shared resources.
A shared component in Fractal is a component that appears as subcomponent of
various composite components. Such shared compositions are not possible in SCA.

The formal semantics for Fractal component model are given in [82]. The authors
present a formalisation of the structural aspects of Fractal specification in Alloy [83],
a formal language based on first order logic. The consistency of resulting formalised
models can be verified through the automated Alloy Analyser, to ensure safety of
component applications. The work is aimed at clarifying the ambiguities in the
informal Fractal specification.

In [84], the authors focus on verification of the behaviour of a component-based
application. They provide tools to specify the behaviour of a component-based
specification and verify that the application behaves correctly. The work aims at
proving the properties of a specific application.

Comments The Fractal specification defines only an abstract component model,
resulting in a number of different implementation like Julia [85] and Dream [86].
Julia is targeted towards non-distributed applications while Dream is a library built
using Julia specifically aimed at building message-oriented middle-ware. Part of our
work dealing with formalisation of component model is closely related to the GCM
model, which is a grid extension of Fractal component model. The formalisation
of alloy presented in [82] is oriented towards consistency checking of formalised
fractal specification. The approach uses a model-checking and counter-example
generation approach to ensure consistency. In Comparison our work is oriented
towards studying the interplay between the components and futures; we consider
asynchronous components and focus on the dynamic component behaviour. This is
crucial when specifying future management procedures.

2.5.8 Grid Component Model (GCM)

The Grid Component Model [11] was proposed by the European Network of Ex-
cellence CoreGrid as an extension to the Fractal component model, aimed specif-
ically at grid applications. It extends the Fractal component model to address

2.5. Component Models and Frameworks 35

grid-specific issues. These include, deployment, scalability, autonomic behaviour,
and asynchronous communications. GCM inherits most of the component struc-
ture from Fractal. Thus GCM supports hierarchical component structure. It also
benefits from Fractal features like separation between functional and non-functional
concerns, separation between an interface and its implementation, and extensibility.

A GCM component can either be a primitive component, encapsulating business
logic, or it can be a composite component, comprising one or more subcomponents.
Similar to Fractal, a component is divided into two parts–functional (content) part
and a non-functional (membrane) part. Access to a GCM component is through its
declared interfaces. The components have client-interfaces (requires-interface) for
emitting messages/invocations, and server-interfaces (provides-interface) for receiv-
ing message/invocations. Bindings connect a client-interface to a server-interface.
Similarly, the concept of internal and external interfaces is also inherited from Frac-
tal. An architecture description language ADL may be used to describe the archi-
tecture of a GCM component. The membrane of a GCM component also has a
component structure, as discussed in [87]. Unlike Fractal, in GCM the controllers
inside the membrane of one component may communicate with the membrane of
other components through bindings between non-functional interfaces.

GCM supports a variety of communication models, with concrete choices left to
the specific implementation. Therefore implementations may choose between any
communication model, for example synchronous, asynchronous, event-based, etc.

A number of works have focused on formalising different aspects of the GCM
component model. In [88, 89] the authors focus on the verification of the behaviour
of a component-based application. They provide tools to specify the behaviour of
a component application, and verify that this application behaves correctly. Their
model is applied to the GCM component model too but they prove properties of
specific applications whereas we formalise the component model itself.

A formalisation of GCM appears in [1, 13]4. The authors formalise a subset of
complete GCM specification. The model comprises of hierarchical components that
communicate via asynchronous method calls with futures. Components are the basic
unit of concurrency, and communicate only through asynchronous method calls;
there is no shared memory. Asynchronous communication is achieved using futures;
method invocations are enqueued at the target component, while the invoker receives
a future. Based on the above notions, authors present a a functional reduction
semantics for their component model in Isabelle/HOL which is used for deriving
mechanised proofs. The reduction semantics are used to prove the correctness of
ProActive-GCM [90], which may be considered as an implementation of this model.
More details on the presented formalism appear in Chapter 5 and Chapter 6.

Comments The Grid component Model is a hierarchical component model aimed
specifically at grid systems. The reference implementation ProActive/GCM sup-
ports a wide range of features like components as units of concurrency, asynchronous

4Work published in [13] is part of this thesis, and is presented in Chapter 6.

36 Chapter 2. Related Works

communications with futures, reflective features such as introspection and dynamic
re-configuration, etc. Consequently, we build our component model as a subset of
full GCM specification. In [13] we build a mechanised model of GCM-like com-
ponents along with runtime semantics so that we can reason on the execution of
component applications and their evolution. Additionally, in [14], we extend the
semantics presented in [1] to incorporate the formalisation of mechanisms for trans-
mitting the values of futures to the objects/components that require them. Such
a formalisation allows us to reason and prove properties of interest on these future
update mechanisms.

2.6 Summary of Related Works and Positioning

In this chapter we presented an overview of the various languages/approaches that
use futures as basic building blocks for distributed concurrent programming. We
highlighted how these approaches handle creation, access and resolution of futures.
We then proceeded to present how component based approaches have been adapted
to distributed computing, what features are offered by each component model, and
whether formal semantics are available for the component model or not. With an
understanding of the general research domain of futures and component models for
grid computing, we now use the following paragraphs to position our work relatively
to what we have already presented. We summarise the different works presented in
the preceding sections, and establish how the work presented in this thesis differs
from the work done previously, and where it stands in the big picture of concurrent
programming for distributed and grid systems.

Futures Futures are language constructs that improve concurrency in a natural
and transparent way. First introduced in Multilisp and ABCL/1, futures provide an
easy to program model for concurrent distributed applications; they provide data-
flow synchronisation points. Futures may be explicit or implicit. Frameworks that
make use of explicit constructs for creating futures include Multilisp [3], λ(fut)-
calculus [5] , Creol [24, 6] , Java concurrent API, SafeFuture API [39], and AB-
CL/f [20]. In contrast, futures are created implicitly in frameworks like ASP [7],
AmbientTalk [8, 22], ProActive [7, 15], and ASPfun [51, 52]. In those object-oriented
languages, implicit creation corresponds to an asynchronous method invocation. A
key benefit of the implicit creation is that no distinction is made between syn-
chronous and asynchronous operations in the program. Additionally, the futures
can be accessed explicitly or implicitly. In case of explicit access, operations like
claim, get, and touch are used to access the futures. For implicit access, operations
that need the real value of an object, referred to as blocking operations, automati-
cally trigger synchronisation with the future value transmission mechanism.

Alice ML [34, 21] and its formalisation λ(fut) [5] provide futures that are created
explicitly, but are resolved implicitly. Access to an unresolved future is a blocking
operation until the value becomes available. In addition to futures, Alice ML and

2.6. Summary of Related Works and Positioning 37

λ(fut) also provide a Promise [37] construct (handled futures in λ(fut)). A promise
is an explicit handle for a future, and must be explicitly full-filled. Promise differs
from regular future in the sense that a promise may be full-filled by any thread, with
any future value. This differs from some other models where future value can only
be computed strictly once, and only by the concurrent thread/process associated
with the future.

Creol allows explicit control over data-flow synchronisations. In [47] Creol has
been extended to support first class futures, although the future access is explicit.
In [47], the authors provide the semantics of an object-oriented language based on
Creol [6]; it features active objects, asynchronous method calls, and futures. They
provide a proof system for proving properties relating to concurrency. The model is
multi-threaded, with only one thread active at a given time. Our approach is quite
close to this work except that we study a component model featuring high level of
abstraction, and hierarchical composition. We do not provide a tool to prove prop-
erties on specific programs; we rather prove properties on the language/framework
itself.

ASP [7] is an imperative distributed calculus with asynchronous communication
between concurrent activities, no shared memory, and transparent implicit first class
futures. Thus, the synchronisation is transparent and data-flow oriented. ProActive
may be considered as one possible implementation of ASP calculus.

In AmbientTalk [8, 22], futures are also first-class and are transparently manip-
ulated; but the future access is a non-blocking operation: it is an asynchronous call
that returns another future. This avoids the possibility of a dead lock as there is
no synchronisation. However, due to lack of any formal semantics for AmbientTalk,
this property cannot be formally proved. This asynchronous access to futures, dif-
fers from the approach adopted in other frameworks like Alice ML, Creol, ASP, etc.,
where access to a future is blocking.

Futures in Java and other related works like Safe Future API, etc., are created
and manipulated explicitly. These presented works aim to solve some of the problems
that arise from access to shared memory resources.

Also in the context of object-oriented languages, ASPfun [51, 52] is closely re-
lated to our work. ASPfunis a complimentary calculus for ASP and deals with the
functional fragment of ASP. The calculus is functional in the sense that all functions
are applied on copies of arguments and thus there are no side-effects. It formalises
a functional language featuring active objects, asynchronous communication, first
class futures, and a type system. While the language provides for first class fu-
tures, it does not study future update strategies. Additionally, it does not deal with
components.

Components Component modelling is a vast domain of active research, compris-
ing approaches that vary from applied semi-formal approaches to formal methods.
A number of models have been proposed both by the industry and by academia for
development of component based applications.

38 Chapter 2. Related Works

COM and its distributed extension DCOM was developed by Microsoft for
component-based development. Unlike other standards, COM and DCOM are bi-
nary standards and place no limits on how the components should be structured or
implemented. Components communicate with outside world through well-defined
immutable interfaces. The component models and their extensions in the .Net plat-
form, used widely on Microsoft windows platform, are not a popular choice for large
scale distributed systems.

The Enterprise Java Beans is a programming model developed by Sun Micro-
systems (now Sun-Oracle) for modelling for server-side components. It facilitates
multi-tier programming paradigm and allows the programmer to focus on business
code while leaving the features like persistence, fault tolerance, life-cycle manage-
ment, transaction support, etc., to the containers which implement the specification.
EJB is more suitable for large scale transactional enterprise systems and is closely
tied with the java language. Additionally, while java does provide some reflection
capabilities, runtime dynamic re-configuration of EJB is not possible.

The CORBA Component Model or CCM [58] is a standard defined by Object
Management Group (OMG) [59]. The CCM specification supports business com-
ponents which are distributed, heterogeneous and are independent of programming
language and the underlying operating system. GridCCM [60] is an extension of
CCM and provides components that can encapsulate SPMD style parallel program-
ming model. However, both CCM and GridCCM do not provide any support for
reflective features which are important for capabilities such as dynamic component
reconfiguration.

A number of component models have been proposed specifically for distributed
computing and computational grids. However, some well-known component models
like CCA are not hierarchical – their intent is the efficient building, connecting and
running of components but they neglect structural aspects. We rather focus on
hierarchical component models like Fractal, GCM, or SCA.

SCA (Service Component Architecture) [69] is a component model adapted to
Service Oriented Architectures. It enables modelling service composition and cre-
ation of service components.

SOFA 2 is another academic component model which supports component hi-
erarchies, and provides runtime reflective capabilities for introspection, monitoring
and dynamic re-configuration of components. The proposed model bears close re-
semblance to Fractal component model.

The Fractal component model [81, 71], is a modular and extensible component
model. Fractal allows for hierarchical composition of components, and separation
of functional and non-functional concerns. Fractal can be used with various pro-
gramming languages to design, implement, deploy and reconfigure various systems
and applications. Fractal specification has been formalised in Alloy specification
language [82]. The formalisation focuses on verifying the consistency of the model.
In Comparison we consider asynchronous components and focus on the dynamic
component behaviour. This is crucial when specifying future management proce-
dures.

2.6. Summary of Related Works and Positioning 39

FraSCAti [72] is an implementation of the SCA model built upon Fractal, making
this implementation close to GCM. It provides dynamic reconfiguration of SCA
component assemblies, a binding factory, a transaction service, and a deployment
engine of autonomous SCA architecture. Due to the similarity between FraSCAti
and GCM, our approach provides a good approximation of formalisation of FraSCAti
implementation.

Creol also offers components; the paper [44] presents a framework for component
description and test. A simple specification language over communication labels is
used to enable the expression of the behaviour of a component as a set of traces at
the interfaces. Creol’s component model does not support hierarchical structure of
components.

Positioning As already discussed, futures provide an efficient and easy to use
programming paradigm for distributed applications. In ASP, ProActive, Creol , etc.,
futures are first class entities; future references can be safely transmitted between
processes. As references to futures disseminate, mechanisms are needed to keep
track of future references and to propagate the computed result of each future to
the processes that need it. Unlike other frameworks and calculi, ASP explicitly takes
into account the possibility of using different future update mechanisms/strategies.
Moreover, ProActive only provides implementation of one such strategy.

Our work focuses on efficient transmission of future values. We study various
strategies that can be used for fetching the values for first class futures. We study
both eager and lazy fetching of future value; focusing on efficiency of these strategies.
On the implementation side, our work is based on the discussion of future update
mechanisms presented in [7]. We extend the work presented in [16], not only by
improving and extending the implementation to add support for nested-futures;
we also provide a language independent semi-formal notation for modelling future
update mechanisms. This work has been published in [10], and is presented in
Chapter 3 and Chapter 4.

On the theoretical side, our work provides formalisation of hierarchical com-
ponents and their structure. At our level of abstraction, this structure is shared
by several component levels like Fractal, GCM, and SCA. However most imple-
mentations of SCA (except FraSCAti) do not instantiate the component structure
at runtime. By contrast, to allow component introspection and reconfiguration at
runtime, we consider a specification where structural information is still available
at runtime. This enables adaptive and autonomic component behaviours. Indeed,
component adaptation in those models can be expressed by reconfiguration of the
component structure[91]. For example, reconfiguration allows replacement of an ex-
isting component by a new one, which is impossible or very difficult to handle in a
model where component structure disappears at runtime.

Most existing works on formal methods for components focus on the support
for application development whereas we focus on the support for the design and
implementation of component models themselves. To our knowledge, our work is

40 Chapter 2. Related Works

the only one to support the design of component models in a theorem prover. It
allows proving very generic and varying properties ranging from structural aspects
to component semantics and component adaptation.

Our work extends [1] which presents a component model giving a semantics to
GCM, including hierarchical components, asynchronous communication, and first
class futures. In order to prove properties related to the implementation of futures,
we have extended the runtime semantics presented in [1]; we present a runtime
semantics for our components that includes formalisation of one future update pro-
tocol. With mechanised proofs, we show that our formalisation is complete and
enables proofs on properties on futures and their update strategies, thus ensuring
correctness of the ProActive/GCM implementation. This work is published in [14].
Other possible strategies are discussed in a semi-formal manner in [9, 10], along with
a experimental evaluation of their efficiency.

Based on the experience gained in specification and proof demonstrated in [1, 14],
we design a framework for supporting mechanised proofs for distributed components
which is presented in [13]; in particular focusing on the handling of component
structure, on a basic set of lemmas providing valuable tooling for further proof, and
the illustration of the presented framework to prove a few properties dealing with
component semantics and reconfiguration. With mechanised proofs, we show that
our formalisation is complete and enables proofs on properties on futures and their
update strategies, thus ensuring correctness of the ProActive/GCM implementation.
Chapter 5 and Chapter 6 detail the theoretical aspects of this thesis.

Part I

Future Update Strategies:
Specification and Implementation

Chapter 3

First Class Futures: Specification
of Update Strategies

Contents
3.1 Background: Futures in ASP-Calculus 45
3.2 Background: Update Strategies for Futures 47

3.2.1 Classification of Future Update strategies 47
3.2.2 Eager Forward-based Strategy 48
3.2.3 Eager Message-based Strategy 49
3.2.4 Lazy Message-based Strategy 51

3.3 Semi-Formal Specification of Update Strategies 52
3.3.1 General Notation . 52
3.3.2 Eager Forward-based Strategy 55
3.3.3 Eager Message-based Strategy 56
3.3.4 Lazy Message-based Strategy 58

3.4 Analysis of Future Update Strategies 59
3.5 Remarks on Semi-formal Specification of Strategies 62

44 Chapter 3. First Class Futures: Specification of Update Strategies

Futures are language constructs that improve concurrency in a natural and trans-
parent way (Chapter 2). A future is used as a place holder for the result of a con-
current computation [3, 4]. Once the computation is complete and a result (called
future value) is available, the placeholder is resolved, i.e, placeholder is replaced by
the result. Some frameworks and languages allow futures to be passed to other
processes (local or remote) without requiring the actual value. We call such futures
first class futures [7]. First class futures offer great flexibility in application design
and can potentially improve concurrency both in object-oriented and procedural
paradigms like work-flows [92, 93]. In case of first class futures, as futures propa-
gate through the system, additional protocols are required to transfer result values
when they are computed; the result value for a particular future should be trans-
mitted to all processes which received that future. We refer to such protocols as
future update strategies, and to the process of replacing a future by the result value
computed for it, as a future update. It should be noted that the newly produced
result value may itself contain other futures. We further discuss such nesting of
futures while presenting future update strategies.

We present our work on specification of future update strategies. A high level
specification of these future update strategies appeared previously in [7]. However,
the specification presented there is abstract, and lacks any details on the working
of the shown strategies or their underlying data structures. Our work on specifying
future updates can be considered as an extension of [7]. However in contrast to
[7], our specification is more precise and is detailed enough to be used – and has
been used – as basis for a real implementation, as discussed in Chapter 4. We
specify the future updates using a language independent approach that makes our
work applicable to various existing frameworks like Creol, AmbientTalk, etc., that
support first class futures. While we specify three main future update strategies,
we believe that our approach is generic and is flexible enough to be adapted to
other update strategies that can be envisioned. We aim to study the efficiency of
the future updates; we use a simple model for analysing the costs involved in each
of the strategies in terms of number of message exchanges, and the time to update
futures. We hope this facilitate better understanding of future update strategies and
justify the need to study such mechanisms in detail.

The three main contributions of this chapter (published in [9, 10]) are:

A Generic semi-formal notation
We introduce a generic and language independent notation for modelling the
future update protocols. We specify the future update strategies in a event-
like notation, with operations invoked by the strategies and events that are
triggered by the middleware.

Semi-formal specification of update protocols
We use our generic semi-formal notation to specify three future update strate-

3.1. Background: Futures in ASP-Calculus 45

gies; two eager strategies (transmit results as soon as possible) and one lazy
strategy (transmit results only on-demand) are shown.

Analysis of future update strategies
We informally estimate the efficiency of presented strategies in terms of mes-
sage exchanges and time to update futures. We show a basic cost-analysis
model for our selected strategies to better understand the trade-offs required
by each strategy.

We base our view of futures on ASP-calculus . Therefore, we start the chapter
with a brief look at futures in ASP-calculus; Section 3.1 summarises the utilisation
and implementation of first class futures in ASP. Section 3.2 provides an informal
view of future update strategies and illustrate their working using a sample scenario.
A semi-formal specification of future update strategies then appear in Section 3.3 ; a
general notation is presented followed by specification of three future update strate-
gies. An analysis of various update strategies using a simple cost-model appears in
Section 3.4. Finlay, Section 3.5 provides the concluding remarks on our specification
and the presented analysis.

3.1 Background: Futures in ASP-Calculus

As previously discussed in Chapter 2, futures are temporary placeholder objects
that represent the yet-to-be computed results of concurrent executions. Section 2.4.3
presented first class futures in ASP-calculus. To summarise, in ASP the basic unit of
concurrency is an activity. An activity in ASP is analogous to a traditional process
with its own execution thread. Each process has an associated message queue which
stores incoming requests. All communications between processes are in the form of
asynchronous method invocations—which we refer to as requests, and replies.

The asynchronous communication between processes is achieved through futures.
When one process invokes an asynchronous method call on another process, the
method call is wrapped as a request, and is enqueued at the invokee –the target
process. The invoker receives a future as placeholder for the result of this request.
Once the future is received, the invoker can continue its execution without waiting
for the result. The processes dequeue requests from their message queues, and serve
them according to some policy, for example FIFO. Once a request is executed/served
and a result is produced, it is communicated to the processes/activities holding that
future; at the destination this result transparently replaces the future. We refer to
this resolving of futures as a future update.

Finally, access to an unresolved future is a blocking operation and the accessing
execution thread is blocked until the future is resolved/updated. In ASP this is
referred as a wait-by-necessity condition, and is essentially a data flow synchroni-
sation. Wait-by-necessity indicates an actual requirement of result values, and the
blocked processes cannot continue until the value becomes available. Once an up-
date arrives, they can continue their processing. Although, strict operations which

46 Chapter 3. First Class Futures: Specification of Update Strategies

H

Legend

Method Call

A

B

C E D

F

f:foo()

f

fff

f

Figure 3.1: Futures propagate throughout the system

require access to the actual computed value for the future are blocking, it is possible
to perform some operations on futures without blocking. Frameworks may choose
to allow passing of futures as method arguments or return values without blocking,
treating them as first class objects. Examples include ASP, AmbientTalk, etc.

Figure 3.1 illustrates how future references may spread through a system con-
sisting of processes {A. . . F, H}. As the first step, process A makes an asynchronous
invocation foo() on process H, obtaining the future f corresponding to yet-to-be
computed result of foo(). Future f is then communicated to process B from A as
arguments of some asynchronous communication. B in turn forwards the future f
to processes C, D, and E. Finally, future f arrives at process F through process C.
It should be noted that each of the intermediate asynchronous invocations would
result in futures as well, but for this example we focus only on the future f , ignoring
all other futures.

At this stage, according to presented scenario, future f which corresponds to
the request foo() enqueued at H, has propagated throughout the system. Once
the request foo() is served (executed), and a result is available at H, it has to be
transmitted to all processes interested in the value of future f .

First class futures increase the potential for parallelisms and are in fact a neces-
sary requirement in some cases to avoid deadlocks. One such example, is the ProAc-
tive/GCM – the implementation of Grid Computing Model (GCM) in ProActive –
where components can systematically deadlock in the absence of first class futures.
The importance of first class futures in component models like ProActive/GCM is
discussed in Section 5.2.5. A side effect of first class futures is that future refer-
ences spread among various (local and remote) processes, necessitating additional
mechanisms to ensure that results are communicated to all processes where they
are needed/awaited. This is where future update strategies come into play. In
the following section, we give an informal description of three main future update
strategies, followed by a more precise treatment of future updates in Section 3.3.

3.2. Background: Update Strategies for Futures 47

3.2 Background: Update Strategies for Futures

It is possible to devise a wide variety of future update strategies for first class futures.
However, in this thesis, we restrict our selves to the three update strategies which
appeared previously in [7]. It should be noted that although we only present three
future update strategies, we believe that our notation presented in Section 3.3 is lan-
guage and framework independent, and is flexible enough to capture a wider variety
of future update strategies that may be envisaged; this includes hybrid strategies
that may arise from mixing of the strategies presented here.

3.2.1 Classification of Future Update strategies

We tag our future update mechanisms based on the answers to three questions:
When are futures updated?, which processes receive the results?, and which process
communicates the results?. The timing of future updates is directly linked to which
processes get the results. Eager strategies aim at making the results available to
processes as soon as possible; the result of a future is transmitted when it becomes
available. This in-turn leads to transmitting the result of a future to all processes
that received that particular future. On the other hand, Lazy strategies adopt a
different approach and aim to reduce the number of future updates. Consequently,
results are only sent to select processes. An alternative way of denoting strategies,
can be based on where does the responsibility of transmitting the results lie; leading
to message-based or forward-based strategies. In this thesis, we use eager and lazy as
two broad categories, while each strategy is denoted with message-based or forward-
based to provide further information on its working. To summarise, we classify future
update strategies as:

Eager strategies: Strategies are called eager when the result of a given future
is transmitted as soon as the future value is computed, i.e., the execution of the
request associated with that future terminates. The goal of eager strategies is to
minimise the time spent waiting for the results to arrive, once the results have been
computed. However, eager strategies may increase the number of communications
required, as a future value is proactively transmitted to all processes which received
that future.

Lazy strategies: Strategies are called lazy if the results are only transmitted upon
need, i.e., only when a process asks for that value. Lazy strategies try to minimise
the number of future updates, by restricting who may receive the future value. This
policy of only transmitting the results on-demand may potentially reduce number of
communications transferring results. However, this requirement of explicit demand
may increase the time spent waiting for a future value. Any process that requires
the value for a given future must ask for it, thus introducing an additional delay (if
the result is already computed).

48 Chapter 3. First Class Futures: Specification of Update Strategies

H

Legend

Method Call

A

B

C D

F

f:foo()

E

Future Update

Figure 3.2: Eager forward-based: Future updates follow the flow of futures

In the following subsections, we describe two eager strategies and one lazy strat-
egy: eager forward-based (follow the flow of futures), eager message-based(register all
future receivers), and lazy message-based (only register on wait-by-necessity). One
could also consider a lazy forward-based strategy, but as it is extremely inefficient,
we do not discuss it here.

3.2.2 Eager Forward-based Strategy

In eager forward-based strategy, future updates follow the same path as taken by
the flow of the corresponding future. Each process remembers the pair –destination
process and the future– whenever it communicates (forwards) a future to another
process. In a real implementation, this information may be stored in any data-
structure capable of storing mappings. When a result becomes available for a par-
ticular future at any given process, this memorised information is used to determine
where (to which processes) the result should be sent. As a consequence, starting
from the source computing the future value, the future updates follow the same path
as the future before it. Each process receives the result, performs a local update
(resolves the future locally) and then forwards the result to the next process in the
chain, the processes to which it previously forwarded the future. The process is
repeated at each incremental process in the chain, until all processes that received
the future, also receive the update value.

Figure 3.2 shows the working of eager forward-based strategy using scenario in-
troduced in Figure 3.1. The method invocations, and consequently the flow of future
f is shown by continuous (black) lines. Once the request foo() is served and a result
computed, process H sends the result to process A as shown by a dashed (red) line,
where future f is updated with the result. As discussed above, A ‘remembers’ that
future f was forwarded to B. Therefore, A sends the received result to B. Similarly,
in its turn, B remembers that the result for future f should be sent to to C, D and E
and communicates the result to them. Finally, f is updated at process F with result
that arrives via process C.

3.2. Background: Update Strategies for Futures 49

Comments Eager forward-based strategy is available as the default future update
strategy in ProActive distributed programming library [15]. As the name implies,
It is an eager strategy and results are updated as soon as they are available. Result
for a given future is sent to all the processes that received that future. In eager
forward-based strategy, the responsibility of updating a future does not rest with
any one particular process. Each process is responsible for communicating the result
to the processes to which it sent the future. This allows future updates to propagate
inside the system in a de-centralised manner. At each process, the only information
required is from where a particular future was received ?, and where it was forwarded
? A process needs not know for example, which process will compute the value for
a future. This allows a future to be only loosely coupled with the process that will
compute its value. This is particularly useful when implementing features such as
process migration. However, process migration is not within the scope of this thesis
and hence is not further discussed here. Another useful consequence of this loose
coupling is easy garbage collection of computed and received results. Once a process
has sent the results to all processes to which it forwarded the future, the result is
not longer needed and may be safely garbage collected.

Finally, as a consequence of following the same path as flow of futures, the wait-
time for a particular result varies among processes and depends on their distance –
number of intermediate processes – from the source process computing the result.
A result value may have to pass through a number of intermediate processes before
arriving at a given process.

3.2.3 Eager Message-based Strategy

In eager message-based strategy, the process computing the future value directly
communicates the result to all the processes which received that future. In contrast
to forward-based strategy where future updates are performed in a distributed man-
ner (albeit along process-chains), in eager message-based strategy all updates are
communicated by the process computing the value; the values are transmitted in a
centralised manner. For such a scheme to work, a mechanism is needed to inform
the computing process where the results should be sent. This is achieved using a
registration message; each time a future is forwarded, every process which receives
the future is registered with the computing process. This registration message may
be sent by either the process forwarding the future or the one that receives it, de-
pending on the particular implementation/policy. Additionally, each future carries
the information about which process will compute its value to facilitate registra-
tions. This information is easily available and is embedded in the futures when they
are created (recall that futures are created in response to a asynchronous invocation
on a process). The strategy is eager, as all processes which receive a future reference
are registered and hence they all receive the future value once it becomes available.

Figure 3.3 shows the future updates and registration in eager message-based
strategy. The method invocations and hence the flow of futures is shown by contin-
uous (black) lines as before. However, in case of eager message-based strategy, in

50 Chapter 3. First Class Futures: Specification of Update Strategies

H

Legend

Method Call

A

B

C D

F

f:foo()

E

Future Update

[C,D,E]

[F]

[B]

Registration Msg

Figure 3.3: Eager message-based: All future recipients register

addition to method invocations, we have dotted (brown) lines showing the registra-
tion messages. As mentioned before, the registration message can be sent either by
the receiver or the sender process. For convenience, we show a registration message
being sent by the process forwarding the future, registering all the processes which
receive the future. The use of registration message to select which processes receive
the results, leads to the strategy being denoted as message-based.

Therefore, when process A forwards the future f to process B, it registers B as
a future recipients with process H. Similarly, B sends a registration message to H,
registering processes C, D and E as future recipients. Finally, C forwards the future
to F and registers it with H. Once H finishes the execution of foo(), and produces
a result, H is responsible for communicating the result to all registered processes
(effectively all processes that received the future f). Therefore H sends the value
directly to processes {A. . . F} (shown in green).

Comments Eager message-based strategy is an eager strategy. The result for a
given future is transmitted to all process which received the future, as soon as the
result becomes available. All updates are performed by the process which com-
putes the result value in a centralised manner. Opposed to eager forward-based
strategy, the result arrives at all processes in a single step, without going through
intermediate processes. As a result, future updates arrive at all processes within
constant time and only depend on the number of concurrent communications that
can be initiated at the computing process. However, this strategy requires more
communications (message-exchanges) than eager forward-based strategy; additional
registration messages are used to keep track of future recipients. Also, futures are
more tightly coupled with the processes computing their values to facilitate regis-
tration. Each process can look at the future and discover where (to which process)
to send the registration message. Such tight coupling makes support for features
such as process migration more complex.

The garbage collection for eager message-based strategy also require greater
synchronisation. The computing process needs to ensure that all registered processes

3.2. Background: Update Strategies for Futures 51

H

Legend

Method Call

A

B

C D

F

f:foo()

E

Future Update

[C]

Registration Msg

[D]

Figure 3.4: Lazy message-based: Register only on wait-by-necessity

have received the future value, and that there are no more futures corresponding to
this value in transit. Once this is achieved, the computed values may be garbage
collected. This is further discussed in Chapter 9 (future works). Finally, as all the
updates are being done centrally by one process, it may consume more bandwidth
for future updates than eager forward-based strategy.

3.2.4 Lazy Message-based Strategy

Lazy message-based strategy tries to minimise the number of future updates by
delaying the updates until the future value is actually required. The strategy closely
resembles the eager message-based strategy, but unlike eager message-based strategy,
forwarding a future does not trigger a registration message. Consequently, futures
are forwarded by a process without registering the processes which receive the future
– the future recipients. Registration messages are triggered only in response to
a wait-by-necessity condition, i.e, when a process tries to access the value of a
unresolved future and is blocked. Thus only the processes which require the actual
value and are blocked waiting for the result, are registered. Only those registered
processes receive the future value. The remaining processes which received the
future, but make no attempt to access the future (and are not blocked as a result),
do not receive the value when it is computed. This may potentially reduce the
number of processes to which future value should be sent, thus saving bandwidth.
The computed results are stored, in case some processes ask for them later on.

Figure 3.4 shows the working of lazy message-based strategy. In contrast to eager
message-based strategy no registration is performed when futures are forwarded.
Therefore, no registration needs to be performed by processes A, B and C while
forwarding the future f . Registrations are performed only when there is a wait-
by-necessity. Suppose in our example, C and D attempt to access the unresolved
future f and are consequently blocked. The resulting wait-by-necessity triggers the
registration of C and D with H for the value of future f . When this value is computed,
H sends it directly to C and D (shown in blue). No other process receives the future
value.

52 Chapter 3. First Class Futures: Specification of Update Strategies

Comments The lazy message-based strategy closely resembles the eager message-
based strategy without the mandatory registration of all processes which receive the
future. Processes are are registered only in response to a wait-by-necessity condition,
signalling that the process actually requires the future value. The lazy registration of
processes may potentially reduce the number of updates performed. This can result
in significant savings in the number of communications where only a few processes
actually use the result value. On the other hand, the lazy registration introduces
an additional time delay before the result arrives where they are needed.

In lazy strategy only the processes which demand a result value, receive it.
Consequently, the computed values are stored, as some processes may ask for the
value later on. As a result, the garbage collection of computed values for lazy
message-based strategy is more complex than previous strategies. In general, a result
value may not be garbage collected in a lazy strategy, unless extra measures are taken
to ensure that no further process will ask for the value. Alternatively, a result value
time-out style may be adopted, depending on the nature of the applications.

Finally, the lazy message-strategy shines in situations where only a minority
of processes trigger wait-by-necessity. In cases where all processes or majority of
processes require result values, it may perform worse than eager message-strategy
due to additional delays caused by lazy registration.

3.3 Semi-Formal Specification of Update Strategies

This section presents a semi-formal notation to model the future update strategies.
We use the presented notation to specify the three update strategies discussed in
the previous sections. Two eager and one lazy strategies are presented here: eager
forward-based strategy, eager message-based strategy, and lazy message-based strat-
egy.

3.3.1 General Notation

This section presents a brief overview of the various notations and constructs that
we use to model the future update strategies. We denote by A the set of processes
(activities); α, β, . . . ∈ A range over processes. F denotes the set of futures, each
future is of the form fα→β , which represents the future f created by the process α,
that will be computed by process β. The future f is created as a placeholder for
the result of asynchronous method invocation by process α on process β. As each
process needs to keep track of the futures it has received, we make use of some local
lists for this purpose. There is one future list for each process in A. It represents
the location where the futures are stored in local memory. For a process α:

FLα : F 7→ P(Loc)

Locations, called loc in the following and of type Loc, refer to the in-memory
position of the future. To keep track of processes to which the result value for a
given future should be sent, a future recipient list is maintained in each process.

3.3. Semi-Formal Specification of Update Strategies 53

FRδ : F 7→ P(A)

γ ∈ FRδ (fα→β) if the value for future fα→β has to be sent from process δ to
process γ. It should be noted that each future fα→β , can be mapped to several
locations in FL or several processes in FR. FR and FL are initialised to empty
mappings on all processes. It should be noted that while both the FR and FL are
mappings, for the most part we refer to them as lists for convenience.

We use an event-like notation to define the different strategies. Operations –
invoked by the strategies– and events triggered by the middleware are described
below respectively. Events and operations are indexed by the processes on which
they occur, and are noted as α → β, for a communication (asynchronous message
or a future update) from process α to process β.

Operations We define various operations that may be invoked by the future up-
date strategies. These are generic operations and are useful regardless of the exact
strategy being used; defining them separately helps in simplifying specification of
individual strategies. We show these operations in the following:

Register future - Reg: F × B × (F 7→ P(B))
We define an operation register future – Reg– that takes three arguments: a future, a
process and a mapping F 7→ P(B) (either FL when B = Loc, or FR when B = A).
Regγ(fα→β, b, L) replaces the list (mapping) L by the list L′ defined as follows:

L′(fα
′→β′

2)=

{
L(fα→β) ∪ {b} if fα

′→β′

2 =fα→β

L(fα
′→β′

2) else

The Reg operation replaces the old mapping L with a new mapping L′, such
that L′ contains the mappings in L plus an additional mapping. An example usage
could be Regγ(fα→β, δ,FRγ). Here, Regγ , indicates that Reg is invoked on process
γ. The invocation, adds in the future recipient list FRγ , a new process δ associated
to future fα→β ; this new mapping indicates that future fα→β has been forwarded
to process δ as well.

Locally update future with value - Update: Loc× V alue
Once the value for a given future is received, this operation is triggered to update all
corresponding local futures with this value. The operation Updateγ(loc, v) replaces,
in the activity γ, a reference to a future fα→β by the value v. This reference
is situated at location loc. Remember the set of locations of these references is
FLγ(fα→β).

Clear future from list - Clear: F × (F 7→ P(B))
The clear operation Clear(fα→β, L) removes the entry for future fα→β from the list

54 Chapter 3. First Class Futures: Specification of Update Strategies

L; it replaces the list L by the list L′ defined by:

L′(fα
′→β′

2) =

{
L(fα

′→β′

2) if fα
′→β′

2 6= fα→β

∅ else

It will be used after a future update to clear entries for the updated future. This
ensures that once a future is updated with a value, it no longer exists.

Send future value: SendValue: F × V alue
Send operation is used when a process needs to send the computed result value
of a future to another process; this value is used to update the futures there. An
example usage could be SendValueδ→γ(fα→β, v). SendValue operation is a commu-
nication from process δ to process γ and is thus marked as δ → γ. The operation
communicates the result value v for the future fα→β from process δ to process γ. As
discussed before, the result value may itself be partial, i.e., it may contain other fu-
tures. Consequently, sending a future value can trigger send future reference events
– SendRef – for all the futures inside the value v. The details of this operation
appear in Sections 3.3.2, 3.3.3, and 3.3.4.

Events

Future update strategies react to events, triggered by the application or the mid-
dleware. We present these events below:

Create future: Create: F × Loc
Createα(fα→β, loc) is triggered when process α makes an asynchronous invocation
on process β. Process α creates the future fα→β corresponding to this invocation.
The result of fα→β will be computed by the process β. The semantics of this event
is similar for all strategies: it registers the future in the future list FL of the creating
process.

Createα(fα→β, loc) , Regα(fα→β, loc,FLα)

Send future reference: SendRef: F × Loc
SendRefδ→γ(fα→β, loc) occurs when the process δ sends the future reference fα→β

to γ and the future is stored at the location loc on the receiver side. The details of
this operation will be described in Sections 3.3.2, 3.3.3, and 3.3.4.

Future computed: FutureComputed: F × V alue
FutureComputedβ(fα→β, v) denotes the end of request service(execution). This
event occurs when process β completes the execution of request corresponding to
future fα→β , producing the result value v. The reaction to this event is described
later on for each individual strategy.

3.3. Semi-Formal Specification of Update Strategies 55

Wait-by-necessity: Wait: A
This event is triggered when a process accesses an unresolved future. This corre-
sponds to get or touch operation in [6, 24, 20]. For the two eager strategies it simply
causes the process to be blocked until the value is received. For the lazy strategy,
this event retrieves the future value, see Section 3.3.4.

3.3.2 Eager Forward-based Strategy

We presented the eager forward-based strategy in Section 3.2.2. To summarise, in
this strategy, each process remembers the processes to which it forwarded the future.
When the result value is available at a process, it is sent to all processes to which the
future was forwarded previously. Thus the result value in the future update follow
the same path as the flow of the future corresponding to this result. When the
result value for a future fα→β is available at process γ, the list of processes to which
this value should be forwarded, is given by FRγ(fα→β). It is the list of processes
to which γ had previously sent the future fα→β . In case of γ = β (computing
process), the result is sent to process α which created this future (future fα→β is
the placeholder for result of asynchronous invocation on process β by process α).

Figure 3.5 (reproduced from Figure 3.2) shows an example illustrating this strat-
egy. In the presented scenario, process A makes an asynchronous call on process H
and receives (creates) the future fA→H . Process A then passes this future to pro-
cess B, which in turn passes the future to processes C, D and E. Finally C passes
the future to F . Each time a future is forwarded, i.e., a request/reply containing
a future is communicated – modelled by SendRef communication – the forwarding
process δ adds the destination to its FRδ(fA→H). Thus, in the illustrated exam-
ple, when the future fA→H is forwarded from process A to process B, A adds B
to FRA(fA→H). When process H finishes the execution of request and produces
a result value v for the future fA→H , it is communicated to A using a SendValue
message. Process A then forwards the update to process B (FRA(fA→H) = {B}).
Similarly, at B (FRB(fA→H) = {C,D,E}) the future update value should be sent
to C,D and E. Process B can communicate the value concurrently to those pro-
cesses. Finally, the process F is updated after receiving the future update from
process C (FRC(fA→H) = {F}).

Send future reference When a process δ sends a future fα→β to a process γ,
the sender registers the destination process in FRδ, and the destination process
registers the location of the future in FLγ .

SendRefδ→γ(f
α→β, loc) , Regδ(fα→β, γ,FRδ); Regγ(fα→β, loc,FLγ)

Future computed Once the value of a future fα→β has been computed at process
β, it is immediately sent to all the processes that belong to FRβ(fα→β). This will
trigger chains of SendValue operations. Once the future value have been sent, the

56 Chapter 3. First Class Futures: Specification of Update Strategies

H

Legend

SendRef(f)

A

B

C D

F

f:foo()

E

SendValue(v)

Figure 3.5: Future-update in eager forward-based strategy

entry in the future recipient list is no longer useful and can be removed:

FutureComputedβ(f
α→β, value) , ∀ δ∈FRβ(fα→β)SendValueβ→δ(fα→β, value);

Clearβ(fα→β,FRβ)

Send future value When a future value is received, the receiver first updates all
the local occurrences (the loc(s) in its FL list), and then sends the future value to
all the processes to which it had forwarded the future (the processes in its FR list).
The operation is recursive, because the destination process of SendValue may also
need to update further futures. This operation can potentially trigger the SendRef
operation in case of nested futures (value can itself contain futures). The future
locations and entries in future recipient list for this future are not needed anymore
after those steps:

SendValueδ→ε(fα→β, value) , ∀ loc∈FLε(fα→β) Updateε(loc, value);
Clearε(fα→β,FLε);
∀ γ∈FRε(fα→β) SendValueε→γ(fα→β, value);
Clearε(fα→β,FRε)

3.3.3 Eager Message-based Strategy

We presented the eager message-based strategy in Section 3.2.3. To summarise, in
eager message-based strategy, the process computing the value of a future, is respon-
sible for updating all processes which previously received that future. Opposed to
forward-based strategy where futures updates are performed in a distributed man-
ner, here all updates for a given future are performed by the same process in a
centralised manner. Therefore, for a future fα→β , created due to an asynchronous
call from process α to process β, all updates are done by process β when the exe-
cution of request terminates and a result value becomes available. To keep track of
where to send the results, every process receiving the future fα→β is registered with
β. As already discussed, this registration message can be sent either by the process
forwarding the future, or by the process receiving the future. In general, whenever
a process δ forwards a future to another process γ, a registration message is sent to

3.3. Semi-Formal Specification of Update Strategies 57

H

Legend

SendRef(f)

A

B

C D

F

f:foo()

E

SendValue(v)

[C,D,E]

[F]

[B]

Reg

Figure 3.6: Future-update in eager message-based strategy

the process β (responsible for computing the result), registering γ as a future recip-
ient in FRβ . Recall that FRβ(fα→β) contains the list of processes to which fα→β

has been forwarded. The registration messages is a communication informing the
computing process about future recipients. To simplify our notation we represent
the registration message by invoking the previously seen Reg operation remotely at
the target process (identified by the subscript).

Figure 3.6 (reproduced from Figure 3.3) shows an example of this strategy. When
the process A forwards the future f to the process B, B should be registered in FRH.
Therefore, the operation RegH(fα→β, B,FRH) is invoked remotely on process H,
registering B in FRH . Similarly we have registrations invoked on H from B adding
C, D, and E to FRH ; finally we have FRH(fA→H) = {A,B,C,D,E, F}. Once
the future result is available, H uses the SendValue message (shown in green) to
communicate the value to all processes in FRH(fA→H).

Send future reference In the message-based strategy when a future fα→β is
forwarded by a process δ to a process γ, the process γ should be registered in future
recipient list (FRβ) of process β (β is the computing the result).

SendRefδ→γ(f
α→β, γ, loc) , Regβ(fα→β, γ,FRβ); Regγ(fα→β, loc,FLγ)

The registration is performed by using the operation Regβ(fα→β, γ,FRβ) re-
motely on process β. In Figure 3.6, this is indicated by the arrow Reg.

Future computed Once the execution of a request terminates, and the result
value for future fα→β is produced in process β, it sends the value to all the processes
registered in FRβ(fα→β). After the transmission of results, entries for fα→β in FRβ
can be removed.

FutureComputedβ(f
α→β, value) , ∀ δ ∈ FRβ(fα→β) SendValueβ→δ(fα→β, value);

Clearβ(fα→β,FRβ)

Send future value Contrarily to forward-based strategy, there is no need to
forward the future value when received, only local references are updated, and then

58 Chapter 3. First Class Futures: Specification of Update Strategies

H

Legend

SendRef(f)

A

B

C D

F

f:foo()

E

SendValue(v)

[C]

Reg

[D]

Figure 3.7: Future update in lazy message-based strategy

the FL list can be cleared.

SendValueβ→γ(fα→β, val) , ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);
Clearγ(fα→β,FLγ)

The received future value may contain other futures as well. In this case, it can
potentially trigger the send future reference operation, as discussed previously.

3.3.4 Lazy Message-based Strategy

We presented the lazy message-based future update strategy in Section 3.2.4. To
summarise, the lazy strategy differs from the eager strategies in the sense that fu-
ture values are only transmitted when absolutely required. When a process accesses
an unresolved future, the access triggers the future update. This strategy is some-
what similar to message-based strategy except the futures are updated only when
necessary. The process requiring the result value accesses the unresolved future,
triggering the wait-by-necessity (WBN). Instead of simply blocking on WBN like
other strategies, in lazy strategy registration is performed on WBN. The process
then blocks until the result value arrives. As discussed previously, each process now
needs to store all the future values that it has computed. For this, we introduce
another list, FV that stores those values: FV : F 7→ P(V alue). FVβ(fα→β), if
defined, contains a singleton, which is the result value for future fα→β . Recall that
the result itself may contain other futures.

Compared to eager message-based strategy, in lazy message-based strategy as
shown in Figure 3.7 only the processes that require the future value register in FRH ,
FRH(fA→H) = {C,D} if only C and D access the future, triggering WBN. When
the result is available, H communicates it to processes in FRH(fA→H). In addition,
the value is stored in FVH(fA→H). If the future value is required later, it will be
retrieved from FVH(fA→H).

Send future reference This strategy does not require any registration with the
process computing the future value, when a future is forwarded. When a future fα→β

is forwarded by process δ to another process γ, the incoming future is registered

3.4. Analysis of Future Update Strategies 59

locally in FLγ on the receiver-side (process γ). Once the value is received, all local
references can be updated.

SendRefδ→γ(f
α→β, γ, loc) , Regγ(fα→β, loc,FLγ)

Wait-by necessity Wait-by-necessity is triggered when a process tries to access
the value of an unresolved future. In case of an access to a future fα→β in process
γ, we attempt to register the waiting process γ in the future recipient list FR of
process β. If the future has already been computed by process β (result is available
in FVβ), the value is transmitted immediately. Otherwise, the registering-process
is added to the future recipient list of process β.

Wait-by-necessityγ(f
α→β) ,

{
SendValueβ→γ(fα→β, val) ifFVβ(fα→β) = {val}
Regβ(fα→β, γ,FRβ) if fα→β /∈ dom(FVβ)

Future computed When a result is computed, the value is stored in the future
value list. Moreover, if there are pending requests for the value (registrations in
FR), then the value is sent immediately to all the awaiting processes. Once the
value has been transmitted, entries for that future can be removed from FR. Entries
in FV cannot be removed as discussed previously.

FutureComputedβ(fα→β, val) , ∀ δ ∈ FRβ(fα→β) SendValueβ→δ(fα→β, val)
Clearβ(fα→β,FRβ); Regβ(fα→β, val,FVβ)

Send future value The SendValue operation for lazy message-based strategy is
the same as for the eager message-based strategy:

SendValueβ→γ(fα→β, val) , ∀ loc ∈ FLγ(fα→β) Updateγ(loc, val);
Clearγ(fα→β,FLγ)

3.4 Analysis of Future Update Strategies

In this section, we present a simple model for analysing the cost of updating futures
using different strategies. Using the detailed specification of future update strate-
gies presented in the preceding sections, we informally estimate the efficiency of
strategies. We base our estimation on number of message exchanges and the time to
update futures. We hope this cost-analysis of our presented strategies will facilitate
a better understanding of the the costs and trade-offs required by each strategy.

Assumptions and limitations For the purpose of our analysis, we assume that
futures are forwarded over a simple non-cyclic tree like configuration of processes.
The graph of the future updates is non-cyclic as a given future can be updated only
once. Therefore, even when cycles are encountered, they have no impact on our
analysis. The cost analysis focuses on the time necessary for updates and number
of message exchanges required and does not consider the computation time which

60 Chapter 3. First Class Futures: Specification of Update Strategies

is too application dependent. It is also equally difficult to estimate at what stage
during the execution of a request, a process will try to access a given future leading
to wait-by-necessity. Our intent is to keep the model as simple as possible, and as
such, we do not take this random delay into account. We assume that all results
have already been produced and start our analysis from there on. So for us:

In case of eager forward-based strategy, the processes are all assumed to have
just started waiting for the future value. The computing process is assumed to
have finished executing the request and has produced the result; and consequently
is about to start future updates.

In case of eager message-based strategy, we assume that all the processes which
received the future, have already registered with the process computing the result
value. Those processes are now in wait state. The computing process has finished
request execution and the value has just now become available.

In case of lazy message-based strategy, we assume that the processes which re-
quire the future-value have just made an attempt to access the value. Consequently,
the resulting registration message have not been sent yet.

Notation and configuration Our analysis focuses on a tree T consisting of N
processes; depth of tree T is given by the function D(T). We assume that all pro-
cesses have the same degree d. The degree of a process is number of processes to
which it has forwarded the future fα→β . If the degree is not constant, d can be
approximated by the average degree of the processes in T , and the cost is approx-
imated. At each process, the maximum number of concurrent updates a process
can perform is given by k; in practise k is the size of thread pool. Additionally,
for lazy strategy, only l processes out of the total N processes make use of future
values. In order to update future values on various processes in the tree T , the
result value must be serialised-deserialised at the appropriate processes. The time
spent in serialising-deserialising for one transfer is denoted by ts, while tf is the
time required for transmitting the serialised result. Additionally, tr is the time for
registering a process as a future recipient (for the lazy strategy). As discussed in
assumptions, for eager strategies, the registrations are done at the time of future
forwarding and as a results are not considered. Finally, we use the notation d..e for
denoting the ceiling function on real numbers.

Using these notations, we aim to approximate: a) the total number of messages
needed to update a given future fα→β , b) The total time needed to update a given
future fα→β at all N processes, c) Tw: the time for a given process γ to receive the
result for future fα→β .

Table 3.1 presents a summary of our cost estimation. In eager forward-based
strategy the responsibility of future update is distributed among all intermediate
processes. This can be an important consideration in environments where the band-
width available is limited. On the other hand, this implies that future update
time is dependent on the number of intermediate processes that must be traversed.
Each intermediate process requires serialisation-deserialisation. As can be observed

3.4. Analysis of Future Update Strategies 61

Table 3.1: Summarised cost-model

Variable Eager Eager Lazy
forward-based message-based message-based

Number of N 2 ∗N 2 ∗ l
messages
Time to update all
futures

D(T) ∗ (tf + ts) ∗
dd/ke

dN/ke ∗ tf + ts Not Applicable

Time to update a
future at a given
process

tf + ts ≤ Tw ≤
D(γ) ∗ (tf + ts) ∗
dd/ke

tf + ts ≤ Tw ≤
dN/ke ∗ tf + ts

ts + tf + tr ≤ Tw ≤
dl/ke ∗ tf + ts + tr.

from Table 3.1, the time spent in serialisation-deserialisation ts is an important fac-
tor along with the number of intermediate processes that must be traversed before
results arrive at a particular process. As the depth of the tree increases (more in-
termediate hops), ts can become significantly high, as compared to tf , indicating
a large overhead in time wasted on serialisation-deserialisation. The time it takes
for a result to arrive at a given process γ depends on the position of the processes
inside the tree D(γ), and the overhead required for serialisation-deserialisation at
each intermediate process. Finally, the number of message exchanges required to
update all processes is the same as the number of processes which receive the future
value. Therefore, for N processes receiving the future, N future update messages
are generated.

In eager message-based strategy the responsibility to update the future values
is centralised at computing process. This can potentially over-load the process and
the available bandwidth. On the other hand, all updates are carried out by a single
process, thus results need to be serialised only once if group communication mecha-
nisms are employed. Also, the update time is independent from the location of the
process, and all processes receive future update in a relatively constant time. This
can be an important consideration in scenarios where the serialisation-deserialisation
time ts is relatively large and the depth of the tree is significant. The limiting factor
in case of eager message-strategy is the number of concurrent updates that may be
initiated by the computing process. The time to update processes simply becomes a
function of the number of concurrent updates, as the serialisation is done only once,
and ts remains constant for all updates.

For lazy strategy, the registration requests can arrive at any time, before or after
future value has been computed (although we only consider the case where regis-
tration request arrives after the computation). The main drawback of this strategy
is that, since registration is performed only on wait-by-necessity, the access to a
future necessarily waits for one registration request time tr plus the time to up-
date a future tf . This introduces additional delay compared to the eager strategies;
however, there may not be any additional delay if WBN occurs before the process
finishes computing the result. In this case, the registration message may arrive be-

62 Chapter 3. First Class Futures: Specification of Update Strategies

fore request termination. The case where all N processes require the future value,
is the worst case scenario for lazy update strategy. In such a case, the strategy
performs worse than eager message-based strategy as for each update there is an
additional delay involved for the registration message to arrive. However lazy strat-
egy can greatly reduce the number of messages exchanged. This can be a benefit in
environments where network charge is an important consideration, or when future
references spread but only a few nodes need the value. In counterpart, this strat-
egy is costly in memory because future values must be stored indefinitely at the
computing node.

3.5 Remarks on Semi-formal Specification of Strategies

In this chapter, we have focused on a semi-formal specification of future update
strategies. We build upon the high level definitions provided in [7] to present de-
tailed semi-formal specification of update strategies using a generalised, language
independent notation. The work presented here has been published in [10]. We
believe that our notation is flexible enough to be applicable to other frameworks
that use first class futures as well.

To better understand the costs and trade-offs involved in each strategy, and to
study their efficiency, we present a basic cost model to evaluate each of the pre-
sented strategies. Based on the specification presented here, we have implemented
the update strategies and have verified the results of our cost analysis with experi-
mental evaluation. The details of the implementation and the experiments appear
in Chapter 4.

Our main contributions presented in this chapter are:

A generic event-like notation. We present a general (language independent) notation
for modelling future update strategies. Our chosen notation interprets the future
update strategies as combination of events and operations. Events are triggered by
the middleware, whereas operations are invoked by the strategies. Although, we
present three main update strategies, we believe that our notation is flexible enough
to express other strategies as well that can be envisioned, including hybrid strategies
obtained by mixing our presented strategies.

Semi-formal specification of three update strategies We provide detailed semi-formal
specification of three main future update strategies using our generic notation. Con-
sequently, other frameworks involving first class futures (Creol, AmbitentTalk, etc.,)
can potentially benefit from our work. For example, the future update mechanism
used in Creol is somewhat similar to eager message-based update strategy presented
here. Our Semi-formal specification is precise-enough and contain sufficient details
on underlying data-structures to be used as basis for a real implementation. We
present one such implementation of future update strategies in Chapter 4. We be-
lieve that such semi-formal approaches strike a good balance between the ambiguities

3.5. Remarks on Semi-formal Specification of Strategies 63

inherent in informal descriptions, and the complexities of formal mathematical no-
tations.

Cost analysis of the strategies. For better understanding of the strategies and the
relative costs (in terms of number of messages and time) involved, we presented a
simplified cost analysis of the protocols. We estimated the costs using indicators
such as total number of messages exchanged, time to update a given future and time
to transmit a given result to all processes with corresponding future. We analysed
those indicators on parameters such as number of intermediate hops/processes, pos-
sible number of concurrent updates, and the time required for serialising the payload.
The goal was to provide directions on a possible way of analysing the strategies; we
consider a more detailed (and consequently more complex) cost model to be out of
scope of this thesis.

The semi-formal specification presented in this chapter is used as the basis of our
implementation of the strategies in ProActive. We have carried out experiments to
study the efficiency of future update mechanisms and have verified the estimations
presented in this chapter with experiments. Together with the implementation and
experiments presented in Chapter 4, our cost-model helps in understanding which
strategy is more suitable for a given application. Further discussion on suitability
of strategies is presented in Section 4.4.

64 Chapter 3. First Class Futures: Specification of Update Strategies

Chapter 4

Implementing Future Update
Strategies in ProActive

Contents
4.1 Background: First Class Futures in ProActive 66

4.1.1 First Class Futures in ProActive: Automatic Continuation . . 68
4.2 Missing Future Update Strategies 70

4.2.1 Eager Message-based Strategy 70
4.2.2 Lazy Message-based Strategy 72

4.3 Experimental Evaluation . 74
4.4 Concluding Remarks on Future Update Strategies 79

66 Chapter 4. Implementing Future Update Strategies in ProActive

ProActive [15] is a distributed programming library based on ASP-calculus. De-
tails on ASP were given in Section 2.4.3 and Section 3.1). ProActive is an implemen-
tation of ASP, and therefore contains similar notions of activities and asynchronous
communication with futures. Futures in ASP and ProActive are created implicitly
as placeholders for asynchronous method invocations. Futures are first class entities;
futures can be safely communicated between remote processes. In this chapter, we
discuss an implementation of future update mechanisms. Chapter 3 presented our
semi-formal specification of future update strategies. Our semi-formal specification
described in detail the working of the presented strategies and the underlying data-
structures required for implementing them. Here we build on those specifications,
and provide an implementation of future update protocols in ProActive.

By default, ProActive provides two operating modes related to futures: no au-
tomatic continuation mode (configured in ProActive descriptor) disables the use
of first class futures. Alternatively, the programmer can decide to use first class
futures, which are supported using eager forward-based strategy. Our implemen-
tation extended the support for first class futures in ProActive, and provides two
additional future update strategies; eager message-based and lazy message-based
strategies. Our implementation is an extension of work presented in [16], and add
supports for nested futures, newer configuration options, along with numerous other
modifications necessary to work with newer versions of ProActive. The experiments
presented were carried out in collaboration with authors of [16].

ProActive is a vast library and provides a rich feature set for distributed applica-
tion development. Consequently, it is not possible to cover all features of ProActive
in this chapter. Here, we only focus on those aspects of ProActive which are related
to futures and future update strategies. We treat everything else which is not es-
sential for our implementation and experiments, as being out of scope of this thesis.
Finally, our implementation uses ProActive version 3.9. ProActive library is being
continuously updated and new feature are added regularly. However, the packages
dealing with the future updates more or less have remained unchanged. Therefore,
we believe that our implementation can be adapted to newer versions of ProActive
without too much effort.

The chapter is organised as follows: Section 4.1 presents ProActive and shows
how futures are created and manipulated in ProActive. Section 4.2 gives the imple-
mentation details for the three previously presented strategies. In Section 4.3, we
present some experiments and their results to validate the working of the strategies,
and to further establish the analytical conclusions presented in Section 3.4. Finally,
Section 4.4 positions our work in context of previously done work and provides
concluding remarks on future update strategies.

4.1 Background: First Class Futures in ProActive

ProActive is a programming library which provides a middleware for distributed
application development. The library comprises notions such as concurrent active

4.1. Background: First Class Futures in ProActive 67

objects, communication via asynchronous messages and first class futures. Although
ProActive provides a vast array of features and constructs to support distributed
programming, it is built upon a relatively small number of core notions derived
from ASP-Calculus. In a way at its core, ProActive programming library may be
considered an implementation of ASP-Calculus.

Like ASP-calculus, ProActive is based on the notion of Active Objects. An active
object has its own concurrent execution thread, and is analogous to a traditional
process. All communications between active objects is via asynchronous messages
with futures; futures are placeholder objects for the result of the asynchronous
communication. Figure 4.1 shows the anatomy of an active object in ProActive.

Message Queue

Body

Passive
Objects

Activity
Thread

Figure 4.1: Anatomy of an Active Object

Each active object has a associated body, a message queue for storing incoming
messages/requests and an execution thread – the activity thread. The body of an
active object encodes the business logic for an active object. Additionally, the body
provides support for services such as distribution, fault tolerance, migration, etc.
As stated in previous chapters, all communications between active objects take
the form of asynchronous method invocations–which we refer to as requests. The
message queue is used for storing incoming requests. Requests are stored in the
message queue until an activity thread decides to execute/serve them. The activity
thread is the concurrent execution thread of an active object; it serves the requests
in the message queue one by one according to some defined policy. An example
request serving policy could be to serve request in FIFO order.

Figure 4.2 illustrate a ProActive program. Active objects may be created using
newActive() (line 1) method call. The method newActive is used for creating
new active objects from scratch, as opposed to turnActive() call, which allows
for converting an existing simple object into an active object. The arguments to
newActive describe the java class from which an active object should be constructed,
and on which Java Virtual Machine (JVM) it should be deployed.

Once an active object has been created and initialised, ProActive syntax makes
no distinction between active objects and simple objects. The same ‘.’ notation is
used in both cases to invoke method calls. Line 2 invokes a method obj.foo() on

68 Chapter 4. Implementing Future Update Strategies in ProActive

the newly created active object. As stated before, the communication between active
objects is asynchronous with futures. In a standard java program, the execution is
blocked until the completion of the method call obj.foo(), which returns the value
v1 of class V. In ProActive, this method call is wrapped in a request object which
is placed in the message queue (also referred as request queue) of the active object
obj. The calling active object receives a future v1 and can continue its execution,
without waiting for the method call obj.foo() to be served. It should be noted
that similar to ASPfun [51], here the type of the future is the same as the type of the
value returned by the asynchronous invocation. This allows transparent handling of
the futures.

Line 3 shows a second method call on the obj active object. At this stage,
the message queue of obj contains two requests, corresponding to asynchronous
requests obj.foo and obj.bar. On the invoker side, we have two future v1 and
v2, which are placeholders for the yet to be served requests. The execution may
continue without blocking until the line 10, when v1.bar() is encountered. v1
is an unresolved future, i.e., there is no result available for this future yet. As a
consequence, invoker is blocked and we refer to this as a wait-by-necessity. Again,
similar to ASP-calculus and ASPfun, access to an unresolved future is a blocking
operation in ProActive –wait-by-necessity in previous chapters. The invoker remains
blocked until the request is served by active object obj and results are available for
the future v1.

A obj = newActive(A.class, [...], null); //line 1
V v1 = obj.foo (param); //line 2
V v2 = obj.bar (param); //line 3
. . .
. . .
v1.bar(); // wait-by-necessity // line 10

Figure 4.2: Active objects and futures in ProActive

4.1.1 First Class Futures in ProActive: Automatic Continuation

Futures in ProActive are first class objects, i.e., future references may be passed
among active objects. This allows the future references to propagate among active
objects (as was shown in Figure 3.1). Once a request is served (request execution
terminates) and a computed future value is available, it has to be sent to all objects
which may require the future value; this is achieved with a future update strategy.
An overview of the three main future update strategies is presented in Section 3.2,
while a more detailed semi-formal specification was presented in Section 3.3. Of
the three presented strategies, ProActive supports the eager forward-based future
update strategy.

ProActive documentation uses the term automatic continuation for referring to
combination of future propagation and future update. In ProActive automatic con-

4.1. Background: First Class Futures in ProActive 69

tinuation allows the use of first class futures, and continuing the execution without
blocking for unresolved futures. However, performing a strict operation on an unre-
solved future results in invoker thread being being blocked.

Tracking futures The principle behind automatic continuation/eager forward-
based strategy is fairly simple; future updates follow the same path as the futures (as
shown previously in Figure 3.2). For the eager forward strategy to work, every active
object has to keep track of destinations to which it forwards a particular future, i.e.,
every time a future is forwarded either as a request parameter or as a return value,
the <future, active object> pair should be stored in some internal data structure.
In the semi-formal specification of eager forward-based strategy in Section 3.3.2,
this was captured by the send future reference rule SendRef. The SendRef rule
stores the propagation information for a future fα→β in the future recipient list:
FRβ(fα→β). The real implementation corresponding to the recipients list, is the
FuturePool class. FuturePool keeps track of all outgoing futures; Every time a
future is forwarded, the pair <future, destination> is registered as an automatic
continuation. The FutureMap class keeps track of futures and their corresponding
automatic continuations.

In a similar manner, at the destination, all incoming futures are tracked. The
semi-formal specification uses the list FL on the receiver side for registering the
newly arrived futures. ProActive implementation registers all incoming futures at
the receiver’s end in a static table, FuturePool.incomingFutures. As previously
discussed, the incoming result values may also contain futures. ProActive allows
partial requests and replies; the result value itself may have futures. As a result,
futures may be nested, i.e., a value may contain other futures and values, which in
turn contain futures and so on. ProActive allows arbitrary number of such future
nesting. Consequently, whenever a value is received, all futures inside the value
must be found and registered.

Future update As already discussed, the activity thread (execution thread) of an
active object dequeues the requests from the message queue one by one and executes
them. Active objects in ProActive are mono-threaded; there is only one such activity
thread serving requests in each active object. At some stage, the request is served
and a result value is produced for a given future. This value should be propagated
to all the active objects which received the corresponding future.

While there is only one execution thread serving requests, to improve perfor-
mance other threads may be used for communication specific tasks. The activity
thread of a given active object need not spend time communicating future values.
Consequently, to allow communication of future values in parallel to request exe-
cution, a separate thread ActiveACQueue housed inside FuturePool is used. The
result value (represented by a Reply type object) and the list of destination active
objects is wrapped in a ACService object, and is passed to the ActiveACQueue
thread which invokes the necessary operations to transfer the result value. Finally,

70 Chapter 4. Implementing Future Update Strategies in ProActive

once the value has been communicated to all active objects for which there is a
registered automatic continuation, it may be garbage collected.

Configuration ProActive allows the programmer to select whether first class fu-
tures should be enabled for an application or not. Automatic continuation can be
enabled or disabled using the the configuration file ProActiveConfiguration.xml.
Setting the value for the property proactive.future.ac to ‘false’ disables first class
futures (‘true’, enables first class futures and is the preset value).

<prop key="proactive.future.ac" value="false" />

4.2 Missing Future Update Strategies

As stated before, ProActive only supports the eager forward-based future update
strategy. Our goal is to study the efficient transmission of results for first class fu-
tures. In order to do a comparison and to study the efficiency of various strategies,
we implemented the missing strategies with ProActive(version 3.9). The implemen-
tation is based on the semi-formal specification presented in the previous chapter,
and relies on similar kind of data structures presented there. We believe that our
implementation is sufficient to establish the viability of using different future update
mechanisms and provides a good basis for studying and comparing the three main
future update strategies. However, it should be noted that this is only a good first
version implementation and does not include a number of optimisations or garbage
collection of computed results, etc.

4.2.1 Eager Message-based Strategy

Eager message-based strategy was presented in Section 3.2.3, while Section 3.3.3
gave a more detailed semi-formal specification of the strategy. To summarise, the
eager message-based strategy is a centralised future update strategy, all updates are
done by the active object computing the result (serving the request). The strategy
is eager as all active objects which receive the future, are registered and all receive
the future value when it becomes available. Registration can be performed either by
the active object forwarding the future or by the active object receiving the future,
leading to either a sender-based or a receiver-based registration policy. For this
implementation, we have adapted a sender-based approach to future registration.
We believe such an approach may simplify the task of garbage collection later on.
However, garbage collection is currently not part of our implementation.

Tracking futures As stated earlier, in eager message-based strategy, the active
object responsible for producing a result (referred to as computing object), is also
responsible for communicating the results. This requires the computing object to
know where the future references are, i.e, the remote references to the active objects

4.2. Missing Future Update Strategies 71

with a given future. This can be achieved via a registration mechanism, where ev-
ery active object that receives the future reference is registered with the computing
object. This registration can be performed either by the active object forwarding
the future, or by the one receiving it. However, this raises another question: ‘how
to inform each object receiving a future where they should register’? The possi-
ble solutions vary from broadcasting the location of computing object to having
a stable reference server holding all results. For our implementation, we chose to
solve this issue by simply embedding the information about the computing object
inside the future reference, or more precisely inside the FutureProxy object. In our
implementation, the future proxy holds a remote reference of the computing object.
This way every object which receives the future, can determine who will produce
the result value. Therefore on creation, each future is initialised with the location
of the computing object. Further discussion on this appears under Remarks later
on.

Whenever a future is forwarded by an active object, either as method call pa-
rameter or as a return value, according to the semi-formal specification, this should
be recorded in the future recipient list of the computing object (FR list). In our
implementation we achieve this by implementing a new type of request in ProAc-
tive; RequestForFuture. RequestForFuture is essentially a registration message,
sent by the active object forwarding the future to the computing object, registering
the <future, destination> pair with the computing object. The registration request
is generated automatically when a future object is being serialised. Consequently,
the active object forwarding the future is the one to send the registration message,
leading to sender-based registration. Similar to eager forward-based strategy, at the
destination, all incoming futures are tracked. The semi-formal specification uses the
list FL on the receiver side for registering the newly arrived futures. ProActive
implementation registers all incoming futures at the receiver’s end in a static table,
FuturePool.incomingFutures. Also, as discussed in previous strategy, in case of
incoming values, all nested futures are found and are also registered.

Each active object must handle an additional type of request, RequestForFuture.
Messages of this types are used for registering future recipients and hence should
not be added to the message-queue, which is used for storing normal requests. The
RequestReceiver(Impl) class now looks at the incoming requests, and in case of
a registration request, consults the list of already computed results (for a future
fα→β , this is given FVβ(fα→β) in the semi-formal specification). If a match is
found then the result has already been computed and is returned immediately.
In the implementation the computed results are stored in a static results table
FuturePool.computedValues. In case the result is yet to be computed, the future-
receiving active object(s) from the registration request is added to the list of desti-
nations for that particular future.

Future updates At some stage, computing object produces the result for a given
request. This corresponds to the FutureComputed event in the semi-formal specifi-

72 Chapter 4. Implementing Future Update Strategies in ProActive

cation. As per specification, once the results are produced they are stored locally in
FuturePool.computedValues. The result is also sent to all active objects registered
in the FRβ list (future recipient list of the computing active object), or in case of
our implementation, all active objects registered as destination for that particular
future. In case there is more than one destination for a given future (future was
forwarded more than once), updates can be performed concurrently. This can be
achieved by using some group communication API. However, in our implementation,
we use a simpler approach by having a pool of threads that performs the updates.
The thread pool is provided with a deep copy of the result for transfer. The size of
the thread pool may be configured using the ProActive configuration file.

Configuration The programmer may select the eager message-based strategy by
setting the value for the key "proactive.future.eager" to ‘true’. The key-values for
the other two strategies must also be set to ‘false’. Additionally, for both the eager
message-based and the lazy message-based strategies, programmer must also specify
a thread pool size, i.e., number of concurrent threads that may be created for future
updates.

<prop key="proactive.future.ac" value="false" />
<prop key="proactive.future.eager" value="true" />
<prop key="proactive.future.lazy" value="false" />
<prop key="proactive.future.messagethreadpool.size" value="5" />

Remarks For the registration mechanism to work, each active object must know
where to register outgoing futures. Our solution embeds the information about the
computing object inside the future reference. Such an embedding of the information
about location of computing active object, is not ideal for features such as active
object migration. However, the solution proposed for the original active object
migration problem, discussed in [7], apply here as well. Currently, when an active
object migrates, it leaves behind a forwarder, which forwards any incoming messages
to the active object. This forwarder can be easily modified to deal with registration
messages as well. As active object/process migration is not the focus of this thesis,
we do not discuss it further.

4.2.2 Lazy Message-based Strategy

Lazy message-based strategy has been presented in Section 3.2.4, while Section 3.3.4
gives a more detailed semi-formal specification of the strategy. To summarise, lazy
strategy is an on-demand future update strategy. Future results are communicated
only when active objects specifically asks for them. Other than the timing of register-
ing for future value, the implementation for lazy message-based strategy resembles
closely the eager message-based strategy. The active objects may forward futures
without sending any registration messages. Registrations are performed only on ac-
cess to unresolved futures which results in wait-by-necessity. This wait-by-necessity
triggers the registration message.

4.2. Missing Future Update Strategies 73

Tracking futures All updates in lazy message-based strategy are performed by
the computing object. Therefore following the same reasoning as before, future ref-
erences (FutureProxy) contain the remote reference of the computing object. How-
ever, in contrast with eager message-based strategy, there is no need to register the
destinations, when future references are forwarded. The sender forwards the future
and needs not take any further action. The destination also only registers the future
locally in FuturePool.incomingFutures (for local optimisations and processing),
as specified for SendRef operation in Section 3.3.4.

Similar to eager message-based strategy, active objects must handle an addi-
tional type of request, RequestForFuture. Messages of this types are used for
registering future recipients and hence are not added to the message-queue. The
RequestReceiver(Impl) class looks at the incoming requests and for a registra-
tion request, consults the list of already computed results in the static results map
FuturePool.computedValues. If a match is found then the result has already been
computed and is returned immediately. In case the result is yet to be computed, the
active object sending the registration message is added to the list of destinations for
that particular future as required by the semi-formal specification.

Future updates At some stage, computing object produces the result for a given
request. This corresponds to the FutureComputed event in the semi-formal specifi-
cation. As per specification, once the results are produced they are stored locally in
FuturePool.computedValues. The result is also sent to all active objects registered
in the FRβ list (future recipient list of the computing active object), or in case of
our implementation, all active objects registered as destination for that particular
future.

The key difference between lazy message-based strategy and other eager strate-
gies is the way wait-by-necessity is managed. For both the eager message-based
strategy and eager forward-based strategy, access to an unresolved future triggers a
wait-by-necessity; essentially blocking the execution thread until the result becomes
available. In case of lazy message-based strategy, this wait-by-necessity also serves
as trigger for requesting the future value. As a consequence of wait-by-necessity,
a RequestForFuture is generated towards the computing active object, registering
the request-sender with the computing object.

Reception of a request of type RequestForFuture is handled in the same way
as in eager message-based strategy. Upon receiving the request, the list of already
computed results is consulted (FVβ(fα→β)). If a match is found then the result
has already been computed and is returned immediately. In the implementation the
computed results are stored in a static results table FuturePool.computedValues.
In case the result is yet to be computed, the active object sending the registration
request is added to the list of destinations for that particular future.

Configuration The programmer may select the lazy message-based strategy by
setting the value for the key "proactive.future.lazy" to ‘true’. Similar to eager

74 Chapter 4. Implementing Future Update Strategies in ProActive

message-based strategy, the key-values for other strategies should be set to ‘false’.
Programmer must also specify a thread pool size, i.e., number of concurrent threads
that may be created for future updates.

<prop key="proactive.future.ac" value="false" />
<prop key="proactive.future.eager" value="false" />
<prop key="proactive.future.lazy" value="true" />
<prop key="proactive.future.messagethreadpool.size" value="5" />

4.3 Experimental Evaluation

To validate our implementation and to better study the efficiency of future update
strategies, in this section we present some results from experiments carried out using
our implementation. Although, not fully optimised, we believe that our implemen-
tation provides a good starting point for comparing and evaluating the three main
future update strategies. To this end, we adopted ProActive version 3.90. ProActive
library is being continuously updated and new feature are added regularly. How-
ever, the packages dealing with the future updates have mostly remained unchanged.
Therefore, we believe that our implementation can be adapted to newer versions of
ProActive without too much effort.

We used a cluster of 11 nodes equipped with Intel(R) Xeon(TM) CPUs at
2.80GHz with 1 GB RAM running Linux kernel 2.6.9, at Università degli Studi
del Sannio. The cluster nodes are connected via a Gigabit Ethernet link. Here
we presents the results from two experiments, comparing the efficiency of the three
main future update strategies.

As already discussed in Section 3.4, there are a number of factors that impact the
performance of a given strategy. These factors include, size of future value, width
of the network (in terms of number of intermediate active objects for eager forward
strategy), number of threads available for concurrent updates for the message-based
strategies, etc. With the two scenarios presented in the following, we study the
impact of some of those factors.

Experiment: Tree configuration Our first experiment was carried out using
a tree topology. We deployed a ProActive application featuring a tree topology
where each node of the tree is an active object. We allow the future references to
propagate to all nodes inside the tree and we compare the time required by the
various strategies to transmit results to all leaf-level active objects. For the scope of
the analysis, we kept the number of nodes making strict operations constant: only
the leaf nodes of the tree make use of future value (important for lazy strategy). We
vary the height of the trees from 1 to 7, while keeping the total number of active
objects (nodes) fixed at 31.

Figure 4.3 shows a small example tree of height 2 with 7 nodes, 4 of which
are leaf nodes. Although not part of the actual experiment, we use this miniature
example tree to explain the behaviour of future update strategies; and consequently

4.3. Experimental Evaluation 75

the behaviour of curves showing the performance of the strategies in Figure 4.4.
Only the four leaf nodes access the future value, triggering wait-by-necessity. Paths
taken by the updates in the three strategies are shown.

2

1 1

0 0 0 0

Eager Forward Eager Message Lazy Message

Figure 4.3: A small example tree configuration

As previously discussed, future updates in eager forward-based (shown in red)
strategy must traverse along the same path as the flow of corresponding future.
Consequently, in the example, future update is transmitted by the root to the nodes
at height 1. Nodes at height 1 in-turn forward the value to leaf nodes (height 0).
These future updates happen in parallel in the two subtrees.

The future updates for eager message-based strategy are shown in green. As per
specification of eager message-based strategy, the root communicates the values to
all nodes (all nodes have received the future and are registered). The updates can
be done concurrently, depending on the size of thread pool.

Finally the future updates for lazy message-based strategy are shown in blue. As
per specification of lazy message-based strategy, the root communicates the values
to only to the leaf nodes (only leaf nodes access the future and hence are registered).
Again, the updates can happen concurrently, depending on the size of thread pool.

The graph in Figure 4.4 compares the time needed to update futures for the eval-
uated strategies. As stated, experiments are realised over trees of varying heights.
Lazy strategy (shown in blue) takes less time to update the futures since the num-
ber of updates is smaller (only leaf nodes are updated) than eager strategies (all
nodes are updated). As expressed in Section 3.4 the update time for message-based
strategies is independent of topology. All updates happen in centralised manner.
The only factor which differentiates the performance of eager message-based and
lazy message-based strategies is the number of updates to be performed. This fac-
tor is greatly impacted by the size of the thread pool. Consider Figure 4.3, with a
thread pool of size 4. For a thread pool of this size, all updates for lazy strategy
can happen concurrently. However, for eager-message strategy, the number of nodes
to be updated is larger than the size of thread pool, requiring roughly two rounds
of concurrent communications, first with 4 updates and second with 2 updates (as-
suming constant network latency in each case for simplifying the example). Thus
eager message-based strategy takes longer than lazy message-based strategy. The

76 Chapter 4. Implementing Future Update Strategies in ProActive

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7

Ti
m

e
(M

s)

Height

Tree Height = 1-7
 Future = 20MB, Nodes = 31

Eager-Forward Eager-Message Lazy-Message

Figure 4.4: Comparison of strategies for a tree configuration

same reasoning applies to the graph in Figure 4.4. The times for different topologies
remain the same for both message-based strategies, as in both cases the time for
updates is independent of the tree topology.

The curve for eager forward-based strategy is more interesting. Eager forward-
based strategy can take advantage of parallel updates as shown in Figure 4.3. The
updates can propagate in parallel in different parts of the tree, potentially improv-
ing performance; observe the sharp drop in the red curve when moving from tree of
height 1 to tree of height 2 – the updates happen in parallel in the various subtrees.
However, to arrive at any leaf node, the future value must pass through a inter-
mediate node. Each intermediate node deserialised the future value, updates the
local occurrences of that future, and re-serialises the future value to transmit it to
the next level. Therefore, on one hand, the strategy benefits from parallel updates
in different tree segments. At the same time, the strategy suffers from having to
traverse through intermediate nodes. As the height of the tree increases, more and
more time is spent in serialisation-deserialisation of result value. Consequently the
performance starts to degrade rapidly; this can be observed in the graph going from
tree of height 4 to tree of height 7 . Therefore, eager-forward based is dependent
on the topology of the tree unlike the other strategies. As the height of the tree
increases, overheads increases due to time spent at intermediate nodes. Note that
for tree of height 1, both of the eager strategies perform in a similar way because in
that case both algorithms are roughly identical.

Experiment: Pipe configuration Our second experiment presented here, was
carried out using a pipe topology. We deployed a ProActive application featuring a
pipe/chain of varying length where each node of the pipe is an active object. We

4.3. Experimental Evaluation 77

1 2 3 4

Eager Forward Eager Message Lazy Message

Figure 4.5: Pipe of varying length

allow the future references to propagate to all nodes along the length of the pipe,
and we compare the time required by the various strategies to transmit results to
the farthest(last) node of the pipe.

The purpose of this experiment is to show-case the worst case scenario for eager
forward-based strategy. For the scope of the analysis, only the last element in
the pipe accesses the future value (for lazy strategy). We vary the length of the
pipe/object-chain from 1 to 30. In the given configuration, there is no parallelism
for eager forward-based strategy. Only one update can be performed at a given time.
To better compare the performance of the three strategies, we restrict the thread
pool for both the message-based strategies to a single thread. Only one thread can
be created to perform the updates for message-based strategies. This also allows
us to compare the impact of ‘number of updates to be performed’ on the two eager
strategies. Given that only one update can be performed at a time, this contrasts
the single-step update approach of eager message-based strategy to the traverse-
the-chain approach of eager forward-based strategy. Finally, for this experiment, we
only consider the first future, to be computed by node1 and propagated to all nodes
of the pipe. Each intermediate communication forwarding the future, generates a
new future; those intermediate futures are ignored while measuring the time.

Figure 4.5 shows a pipe of length 4, one of the pipes used in this experiment. We
use this pipe to explain the behaviour of future update strategies; and consequently
the behaviour of curves showing the performance of the strategies in Figure 4.6. Only
the last node in the pipe accesses the future value, triggering a wait-by-necessity.
Paths taken by the updates in the three strategies are shown.

As previously discussed, future updates in eager forward-based strategy (shown
in red) must traverse along the length of the pipe to reach the last node. The future
update is transmitted by the node1 to node2 . . .noden−1, finally arriving at noden
(where n = length of the pipe). In Figure 4.5, the future value arrives at node4 via
3 communications (hops), shown in red.

The future updates for eager message-based strategy are shown in green. As per
specification of eager message-based strategy, the computing node communicates the
values to all nodes (all nodes in the pipe have received the future and are registered).
In Figure 4.5, for message-based strategies, node1 is the computing node. The three
updates for this strategy are all done by node1, but one at a time (size of thread
pool is 1).

78 Chapter 4. Implementing Future Update Strategies in ProActive

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 5 10 15 20 25 30

T
im

e
(M

s)

Length

Pipe of Length = 1-30
 Future = 20MB

Eager-Forward Eager-Message Lazy-Message

Figure 4.6: Comparison of strategies for a pipe configuration

Finally the future updates for lazy message-based strategy are shown in blue.
As per specification of lazy message-based strategy, node1 communicates the values
only to the final node in the chain (only node to access the future and hence the
only registered node). Consequently, there is only one update communication by
lazy message-based strategy.

Figure 4.6 shows the time necessary to update a future along the pipe. For this
experiment, we are more interested in the performance of the eager strategies. As
already discussed, the size restriction on the thread pool (single thread) and the
pipe topology removes any gains from concurrent or parallel transfers. Both eager
forward-based and eager message-based strategies scale in a linear manner, although
the eager message-based strategy scales better. Even without concurrent updates,
eager message-based strategy has an advantage. There are no intermediate nodes,
and results are communicated directly to each node (one at a time), as shown by
green arrows in Figure 4.5.

Future updates in eager forward-based strategy go through all the intermediate
nodes before arriving at the last node in the chain (shown in red). This introduces
additional delays with each extra hop for forward-based strategy, with increase in
the length of pipe. Finally, for lazy message-based strategy, there is only one single
update required (shown in blue). As the update in done directly, in a single-step,
the length of the pipe is irrelevant (the only possible affect could be the timing of
future forward, and consequent access to trigger the update). As a result, the same
amount of time is taken by the update for all lengths between 1 and 30, as shown
by the flat horizontal line in the graph (Figure 4.6).

4.4. Concluding Remarks on Future Update Strategies 79

4.4 Concluding Remarks on Future Update Strategies

First class futures require additional support mechanisms to ensure that future re-
sults can be communicated to where they are required. We refer to such mechanisms
as future update strategies. The three main future update strategies discussed in
this thesis are presented in detail along with their semi-formal specification in Sec-
tion 3.2 and Section 3.3. ProActive programming library, only supports the eager
forward-based strategy out of the box. To better evaluate the various future update
strategies, and when a particular strategy might be more suitable, we have imple-
mented the missing strategies in ProActive. This allows us to carry out experiments
comparing the efficiency of each strategy, further validating the results and analysis
presented in Section 3.4.

The work presented in this chapter, is an extension of [7] and [16]. We have
extended the work done in [16], adding support for nested futures, adding new
configuration options, along with numerous changes to bring the implementation
in-line with ProActive(3.9). The experiments presented in this section are carried
in collaboration with the authors of [16].

Finally, while our implementation is not fully optimised, we believe that it pro-
vides a good starting point for studying the behaviour of various future update
strategies. We have only presented some initial results to show the viability of hav-
ing multiple strategies. We hope to carry out larger scale case studies to better
explore the pros and cons of various strategies in the future. Even without such a
case study, we believe that the work presented in this chapter and in Section 3.4
provides sufficient justification for studying future update strategies in detail.

We think that the presented analysis and the results of experiments presented
in this chapter, will help answering to the non-trivial question: “Which is the best
future update strategy”? There is no single best strategy, rather the strategy should
be adopted based on the application requirements, to summarise:

• Eager forward-based strategy is more suitable for scenarios where the number
of intermediate processes is relatively small and the future value is not too big
(due to required serialisation-deserialisation at intermediate points). Also, the
distributed nature of future updates results in less overloading at any specific
process. However, the performance of the strategy degrades rapidly as the
number of intermediate processes increases, as more and more time is spent in
serialisation-deserialisation. On the other hand, the strategy is relatively less
complex to implement and the computed results can easily be garbage collected.

• Eager message-based strategy is more adapted for process chains since it ensures
that all updates are made in relatively constant time. All updates are made by
the process computing the result value. Due to the centralised nature of the
updates, the computing process needs the information about the processes which
holds the future reference. This can be achieved using a registration mechanism
where all processes that receive the future reference are registered. Once the

80 Chapter 4. Implementing Future Update Strategies in ProActive

results become available, they are sent to all registered processes using group
communication (or concurrent thread pool) mechanisms. As a consequence of its
centralised nature, eager message-based strategy may require more bandwidth
and resources at the process that computes the future. The computed result for
a particular future may be safely garbage collected once all the registered future
recipients have received the future value and no future reference (corresponding
to this result) is in transit.

• Lazy strategy is better suited for cases where the number of processes that re-
quire future value is significantly less than the total number of processes which
receive the future. The approach tries to minimise the number of future updates
by delaying the registration of future recipients until there is a wait-by-necessity,
i.e, the process blocks on a future. Lazy message-based closely resembles the
eager message-based strategy without the mandatory registration of future re-
cipients. All updates are done by the computing process centrally, and in one
hop. Considerable savings in network load can be achieved but this has to be
balanced against the additional delay inherent in the design of lazy approach.
Also, as registration messages may arrive at any time, all computed results have
to be stored, which requires more memory resources.

This part of the thesis focused on specification and implementation of future
update strategies. The next part formally specifies a component model and a future
update strategy for that model. Such a formalisation will allow us to prove the
correctness of future update mechanism.

Part II

Formal Reasoning on
Components: Semantics and

Proofs

Chapter 5

A Framework for Reasoning on
Component Composition

Contents
5.1 Background: Isabelle/HOL 85

5.1.1 Isabelle/HOL Syntax . 86
5.2 An Asynchronous Component Model with Futures 89

5.2.1 Component Model Overview 90
5.2.2 Component Structure . 90
5.2.3 Communication Model . 92
5.2.4 Component Behaviour . 93
5.2.5 Why First Class Futures in GCM ? 94

5.3 Formalisation of a Component Model in Isabelle/HOL . . . 96
5.3.1 Component Structure . 97
5.3.2 Efficient Specification of Component Manipulation 98
5.3.3 Component State . 103
5.3.4 Correct Component . 106
5.3.5 Basic Properties on Component Structure and Manipulation 107
5.3.6 Properties on Component Correctness 109

5.4 Runtime Reconfiguration of Components 111
5.4.1 Complete Component . 112
5.4.2 Reconfiguration Primitives: Unbind and Replace 113

84 Chapter 5. Framework for Reasoning on Component Composition

Component models focus on program structure and improve reusability of pro-
grams. In component models, application dependencies are clearly identified by
defining interfaces (or ports) and connecting them together. The structure of com-
ponents can also be used at runtime to discover services or modify component struc-
ture, which allows for dynamic adaptation; these dynamic aspects are even more im-
portant in a distributed setting. Since a complete system restart is often too costly,
a reconfiguration at runtime is mandatory. Dynamic replacement of a component
is a sensitive operation. Reconfiguration procedures often entail state transfer, and
require conditions on the communication status. A suitable component model needs
a detailed representation of component organisation together with precise commu-
nication flows to enable reasoning about reconfiguration. That is why we present
here a formal model1 of components comprising both concepts.

This chapter provides support for proving properties on component models in
a theorem prover. Our objective is to provide an expressive platform with a wide
range of tools to help the design of component models, the creation of adaptation
procedures, and the proof of generic properties on the component model. Indeed
most existing frameworks focus on the correctness or the adaptation of applications;
we focus on generic properties. In this context, introduction of mechanised proofs
will increase confidence in the properties of the component model and its adapta-
tion procedures. Mechanised proofs remove the possibility of human errors that are
possible with the traditional pen-and-pencil proofs; in particular removing the pos-
sibilities of proving wrong statements given that the underlying logic is consistent
and valid. We start from a formalisation close to the component model specification
and implementation; then we use a framework allowing us to express properties in a
simple and natural way. This way, we can convince the framework programmer and
the application programmer of the safety of communication patterns, optimisations,
and reconfiguration procedures.

We write our mechanised formalisation in Isabelle/HOL but we are convinced
that our approach can be adapted to other theorem provers. The generic meta-logic
of Isabelle/HOL constitutes a deductive frame for reasoning in an object logic. Is-
abelle/HOL also provides a set of generic constructors, like datatypes, records, and
inductive definitions; those constructs support natural definitions of new objects
while automatically deriving proof support for these definitions. Isabelle has auto-
mated proof strategies: a simplifier and classical reasoner, implementing powerful
proof techniques. Isabelle, with the proof support tool Proofgeneral, provides an
easy-to-use theorem prover environment. For a precise description of Isabelle/HOL
specific syntax or predefined constructors, please refer to the Isabelle/HOL tuto-
rial [12].

The chapter is organised as follows; Section 5.1 presents the Isabelle/HOL the-
orem prover along with basic constructs and syntax of HOL. Section 5.2, covers the
component models giving an informal view of our formalised components and the
communication model. A framework for reasoning on components in Isabelle/HOL

1The formalisation of GCM presented in this chapter has been published in [13].

5.1. Background: Isabelle/HOL 85

is discussed in Section 5.3; We present the basic component structure and the infras-
tructure functions and lemmas that allows us to efficiently manipulate component
structure and traverse component hierarchy. Some properties on components are
also presented. Section 5.4.2 present formalisation of two configuration primitives
and first proofs on some related lemmas. We position our work with respect to
other works on reasoning frameworks and formal semantics and provide concluding
remarks in Chapter 7.

5.1 Background: Isabelle/HOL

Isabelle [94] is a generic system for formalising various logics, implemented in ML [35];
Isabelle carries a syntactical similarity with ML. Isabelle/HOL [95, 12] is a spe-
cialisation, providing a generic interactive theorem proving framework, that allows
implementation of formalised object logic using Higher Order Logic (HOL). The
generic meta-logic of Isabelle/HOL constitutes a deductive framework for reasoning
in an object logic. Isabelle/HOL also provides a set of generic constructors, like
datatypes, records, and inductive definitions supporting natural definitions ; those
constructs support natural definitions of new objects while automatically deriving
proof support for these definitions. Semantic properties over datatypes can be ex-
pressed in a clear manner using primitive recursion which is supported by powerful
proof automation using rewriting techniques. Isabelle has a simplifier and classical
reasoner, to support automated proof strategies. Isabelle, with the proof support
tool Proofgeneral, provides an easy-to-use theorem prover environment.

Isabelle supports a variety of logics, organised in different theory libraries. Ex-
amples of such libraries include the Higher-Order Logic library, First-Order Logic
library, etc., providing the implementation of higher order logic (HOL) and first
order logics respectively. Each library is a collection of theory(Re’s). A theory
in Isabelle is analogous to a module in programming languages. Each theory con-
tains collection of types, functions, theorems and lemmas, etc. For example, the
Isabelle/HOL theory List provides the data type list and the various assorted func-
tions to manipulate lists. Similarly, it provides various useful lemmas on finite lists
that may be used for proofs.

Higher Order Logic (HOL) is characterised by two key differences from other
logics such as first order logic (FOL). First, HOL allows quantification over predi-
cates; second, the higher order logic allows for predicates which can take one or more
predicates as arguments. This makes higher order logics more expressive as com-
pared to first and second order logics, but undecidable; we need a theorem prover
to specify how to prove HOL properties. In the following we give a brief overview
of various linguistic constructs used in our proofs in Isabelle/HOL.

Our goal in this section is to provide a basic overview of Isabelle/HOL, with
the aim of improving the comprehension of our formalism, in particular our proofs.
For a precise description of Isabelle/HOL specific syntax or predefined constructors,
please refer to the Isabelle/HOL tutorial [12].

86 Chapter 5. Framework for Reasoning on Component Composition

5.1.1 Isabelle/HOL Syntax

types The Higher order logic in Isabelle/HOL is encoded in theory HOL and has a
syntax which follows that of λ−calculus and functional programming. In addition,
Isabelle/HOL is a typed logic, with a type system based on ML types. HOL provides
some built-in basic types like bool for representing truth values and nat for natural
numbers. Ordered pairs (a1, a2) are also supported and have the type τ1× τ2 where
each ai is of type τi. The datatype option allows for extending an existing type for
some exceptional case. Each type has associated functions some of which appear
in our formalism, like functions fst: extract first element, and snd: extract second
element for ordered pairs. Using an example from our formalisation, Fid is an
ordered pair where first element is of type nat and the second element is of type
Name (a user defined type). fid has the type Fid and snd (fid) extracts the name.

types Fid = nat× Name
...
fid:: Fid
...
snd (fid)

It should be noted that keyword types only defines a synonym for some existing
types. Internally, all mentions of Fid are replaced by the elements on the right
hand side of the definition (nat × Name). The keyword datatype can be used to
construct new (possibly recursive) datatypes. For example, the following piece of
code declares a new datatype ItfKind which ranges over Client or Server. We can
define fields of this datatype ItfKind; kind is of datatype itfKind.

datatype ItfKind= Client | Server
...
kind:: ItfKind

Isabelle/HOL ships with a number of theories which provide important datatype
and assorted functions and properties. These include the the theory List and Set
both of which are used extensively in our formalisation. The theory List provides
the datatype list for finite list of elements, while Set provides the implementation
of Set-theory for HOL. A large number of supporting functions and properties are
available both lists and sets. We have seen definition of type Fid, using the same
pattern we can define the type Value:

types Value = nat × (Fid list)

The above piece of code defines a type Value as a pair, the second element of which
is of list of type Fid. Fid list is a type constructor for a list each of whose
elements has the type Fid. The theory List contains a collection of functions for
manipulating lists. These include, hd head element of list, tl tail of a list, map apply
to all elements, filter pattern matching, etc. Similarly, we can use type set for

5.1. Background: Isabelle/HOL 87

declaring sets of a given type of elements. The theory Set provides operations and
properties on common set theory notions such as union ∪, intersection ∩, subset
⊆, etc., as well as operations on relations such as converse, transitive closure, etc.
Set comprehension can be used for defining sets ; {x. P} is the set of all elements
that satisfy the predicate P. Sets in Isabelle/HOL are typed, i.e, all elements of a
set share the same type τ . Finite sets are also supported. Although, Isabelle/HOL
allows inductive definitions for sets, not much support is available for inductive
reasoning on finite sets. Lists are extensively supported and provide convenient
mechanism for inductive reasoning, simplifying the proofs. As a result, we use lists
extensively in our formalisation. Finally, elements of type list are easily converted
into sets using the list function set. This is particularly convenient in our case where
we need to quantify over elements in a set representation of a list. For example, for
a field val of type Value, the set operation returns a set representation of the Fid
list, allowing us to quantify over its elements.

types Value = nat × (Fid list)
...
val:: Value
...
∀ id ∈ (set (snd val))
...

functions Functions in Isabelle are curried and the symbol ⇒ is used for giving
function type. For example, (Fid list)⇒(Fid set) indicates a function which
takes an element of type Fid list as input and produces an output of type Fid
set. In general, to apply a function f on arguments a and b we write (f a b). The
braces here are optional and the type of the function f is τ1 ⇒ τ2 ⇒ τ3. Functions
on datatypes in Isabelle/HOL are usually defined by recursion. Primitive recursive
functions are defined using the keyword primrec while non-recursive functions can
be defined using constdef. For example, we may define a trivial function fidSet
as:

constdefs fidSet:: Fid list ⇒ Fid set
fidSet FL == (set FL)

The primitive recursive functions may be defined in a similar manner. An ex-
ample of such a function getName appears in in Section 5.3.2. Without going into
details of the function, getName takes an input of user defined type Component and
returns an output of the user defined type Name. There must at most be one equa-
tion for each constructor although the order in which they appear is irrelevant. As
the datatype Component (Section 5.3.1) can be either Primitive or Composite, we
have two equations.

primrec getName:: Component ⇒ Name where
getName (Primitive ...) = ... |
getName (Composite ...) = ...

88 Chapter 5. Framework for Reasoning on Component Composition

records Records are quite common datatype in functional programming. Records
allow us to group multiple fields into single collection. Each field of a record has a
specific type, and the names of the fields are part of the record type (the order of
fields is significant). The record Result in the following contains two fields fid and
fValue of types Fid and Value respectively. The exact significance of this record
and its constituent fields appears in Section 5.3.1.

record Result =
fid::Fid
fValue:: Value

Records provide a number of useful operations and properties. Records define field
projection as functions, e.g. for a Result res, (fid res) accesses its field fid.

lemmas and theorems Isabelle/HOL uses the keyword theorem to define the-
orems while keyword lemma is used for defining lemmas. In Isabelle/HOL lemmas
and theorem are used in a similar manner and can be interchanged. In our for-
malisation, we use lemma to define intermediate and supporting properties where as
major results are declared as theorem(s). The syntax for both lemmas and theorems
is as follows:

theorem Name: ...(body of theorem) or lemma Name: ...(body of lemma)
...
lemma trivial_lemma: fidSet(FL) = (set FL)

Each lemma and theorem has a name through which it may be applied in a
proof. trivial_lemma shows how a lemma may be defined. The lemma can be
easily proved by using the definition of function fidSet.

Isabelle uses two different symbols to show implication, both of which appear
frequently in our Isabelle/HOL formalisation. While both =⇒ and −→ stand of
implication, they are used in different contexts. =⇒ is meta-level implication and
is used in our code for separating assumptions from conclusions in Isabelle. On
the other hand, whenever we need to express implication inside the HOL code, we
use −→ for implication. Lemmas with Implication inside the HOL code can be
reformatted to use meta-level implication instead. In the formalisation presented
in this thesis, we always reformat our lemmas to use meta-level implication for
consistency. Lemmas and theorems may have more than one assumptions, separated
by conjunction ∧ in HOL. At the meta-level the square brackets J.. ; ..K replaces
the conjunction.

lemma trivial_lemma2: J f ∈ fidSet(FL); assumption2 K =⇒ f ∈ (set FL)

conditional expressions and optional datatype HOL supports some basic
functional programming constructs for conditional expressions. Two such construct
appear in the presented formalisation. The if construct is shown in the following
piece of code. It should be noted that b must be of type bool while τ1 and τ2 should
have the same type.

5.2. An Asynchronous Component Model with Futures 89

if b then τ1 else τ2 ..(* if then else construct *)

The optional datatype can be used for extending an existing datatype by an addi-
tional case, representing some exception. We use it to model functions that may
return either some value (Some v) or may indicate an exceptional case like for ex-
ample, the case where no match is found or a value does not exist, etc. None). For
example, we may use a case with the option datatype as follows:

primrec foo:: Fid list ⇒ Name option where
foo [] = None |
foo FL = snd (hd FL)

...
case foo someList of

None ⇒ ... (* list is empty *)
Some N ⇒ ... (* found *)

5.2 An Asynchronous Component Model with Futures

A component is defined as a piece of software with well-defined server and client
interfaces (also called input and output ports). To increase scalability of the model,
components can be designed in a hierarchical way: each component can be composed
of other components. To better benefit from the component structure,we choose a
component model where components are represented and can be manipulated at
run-time; this allows dynamic reconfiguration and adaptability of component-based
applications. Our work on formalisation is placed in the context of the GCM (Sec-
tion 2.5.8); our component model is a subset of GCM model with precise semantics,
and aims at proving the correctness of GCM reference implementation in ProAc-
tive/GCM. Our component model goes one step further in the autonomicity of
the components: each component is a unit of deployment and of concurrency, i.e.
components only interact by asynchronous requests, each component has its own
threads, and components do not share memory. In this context, structured commu-
nication impose the use of futures, empty objects representing an awaited result for
such asynchronous requests. To increase asynchronism, our futures are first class;
meaning a future may be passed as parameter of requests or as part of return values.
As a consequence, futures spread everywhere. Under reasonable hypotheses, it has
been shown that the order in which results are returned has no influence on the
computation [7].

The following sections define a subset of the GCM model, which we refer to as
GCM-like model, but with a precisely defined semantics. This model incorporates
hierarchical components, and asynchronous communication with futures, it uses a
request-reply model.

90 Chapter 5. Framework for Reasoning on Component Composition

5.2.1 Component Model Overview

Our intent is to build a mechanised model of the GCM component model but giving
it a runtime semantics so that we can reason on the execution of component appli-
cation and their evolution. Thus we start by describing the concepts of the GCM
which are useful for understanding the work presented in this chapter. We try
to distinguish clearly structural concepts that are proper to any hierarchical com-
ponent model and a runtime semantics that relies on asynchronous requests and
replies. Structurally, the model incorporates hierarchical components that commu-
nicate through well defined interfaces connected by bindings. Communication is
based on a request-reply model, where requests are queued at the target component
while the invoker receives a future. The component model has been presented in
[1, 13]2 and is detailed in the following subsections.

5.2.2 Component Structure

Our model inherits most of its structure from GCM. GCM allows hierarchical com-
position of components. This composition allows us to implement a coarse-grained
component by composition of several fine-grained components. We use the term
composite component to refer to a component containing one or more subcompo-
nents. On the other hand, primitive components do not contain other components,
and are leaf-level components implementing business functionality. A component,
primitive or composite, can be viewed as a container comprising two parts. A cen-
tral content part that provides the functional characteristics of the component and
a membrane providing the non-functional operations. Similarly, interfaces can be
functional or non-functional. In our work and in the following description, we focus
only on the functional content and interfaces.

non-functional server interfaces
(binding, contents, lifecycle, ...)

controller part

content part

client interface

internal interface

server interface non-functional client interface

external interface

Figure 5.1: High level view of a GCM component [1]

The only way to access a component is via its interfaces. Client interfaces al-
low the component to invoke operations on other components. On the other hand,

2We discuss the differences between previous work[1], and our work in [13] in Chapter 7.

5.2. An Asynchronous Component Model with Futures 91

Server interfaces receive invocations. A binding connects a client interface to the
server interface that will receive the messages sent by the client. For composite
components, an interface exposed to a subcomponent is referred to as an internal
interface. Similarly, an interface exposed to other components is an external inter-
face. All the external interfaces of a component must have distinct names. Here,
to simplify the model, each external functional interface of a composite has a cor-
responding internal interface. The implicit semantics is that a call received on a
server external (resp. internal) interface will be transmitted – unchanged – to the
corresponding internal (resp. external) client interface. Figure 5.1 shows different
parts of a GCM component. The interfaces shown horizontally are the functional
interfaces, while non-functional interfaces are shown vertically. Similarly, we show
the server interfaces on the left, while client interfaces appear on the right. The
figure also shows the various external and internal interfaces.

In Fractal3, both the functional and non-functional external interfaces may or
may not be connected to an internal interface; for example, the non-functional
request may be handled by the membrane rather than sub-components in the content
part. In our presented model, for simplicity, each external server functional interface
has a corresponding internal interface which serves to delegate a received request
to the content part of the component. Non-functional interfaces are not at all
represented; we only model functional interfaces here.

primitive
component

primitive
component

bindingComposite component

Figure 5.2: Component composition

The GCM model allows for a client interface to be bound to multiple-server
interfaces; such client interfaces are referred to as multi-cast interfaces. For the
moment, in our model, we restrict the binding cardinality such that bindings connect
a client to a single server. Note that several bindings can anyway reach the same
server interface.

Figure 5.2 shows a component system with two components, a primitive compo-
nent, and a composite component along with the bindings connecting them and the
various component interfaces. The composite component itself is composed of two
primitive subcomponents. The requests arriving at the external server interface of
the composite component are delegated to corresponding internal client interface,

3recall that GCM is derived from Fractal (Section 2.5.8).

92 Chapter 5. Framework for Reasoning on Component Composition

which forwards the request to the server interface of the subcomponent. Similarly.
the subcomponents may communicate to outside components via internal server
interface of the composite.

Request queue

Results

In
co

m
in

g
Re

qu
es

ts
Execution Thread
(serving requests) O

ut
go

in
g

Re
qu

es
ts

Server
Interface

Client
Interface

Figure 5.3: Structure of a primitive component

5.2.3 Communication Model

Our GCM-like components use a simple communication model relying on asyn-
chronous request and replies, as presented in [1] and in Chapter 3. Communication
via requests is the only means of interaction between components. We avoid shared
objects or component references, and use a pass-by-copy semantics for request pa-
rameters. A component receives the requests on its external server interface. The
received requests are then enqueued in the request queue, which holds the messages
until they can be treated. Enqueuing a request is an atomic operation; implemented
using rendez-vous mechanisms to ensure causal ordering of requests. Our commu-

primitive component

primitive component

N1

N2

i1

i2

Nc

Results

Request Queue

Figure 5.4: Example composite component

nication model is asynchronous in the sense that the requests are not necessarily
treated immediately upon arrival. Requests are only enqueued at the target compo-
nent, then the component invoking the request can continue its execution without
waiting for the result. Enqueuing a request is done synchronously but the receiver is
always ready to receive a request. To ensure transparent handling of asynchronous
requests with results, we utilise futures. Futures are created automatically upon

5.2. An Asynchronous Component Model with Futures 93

request invocation and represent the request result, while the treatment of the re-
quest is not finished. Once the result of the computation is available, the future is
replaced by the result value. Futures are first class objects: they can be transferred
as part of requests or results. Figure 5.3 gives the internal structure of a primitive
component. Incoming requests are enqueued in the request queue. The requests
are dequeued and are served by one or more execution threads. when an execution
thread finishes execution and a result is computed, the result is placed in the results
list for future use. Similarly, an example of the possible structure of a composite
component appears in Figure 5.4. Composite components have subcomponents and
bindings in addition to the request queue and the results list. Instead of executing
the requests themselves, composite components delegate the requests to the bound
subcomponents for execution.

5.2.4 Component Behaviour

In our model, the primitive components represent the business logic and can have
any internal behaviour. Primitive components treat all the requests they receive,
choosing a processing order and the way to treat them. They can call other com-
ponents by emitting a request on one of their client interface. Each primitive com-
ponent must always be able to accept a request (enqueued in its request queue),
and to receive a result (that will replace a future reference). Once the service of a
request is finished, the produced result is stored in the computed results, which is a
mapping between futures and computed values. It can then be transmitted to other
components, as determined by the future update strategy [9, 14].

Figure 5.5 summarises the behaviour of a primitive component, which is gov-
erned by a labelled transition system Behaviour. A primitive component’s behaviour
allows it to: do some internal processing, emit a request towards other components,
serve a request from its request-queue, transmit results towards other components,
and receive results from other components. Results may only be produced for an
executed request, while results from other components may arrive at any time. For-
malisation of the behaviour LTS appear in Section 5.3.3; while we deal with the
runtime semantics for our component model in the presence of a future update
strategy in Section 6.2.1.

As opposed to the primitive components, the behaviour of a composite compo-
nent is more restricted: it is strictly defined by its constituent subcomponents and
the way they are composed. A composite component serves its requests in a FIFO
manner, delegating them to other components bound to it. A delegated request
is delivered unchanged to the target component. Overall, a request is emitted by
a client interface of a primitive component, and received unchanged by the server
interface of the primitive component that is (indirectly) bound to it; this request
may transit through several composite components and bindings.

94 Chapter 5. Framework for Reasoning on Component Composition

N0 Serve request Emit request

Receive result
Send result

Internal action

Figure 5.5: Behaviour of primitive components

5.2.5 Why First Class Futures in GCM ?

As previously stated, we formalise a subset of GCM model. It is composed of
hierarchical components which communicate via asynchronous method calls. The
asynchronous communication is achieved through futures. Futures are first class
entities, i.e., futures may be passed as method arguments and return values; as a
result futures spread everywhere. First class futures add additional complexity to the
component model and its possible real world implementations. However, first class
futures not only improve concurrency, but are quite necessary for mono-threaded
component models like ProActive/GCM, which can be considered as one possible
implementation of our formalised GCM-like model. Following example illustrates
why first class futures are essential here for avoiding deadlocks.

N0

N1

N2

Figure 5.6: First Class Futures in GCM (a)

Consider the component system shown in Figure 5.6, consisting of two top level
components N0 and N2. The composite component N0 is plugged into component
N2 through its external client interface (right most green interface). The composite
N0 itself wraps a primitive subcomponent N1. As presented in Section 5.2.2 and
Section 5.2.3, the requests arriving at the external server interface of N0 (leftmost
interface shown in red), are delegated to the server interface of subcomponent N1.
Similarly, subcomponent N1 may communicate to outside components, for example
component N2, using its external client interface (the interface shown in green on
right side of N1). Such a communication in fact, is relayed through the internal

5.2. An Asynchronous Component Model with Futures 95

server interface of composite component N0 (shown in red on right side of N0).
The next couple of figures demonstrate how even this simple component system can
deadlock without first class futures.

N0

N1

N2

Figure 5.7: First Class Futures in GCM (b)

Figure 5.7 shows the arrival of a request (shown by a yellow sphere) at composite
component N0 intended for subcomponent N1; the blue arrow shows the intended
destination of this method call. Upon arrival at composite N0, the request is en-
queued in the message queue, while the invoker (not shown in diagram) receives a
future. The execution thread of composite component N0, dequeues the request and
delegates this request to the subcomponent N1, where it is enqueued in the message
queue of N1; N0 receives a future as a result of this delegation. In case of futures
that are not first class objects, N0 is blocked, waiting for the actual value of the
future for the delegated request.

N0

N1

N2

Figure 5.8: First Class Futures in GCM (c)

At some stage, the subcomponent N1 dequeues the request and starts executing
it. While executing the request, the subcomponent may attempt to communicate
to external components. Such a case is shown in Figure 5.8. All communications
to external components must be relayed via the composite component. The sub-
component N1 sends a request (invokes a method) on the internal server interface
of the parent composite N0. The new request is enqueued in the message queue of
N0 while N1 receives a future. The system is deadlocked as shown in Figure 5.9, as
N0 is still blocked waiting for the result of first future.

The subcomponentN1 cannot finish the execution of the request unless it receives

96 Chapter 5. Framework for Reasoning on Component Composition

N0

N1

N2

Figure 5.9: First Class Futures in GCM (d)

the reply from N2. However, the new request cannot be delegated to N2 because
the execution thread of composite N0 is blocked waiting for the result of the first
request; resulting in a deadlock.

As opposed to mono-threaded components of ProActive/GCM, components with
multiple execution threads may avoid deadlocks. However, it will still lead to a
number of threads being blocked. Treating futures as first class entities, allows to
side step any such situation.

5.3 Formalisation of A GCM-Like Component Model In
Isabelle/HOL

We present here a framework that mechanically formalises a distributed hierarchi-
cal component model and its basic properties. We show that this framework is
expressive enough to allow both the expression of component semantics and the
manipulation of the component structure. Benefiting from our experiences with
different possible formalisations, and from the proof of several component proper-
ties, we can now clearly justify the design choices we took and their impact4. The
technical contributions of this chapter are the following:

• formal description in Isabelle of component structure, mapping component
concepts to Isabelle constructs,

• definition of a set of basic lemmas easing the proof of component-related prop-
erties,

• additional constructs and proofs to ensure well-formedness of component struc-
tures,

• application to the design and first proofs about component reconfiguration.

We start with formalising the structure of our components. Based on the struc-
ture defined, we present some of the various infrastructure operations that allow us
to manipulate the components for proving properties. Then we formalise additional

4The GCM specification framework is available at www.inria.fr/oasis/Ludovic.Henrio/misc

www.inria.fr/oasis/Ludovic.Henrio/misc

5.3. Formalisation of Component Model In Isabelle/HOL 97

constructs to define component’s state and request handling, and correctness of a
component assembly. Finally we provide a set of very useful lemmas dealing with
component structure and component correctness.

5.3.1 Component Structure

As we have seen in Section 5.2.2, a component in our model can either be a composite
or primitive. A composite component comprises one or more subcomponents. On
the other hand, a primitive component is a leaf-level component encapsulating the
business logic. We define a component as:

datatype Component = Primitive Name Interfaces PrimState
| Composite Name Interfaces (Component list) (Binding set) CompState

The above Isabelle/HOL datatype definition for Components has two construc-
tors Primitive and Composite. We present below the various elements that make
up the structure of our components.

Name: Each component has a unique name. We use this name as the component
identifier/reference.

Interfaces: Each component has a number of public interfaces. All com-
munication between components is via public interfaces. An interface can
be either client or server and by construction a component cannot have two
interfaces with the same name. Although GCM allows for both functional and
non-functional interfaces, in our formalisation we focus only on functional interfaces.

Subcomponents: Composite components have a list of subcomponents, given by
the Component list parameter. Primitive components, on the other hand are leaf-
level components encoding business logic and do not have subcomponents.
Bindings: In composite components, a binding allows an interface of one compo-
nent to be plugged to an interface of a second component. As shown in Figure 5.10,
(N1.i1, N2.i2)∈ bindings if the interface i1 of component N1 is plugged to the
interface i2 of N2 where N1 or N2 can either be component names or This if the
plugged interface belongs to the composite component that defines the binding.
State: All components, primitive or composite have an associated state. Compo-
nent state is discussed in more detail in Section 5.3.3.

Design decisions. For presenting our component model, we choose a representa-
tion that include static information like component interfaces and bindings. This al-
lows our model to be expressive enough to support properties and proofs interleaving
the component structure and more dynamic features like future update strategies.
On a longer term basis it will also allow us to prove properties on component recon-
figuration. In the Isabelle/HOL formalisation we chose to include the name of the
component into the component itself. Like for interfaces, a first intuitive approach

98 Chapter 5. Framework for Reasoning on Component Composition

primitive component

Composite component

primitive omponent

N1

N2

i1

i2

Nc Message
Queue

{N1.i1, N2.i2} ∈ bindings

Figure 5.10: Composite Component

could be rather to define subcomponents as mappings from names to components.
There are, however, major advantages to our approach. When we reason about a
component we always have its name, which makes the expression of several seman-
tic rules and lemmas more natural. The main advantage of maps is the implicit
elegant encoding of the uniqueness of Name(s). As mentioned before, Name(s) are
used as component references. Unfortunately, this advantage of maps is quite low
in a multi-layered component model because a map can only serve one level. As we
want component names to be unique globally, a condition on name uniqueness is
necessary. Adding the component Name directly to the component makes it easier
to ensure and test the uniqueness condition.

Subcomponents are defined as lists rather than finite sets because lists come
with a convenient inductive reasoning easing proofs involving component structure.
Of course it is easy to define an equivalence relation to identify components mod-
ulo reordering. On the contrary the bindings of a component are defined as a set
because no inductive reasoning is necessary on bindings, and sets fit better to the
representation of this construct.

Having a formalisation of component structure alone, although useful, is not
sufficient. An adequate infrastructure needs to be developed to help in reasoning
on the component model. The next section describes some of the infrastructure
operations that allow us to manipulate components inside component hierarchies.

5.3.2 Efficient Specification of Component Manipulation

This section provides various operations that allow us to effectively manipulate com-
ponents. These include operation for accessing component fields, mechanisms for
traversing component hierarchies, and means for replacing and updating compo-
nents inside the hierarchical structure. All these operations are primitive recursive
functions enabling an encoding in Isabelle/HOL using the primrec construct. Using
this construct has great advantages for the automation of the interactive reasoning
process. Automated proof procedures of Isabelle/HOL, like the simplifier, are auto-
matically adapted to the new equations such that simple cases can be solved auto-

5.3. Formalisation of Component Model In Isabelle/HOL 99

matically. Moreover, the definitions themselves must use pattern matching leading
to readable definitions.

Field access We define a number of operations for accessing various fields. These
include the function getName and getItfs. The function getName returns the Name
of the component.

primrec getName:: Component ⇒ Name where
getName (Primitive N itf s) = N |
getName (Composite N itf sub b s) = N

The function getItfs can be used to retrieve the the component interfaces Itf.
Similarly, we define getQueue, and getComputedResults for getting interfaces, re-
quest queues and replies. Requests and replies are part of the component state
described in Section 5.3.3.
primrec getItfs:: Component ⇒ Name -~> Interfaces where

getItfs (Primitive N itf s) = itf |
getItfs (Composite N itf sub b s) = itf

Accessing component hierarchy In order to support hierarchical components,
we need a number of mechanisms to access components inside hierarchies. These
range from simply finding a suitable component inside a component list to updat-
ing the relevant component with another component. The most useful of these
operations are detailed below.
cpList: returns a list of all subcomponents of a component recursively. It uses the
predefined Isabelle/HOL list operators # for constructing lists and @ for appending
two lists. Note that the following primitive recursive function is mutually recursive
and needs an auxiliary operation dealing with component lists. The final produced
list is a view of the composite components and all its subcomponents recursively.
The cpList of a primitive component contains one element, the primitive compo-
nent itself. For a composite component, the cpList is a list constructed using the
composite component itself, concatenated with the list of subcomponents of of all its
subcomponents recursively. The auxiliary function cpListList, takes a component
list and returns a concatenated list of CpLists of each component in the input list.

primrec cpList:: Component ⇒ Component list and
cpListlist:: Component list ⇒ Component list

where
cpList (Primitive N itfs s) = [(Primitive N itfs s)] |
cpList (Composite N itfs subCp bindings s) =

(Composite N itfs subCp bindings s)#(cpListlist subCp) |
cpListlist [] = [] |
cpListlist (C#CL) = (cpList C)@ cpListlist CL

cpSet: gives a set representation of the cpList of a component. This allows us to
write properties in a much more intuitive way, for example, quantifying over sub-
components is easily written as ∀ C’∈ cpSet(C). Note however that a few proofs

100 Chapter 5. Framework for Reasoning on Component Composition

require to stick to the cpList notation, while one is not sure that two identical
components cannot coexist in the hierarchy. In case there are two identical com-
ponents, the set representation retains only one, therefore loosing the information
needed for proving uniqueness. Also, this allows us to take advantage of the var-
ious constructors for sets and make efficient use of the support for set theory in
Isabelle/HOL where needed.

constdefs cpSet :: Component ⇒ Component set
cpSet C == set (cpList C)

cpListSet: gives a set representation of a list of component lists, for all the same
reasons as mentioned above for cpSet.

constdefs cpListSet :: Component list ⇒ Component set
cpListSet CL == set (cpListList CL)

getCp: allows for retrieving a given component from a component list based on the
component Name. The constructors Some and None represent the so-called option
datatype enabling specifications of partial functions. Here, a component with the
given name might not be defined in the list – this is nicely and efficiently modelled
by a case distinction over the option type. Note the definition of ˆ as an infix
operator synonymous for getCp. This so-called pretty printing syntax of Isabelle
supports natural notation of the form CLˆN = Some C’.

primrec getCp:: Component list ⇒ Name ⇒ Component option (infix ‘ ^ ’)
where

getCp [] N’ = None |
getCp (C#CL) N’ = if (getName C=N’) then Some C else (CL^N’)

getSubCp: allows for retrieving a given subcomponent from a component. Note
that getSubCp itself relies on getCp. The function only searches the list of subcom-
ponents, and does not step inside the component hierarchy.

primrec getSubCp:: Component ⇒ Name ⇒ Component option where
getSubCp (Primitive N itfs s) N’ = None |
getSubCp (Composite N itfs subCp bindings s) N’ = sub^N

getRecSubCp: allows to retrieve a subcomponent recursively from a component.
Similar to cpList, the function getRecSubCp (written as ˆˆ) is mutually recursive
and needs an auxiliary operation dealing with component lists. We again use the
option datatypes to specify a partial function. The function uses the auxiliary
getRecSubCpList to step inside each subcomponent and attempts to locate the
subcomponent with the specified name throughout the component hierarchy.

5.3. Formalisation of Component Model In Isabelle/HOL 101

primrec getRecSubCp:: Component ⇒ Name ⇒ Component option (in-
fix ‘ ^^ ’) and

getRecSubCp:: Component list ⇒ Name ⇒ Component option
where
getRecSubCp (Primitive N itfs s) N’ = (if (N=N’) then

Some (Primitive N itf s) else None)|
getRecSubCp (Composite N itf sub b s) N’ = (if (N=N’) then

Some (Composite N itf sub b s)
else (getRecSubCpList sub N’) |

getRecSubCpList [] N = None |
getRecSubCpList (C#CL) N= (case (getRecSubCp C N) of

Some C’ ⇒ Some C’ |
None ⇒ (getRecSubCpList CL N))

changeCp: Given a component list CL and a component C, the changeCp function
(written as CL<-C) replaces the component in the list CL having the same name as
(getName C) by the component C; it does nothing if there is no component with
the given name. Similarly, a changeSubCp function (not shown here) works with
subcomponents.

primrec changeCp::Component list⇒ Component⇒ Component list (infix‘<-’)
where

changeCp [] C = [] |
changeCp (C#CL) C’ = if getName C=getName C’ then C’#CL else C#(CL<-C’)

removeSubCp: Given a component C with Name N, removes the subcomponent of
C with name N but does nothing if there is no subcomponent with this name. Note,
here the use of a case switch supporting again pattern matching in Isabelle/HOL
definitions.

primrec removeSubCp:: Component ⇒ Name ⇒ Component where
removeSubCp (Primitive N itf s) N’ = (Primitive N itf s) |
removeSubCp (Composite N itf sub b s) N’ = (case sub^N’ of

None => (Composite N itf sub b s) |
Some C => Composite N itf (remove1 C sub) b s)

Manipulating requests and futures Previous operations were purely dealing
with component structure. The next few operations deal with requests and futures;
they allow us to express properties on the runtime behaviour of components.

ComputedRqs: retrieves the list of request Ids for already computed requests in all
subcomponents inside a given component, without preserving the composition or-
der. The auxiliary function ComputedRqsList returns the set of request Ids for a list
of components. For a primitive component, the list of computed requests can be ob-
tained from the computed results attribute of component state (PcomputedResults).
More details on component state are provided in Section 5.3.3. For a composite
component, the operation is more complex and requires traversing the composition

102 Chapter 5. Framework for Reasoning on Component Composition

hierarchy using the auxiliary ComputedRqsList function. The complete set of com-
puted request Ids is a union of all computed requests inside the component and all
its subcomponents (and their subcomponents respectively) recursively.

primrec ComputedRqs:: Component ⇒ Fid set and
ComputedRqsList:: Component list ⇒ Fid set where

ComputedRqs (Primitive N itfs s) = (set (map fid (PcomputedResults s)))|
ComputedRqs (Composite N itfs subCp bindings s) =

(set (map fid (CcomputedResults s))) ∪
(ComputedRqsList subCp)|

ComputedRqsList [] = |
ComputedRqsList (C#CL)=(ComputedRqs C) ∪ ComputedRqsList (CL)

Similar operations are needed for dealing with other aspects of requests and
results. This includes operations for building lists of all referenced requests inside
a component (and its subcomponents), finding a result for a given future inside a
component hierarchy, etc. In all we provide almost 30 functions and predicates to
help express structured component specifications efficiently.

Future registration In order to support futures, we define a number of opera-
tions for efficient manipulation of futures and for validating necessary constraints
on futures. These operations are used later on in Chapter 6 for proving properties
on future updates. We present here some of those operations.

The RegisteredFuture operation verifies if the given future is registered in a
component system. More precisely, the operation checks if the component with
name N is registered for future f , in the future recipient list of of some component
in the component system S (getFutrMap C returns FRLC).

constdefs RegisteredFuture:: Fid ⇒ Name ⇒ Component ⇒ bool
RegisteredFuture f N S ≡ ∃ C RL. (((S^^(snd f)) = Some C)

∧ (((getFutrMap C) f)= Some RL) ∧ N ∈ set RL)

Using RegisteredFuture, we can now check if all the futures of a component C
are registered in the component system S. LocalReferencedRqs gives all the futures
referenced from a component, without entering its subcomponents (if component is
composite).

constdefs LocalRegisteredFuturesComp:: Component ⇒ Component ⇒ bool
LocalRegisteredFuturesComp C S ≡ (∀ f ∈ LocalReferencedRqs C.

RegisteredFuture f (getName C) S)

Finally, we can define an operation GlobalRegisteredFuturesComp, to verify if
all futures in a component system are registered.

constdefs GlobalRegisteredFuturesComp:: Component ⇒ bool
GlobalRegisteredFuturesComp S ≡ (∀ C ∈ (cpSet S).

(LocalRegisteredFuturesComp C S))

5.3. Formalisation of Component Model In Isabelle/HOL 103

Design decisions. It is crucial for the reasoning process whether one chooses
lists or sets to represent various parts of the specified component structure. As we
have seen above the basic infrastructure we have built up to handle our hierarchical
components is mainly based on lists. Consequently, we can define operations over
components and their constituents by primitive recursion and thereby decisively
improve automated support. However, sets come with a more natural notation.
Often set theoretic properties can be simply decided by boolean reasoning that
poses no problems for logical decision procedures integrated in Isabelle/HOL, and
Isabelle/HOL comes with numerous lemmas for reasoning on sets. On the other
side, inductive reasoning on finite sets is less convenient than on lists. In places
where we want to combine the merits of both worlds, the cpSet, cpListSet, etc.,
functions provides a convenient translation.

5.3.3 Component State

Our component model shall not only allow structural reasoning on hierarchical com-
ponents but also reasoning about dynamic component state. While the preceding
sections provided a good formalisation valid for any hierarchical component model,
we now define component state in order to support communication by request and
replies. Those constructs are then used to define our component semantics in Chap-
ter 6.

Let us first focus on the high level definition of states which provide the con-
structs relating the component structure with the dynamic semantics5. We show
below the two types of component states (for composite and primitive components)
used in the definition of Component presented in Section 5.3.1.

record CompState = record PrimState =
Cqueue:: Request list Pqueue:: Request list
CcomputedResults:: Result list PcomputedResults:: Result list

PintState:: intState
behaviour:: Behaviours

Each state contains a queue of pending requests, and a list of results computed
by this component. Additionally, primitive components have an internal state and
a behaviour for encoding the business logic, see below. We use the Isabelle/HOL
record type constructor here; it automatically defines field projection as functions,
e.g. for a Compstate s, (Cqueue s) accesses its request queue. Note that uniqueness
of fields identifier required us to add a ’C’ or ’P’ prefix to fields of component states
to distinguish them.

The definition of the component state relies on the definitions of requests (char-
acterised by a future identifier, a parameter, and a target interface), and results
(characterised by the future identifier and its value).

5The real definition of component states contains additional fields; only the more prominent
fields of interest are shown here.

104 Chapter 5. Framework for Reasoning on Component Composition

record Request = record Result =
id::Fid fid::Fid
parameter:: Value fValue:: Value
invokedItf:: Name

An interesting construct is the representation of component behaviour. Each
primitive component has an internal state. A behaviour specifies how a primitive
component passes from an internal state to another. It is defined as a labelled
transition system between internal states of a component:

The type Behaviours is defined as a set of triples (internal state, action, in-
ternal state). In our case actions are: internal transition Tau, request service
NewService, request emission Call, result reception ReceiveResult, and end of
service EndService which associates a result to a request. More than the precise
definition of our actions, it is interesting to focus on the way behaviour can be
defined and further refined by constraints. The set of possible labelled transitions
can be restrained to enforce the semantics. In the piece of code below we require
conditions on the internal state before and after an internal transition. We briefly
look at the conditions for each of the presented actions.

Tau: the set of referenced futures can only be smaller after an internal transition,
and the set of currently served requests is unchanged. The implied semantic is that
Tau operation can only forget futures, not create new ones.

NewService: the set of of known request ids after the transition is smaller than
the set of known request ids before the transition plus any request ids (future ids)
present inside the parameters. The id of the current request is added to the requests
being currently served.

Call: any new future id may be created for the result of the request, while any
futures sent as part of request must be known before the transition. The set of
referenced requests after the transition should be smaller than the set of referenced
requests before the transition plus the new future. There is no change to the set of
currently served requests.

ReceiveResult: the future id corresponding to the received results is removed
from the list of known request ids; the ids for any new futures inside the received
value however, become known after the transition. There can be no change in the
currently served requests. If the received result corresponds to an unknown future,
it is ignored, i.e., the state remains unchanged.

EndService: the end of service action implies that no new futures may be created,
however futures may be removed. Any futures inside the produced value must be
known before the transition and results may only be produced for currently served
requests. Finally, the request which has finished being served must not remain

5.3. Formalisation of Component Model In Isabelle/HOL 105

among currently served requests.

typedef Behaviours= { beh::(intState × Action × intState) set.
(∀ s s’. ((s,Tau,s’)∈ beh −→ (set (PRqRefs s’)⊆set (PRqRefs s))

∧ PcurrentReqs s’ = PcurrentReqs s)) ∧

(∀ s s’ i v f. ((s, NewService i v f,s’)∈ beh −→
(∀ v’ f’. ∃ s’ . (s, NewService i v’ f’,s’)∈ beh) ∧
set (PRqRefs s’)⊆ set (PRqRefs s)∪ set (snd v) ∧
(PcurrentReqs s’) = f#(PcurrentReqs s)))∧

(∀ s s’ i v f.((s,Call i v f,s’) ∈ beh −→ (
(∀ f’. ∃ s’’ . (s,Call i v f’,s’’) ∈ beh)
∧ set (snd v)⊆ set (PRqRefs s)
∧ set (PRqRefs s’)⊆ (set (PRqRefs s)∪ f)
∧ (PcurrentReqs s’) = (PcurrentReqs s)))) ∧

(∀ s s’ v f.((s,ReceiveResult f v,s’)∈ beh −→ (
set (PRqRefs s’)⊆ (set (PRqRefs s)-f)∪ set(snd v)
∧ (PcurrentReqs s’) = (PcurrentReqs s)
∧ (f/∈ set(PRqRefs s) −→ s=s’)))) ∧

(∀ s s’ v f.((s,EndService f v,s’) ∈ beh −→ (
(set(PRqRefs s’)⊆ set(PRqRefs s))
∧ (set(snd v) ⊆ set(PRqRefs s))
∧ f ∈ set (PcurrentReqs s)
∧ (PcurrentReqs s’) = remove1 f (PcurrentReqs s))))

..}

In addition to the above mentioned constraints, we have an additional constraint
requiring the component to be always able to receive results.

(∀ s ∈ reachable beh .∀ f. (∀ v. ∃ s’. (s,ReceiveResult f v,s’)∈ beh))

Design decisions. Isabelle/HOL extensible records are the natural choice for rep-
resenting states, requests, and results. They are better suited than simple products
because they support qualified names implicitly. We did, however, not use the ad-
ditional extension property of records which is similar to inheritance known from
object-orientation. It could have been used to factor out the shared parts of prim-
itive and composite components but this is not worthwhile – properties specific to
the shared parts are few. Hence, there is practically no overhead caused by dupli-
cating basic lemmas. The use of lists for requests and results is important for the
efficient specification and proof of structural properties (see the design decisions in
the previous section). The definition of behaviours in the internal state of primitive
components uses an Isabelle/HOL type definition. This way, we can encapsulate
the predicate defining the set of all well-formed behaviours into a new HOL type.
These constraints are thereby implicitly carried over and can be re-invoked by using
the internal isomorphism with the set Behaviours.

106 Chapter 5. Framework for Reasoning on Component Composition

5.3.4 Correct Component

We presented the structure of our components in Section 5.2.2, while the various
constructs designed to manipulate hierarchical components appear in Section 5.3.2.
However, we only reason on a subset of all possible components that can be con-
structed according to the described component structure. We refer to this subset of
components as correct components. Correct components are not only well-formed,
but they adhere to some additional constraints. The various well-formedness rules
along with the correctness constraints are presented in the following.

We start with specifying the structure of a well-formed component. A composite
component is considered as correctly structured if it passes the criteria specified by
the function CorrectComponentStructure given below.

primrec CorrectComponentStructure :: Component ⇒ bool where
CorrectComponentStructure (Composite N itfs sub b s) =

((∀ b∈ bindings.(GetQualified(src b) (Composite N itfs sub b s =
Some L kind=Client,cardinality=SingleM)

∧ (GetQualified(dest b)(Composite N itfs sub b s) =
SomeL kind=Server,cardinality=SingleM))

∧ NoDuplicateSrc b
∧ distinct (map getName sub)
∧ (∀ Q∈ set (Cqueue s). (invokedItf Q)∈ dom itfs

∧ kind (the (itfs (invokedItf Q))) = Server)|
...

A composite component has a correct structure if: each binding only connects
an existing client interface to another existing server interface; each client inter-
face is connected only once – (NoDuplicateSrc b); all subcomponents have distinct
names – distinct (map getName sub) ; and all requests in the request queue of
the composite refer to existing server interfaces. A primitive component has a cor-
rect structure if it follows the last requirement plus a couple of constraints relating
its behaviour with its interfaces.

primrec CorrectComponentStructure :: Component ⇒ bool where
...
CorrectComponentStructure (Primitive N itfs s) =

((∀ Q ∈ set (Pqueue s). (invokedItf Q)∈ dom itfs
∧ kind (the (itfs (invokedItf Q))) = Server)
∧ (∀ s1 N v f s2. ((s1,Call N v f,s2) ∈

Behaviour s −→ N ∈ dom itfs
∧ kind (the (itfs N)) = Client))
∧ (∀ s1 N v f s2. ((s1,NewService N v f,s2) ∈

Behaviour s −→ N ∈ dom itfs
∧ kind (the (itfs N)) = Server)))|

...

And finally, we have the CorrectComponentStructureList constraints for com-
ponent lists. A list of components is well-formed if each component inside the list
has a correct structure.

5.3. Formalisation of Component Model In Isabelle/HOL 107

primrec CorrectComponentStructureList :: Component ⇒ bool where
...
CorrectComponentStructureList [] = True |
CorrectComponentStructureList (C#CL) = (CorrectComponentStructure C

∧ CorrectComponentStructureList CL)

A correct component is a correctly structured component that also has uniquely
defined request identifiers (RqIdList c gives all requests computed by c and its
subcomponents), and all future referenced by the components should correspond to
an existing request. Finally, names of all components in the composition should be
unique. This differs from the well-formedness requirement which only requires the
names of all direct subcomponents to be unique.

constdefs CorrectComponent :: Component ⇒ bool
CorrectComponent c == CorrectComponentStructure c ∧ distinct(RqIdList c)

∧ (ReferencedRqs c) ⊆ (set(RqIdList c))
∧ distinct (map getName (cpList c))
∧ (∀ f∈ set (RqIdList c). snd f ∈ set(map getName(cpList c)))

The requirement of checking correct future referencing throughout the compo-
sition hierarchy is stronger than what is needed for most proofs, and can at times
be relaxed resulting in a weaker correctness requirement CorrectComponentWeak.
CorrectComponentWeakList gives similar constraints but for a list of components.
Using CorrectComponentWeak eases proofs involving component hierarchy because if
a component verifies CorrectComponentWeak then all its subcomponents also verify
it; which is not the case for CorrectComponent.

constdefs CorrectComponentWeak:: Component ⇒ bool
CorrectComponentWeak c == CorrectComponentStructure c

∧ distinct (RqIdList c) ∧ distinct (map getName(cpList c))

constdefs CorrectComponentWeakList:: Component list ⇒ bool
CorrectComponentWeakList CL == (CorrectComponentStructureList CL)
∧ distinct (RqIdListList CL)∧ distinct (map getName (cpListlist CL))

5.3.5 Basic Properties on Component Structure and Manipulation

In this section, we present a few properties that we proved. They deal with the
constructs presented in Section 5.3.2, and are unrelated to our definition of states
presented in the last section. Those lemmas are the basic building blocks on which
most of our proofs rely. Out of the set of more than 80 lemmas dealing with cpSets
and cpLists, we focus on the most useful and significant ones. In particular, we
choose to show lemmas dealing with the cpSet construct because it is a higher-level
one and thus reasoning on sets of components is often preferable, when possible.
Note however that most of the proofs dealing with distinctness of component names
will rather use cpLists.

We start by an easy lemma quite heavily used and very easy to prove. It states
that C is always in cpSet(C) (it is proved by cases on C).

108 Chapter 5. Framework for Reasoning on Component Composition

lemma cpSetFirst: C ∈ cpSet C

Similarly, for cpList, we have a corresponding lemma (again this can be easily
proved by cases on C).

lemma cpListFirst : (cpList C)!0=C

The set of components inside a composite one can be decomposed as follows. It
can be separated into the composite itself plus all the components in the cpSet of
each sub-component.

lemma cpSetcomposite_set:
cpSet (Composite N itfs sub b s)={Composite N itfs sub b s}

∪ {C.∃ C’∈set sub. C∈ cpSet C’}

This lemma is proved by an induction on lists of subcomponents. Conversely, we
can prove that, if a component is in the cpSet of a subcomponent of a composite,
it is in the cpSet of the composite. We also present a more general variant of this
lemma stating that if C” is inside C’ and C’ is inside C then C” is inside C.

lemma cpSetcomposite_rev:
J C∈ set sub; C’∈ cpSet C K =⇒ C’∈ cpSet (Composite N itfs sub b s)

lemma cpSetcpSet: JC’’∈ cpSet C’;C’∈cpSet CK =⇒ C’’∈ cpSet C

Although those two lemmas are very easy to prove (by induction on the component
structure), they are massively used in the other proofs.

Another theorem almost automatically proved by Isabelle, but exceedingly useful
is the following one. It gives another formulation of the getCp construct (Recall that
ˆ is shorthand for getCp).

lemma getCp_inlist: CL^N=Some C =⇒ C∈ set CL ∧ getName C=N

It is used to relate hypotheses in which a component name occurs and the component
name, or the component structure. The reverse direction holds only if the component
names inside CL are distinct as shown by the next lemma.

lemma getCpIdistinct:
J distinct (map getName CL); getName C=N; C∈ set CLK =⇒ CL^N=Some C

As the tools provided for the distinct construct in the Isabelle/HOL framework
are a little weaker than for manipulating sets and lists, this proof is slightly longer
and less automatic but still quite simple. The next lemma relates the changeCp
primitive with the getCp one for the case that the name of the accessed component
and the name of the changed one are different.

lemma upd_getCpunchanged: N 6= getName C’=⇒(CL <- C’)^N = CL^N

5.3. Formalisation of Component Model In Isabelle/HOL 109

The next lemma shows that given a component C and a component list CL,
changeCp (written as (CL <- C)) only replaces the component C in the list, leaving
other components unchanged. More precisely, if a component C’ is inside a compo-
nent list, and different component C is replaced inside that list, then C’ is inside
the resulting list.

lemma upd_diff: J C’ ∈ set CL ; getName C 6= getName C’K
=⇒ C’ ∈ set (CL<-C)

The following lemma shows the usage of CorrectComponentWeakList, cpListset
and getRecSubCpList presented in Section 5.3.2.

lemma getRecSubCpList_getName:
J CorrectComponentWeakList CL; C’∈ cpListset CLK

=⇒ getRecSubCpList CL (getName C’) = Some C’

Impact of design choices As a consequence of the mapping between compo-
nent structure and Isabelle’s structural support, it has been relatively easy to prove
properties of component structure by automatic steps plus induction on the com-
ponent structure. Consequently, the basic proofs on component sets and lists were
relatively easy to handle: approximately 700 lines of code for the 80 lemmas dealing
with component sets, component lists, and request identifiers, including the getCp,
getRecSubCp, and changeSubCp primitives. By contrast, the proofs dealing with
the semantics or correctness are generally much longer (several hundreds of lines
per proof). However, the structural lemmas presented above are heavily used in the
other proofs and strongly facilitate them.

5.3.6 Properties on Component Correctness

Based on the infrastructure for structural reasoning on the composition structure of
components, we can now prove properties on the correctness of component structure
presented in Section 5.3.4. The properties logically relate the degree of correctness
of the structure. We present some of these lemmas here.

We start with lemmas on CorrectComponentStructure. The first lemma es-
tablishes the well-formedness of the subcomponents of a well-formed composite
component. The reverse case corrCompStructListComp_rev establishes the well-
formedness of all constituent components.

lemmacorrCompStructListComp:
CorrectComponentStructure (Composite N itfs subCp bindings s) =⇒

CorrectComponentStructureList subCp

lemma corrCompStructListComp_rev:
J CorrectComponentStructureList subCp; C ∈ set subCp K

=⇒ CorrectComponentStructure C)

110 Chapter 5. Framework for Reasoning on Component Composition

CorrectCompWeak establishes the relationship between CorrectComponent and
CorrectComponentWeak. As stated before, it is much easier to use the weak correct-
ness in proofs when it is sufficient.

lemma CorrectCompWeak: CorrectComponent C =⇒ CorrectComponentWeak C

The next lemma simply reiterates the uniqueness of components. A weakly correct
component is unique in its cpList. Similar lemmas exists for lists of weakly correct
components.

lemma: correctCompWeak_distinct_name:
CorrectComponentWeak C =⇒ distinct (map getName (cpList C))

lemma correctCompWeakList_distinct_name:
CorrectComponentWeakList CL =⇒ distinct (map getName (cpListlist CL))

CorrectComponentListComp establishes the correctness of the list of subcompo-
nents given that the parent composite component is correct. Similarly, a member
of a weakly correct component list is also weakly correct.

lemma CorrectComponentListComp:
CorrectComponentWeak (Composite N itfs subCp bindings s)

=⇒ CorrectComponentWeakList subCp
lemma CorrectComponentListComp_rev:

JCorrectComponentWeakList CL; C∈ set CLK =⇒ CorrectComponentWeak C

As a consequence, and as mentioned in Section 5.3.4, weak correctness entails
weak correctness of subcomponents. Those lemmas imply that, when proving prop-
erties by induction, relying on weak correctness is very convenient as weak correct-
ness can be used as the hypothesis of the recurrence hypothesis, which is not the
case for CorrectComponent.

lemma SubComponent_CorrectComponentWeak:
JC’∈cpSet C; CorrectComponentWeak CK =⇒ CorrectComponentWeak C’

The following property expresses a condition entailed in CorrectComponentWeak.
CˆˆN returns the first subcomponent of C having the name N. If C is a weakly correct
component, then there is a single component with that name, and thus the following
hold:

lemma getRecSubCp_getName:
JCorrectComponentWeak C; C’∈ cpSet CK =⇒ C^^(getName C’) = Some C’

The proof of this property depends on properties on distinct names, and on the
lemmas shown in this section and the preceding one.

5.4. Runtime Reconfiguration of Components 111

Impact of design choices. The proofs in Isabelle/HOL are, for the most part of
the correctness lemmas, almost automatic: unfolding the definitions, the proofs are
mostly solved by applying the automatic tactic auto. Yet, these lemmas are impor-
tant because they precisely relate different correctness conditions and consequently
clarify subsequent proofs. They also entail properties of compositionality, i.e. what
are the properties of a composite with respect to its constituents.

Other properties, like getRecSubCp_getname are harder to prove. Their proofs
rely strongly on the provided infrastructure for structured components presented
earlier in this section. Feasibility and readability of the proofs at the correctness
level depends decisively on this clearly structured support with lemmas. Often the
amount of automated proof work can be increased by adding our basic lemmas to
the simplification sets of Isabelle/HOL. For example, lemma cpListFirst can be
added as simplification rule using the simp attribute.

lemma cpListFirst [simp]: (cpList C)!0=C

Any proofs involving simplification will replace occurrences of (cpList C)!0
with C. Similarly, attributes intro, elim, etc., may be used to annotate rules for
classical reasoning.

5.4 Runtime Reconfiguration of Components

The final part of this chapter deals with runtime reconfiguration of components.
Reconfiguration represents all the transformations of the component structure or
content that can be handled at runtime. We consider here mainly structural recon-
figuration, which includes changes of the bindings, and of the content of a compo-
nent. For example replacement of a primitive component by a new one is a form of
reconfiguration that allows evolution of the business code.

Reconfiguration is not the main objective of this thesis; this section serves to
illustrates the expressive power of our formal representation. We show here that
our framework is detailed enough to allow reasoning on component configuration-
reconfiguration. More detailed proofs and formalisation of other primitives is left as
future work.

Our framework enables reasoning on reconfiguration primitives and behaviour
of a reconfigured component system; in part due to including the structural infor-
mation in the formalisation. We illustrate below a few encodings of reconfiguration
primitives and some lemmas that can be proved in Isabelle/HOL thanks to our
framework. We use the the configuration primitives from Fractal [71]. For func-
tional aspects of components, GCM inherits it’s adaptive capabilities from Fractal.
Reconfiguration for GCM components has been studied in more detail in [96, 97],
albeit in informal settings. These primitives are:

bind/unbind: allows the manipulation of component bindings.

112 Chapter 5. Framework for Reasoning on Component Composition

add/remove: allows changing the set of subcomponents of a composite component.

start/stop: allows starting or stopping a component. Once stopped the com-
ponent may be reconfigured. Stopping a component is a non-trivial task in the
presence of futures; an algorithm for stopping GCM components appear in [96].

We illustrate reconfiguration capacities of our approach by defining two reconfig-
uration primitives and proving some related lemmas. Our proofs on reconfiguration
are by no means exhaustive. Here our intent is to simply demonstrate that our
framework is sufficiently detailed for specifying and proving properties on compo-
nent configuration/reconfiguration. A more extensive treatment of reconfiguration
primitives in Fractal can be found in [82], as part of formalisation of Fractal com-
ponent model.

5.4.1 Complete Component

We take the completeness property for our components from Fractal specifications.
A composite component is complete if all interfaces of its sub-components and all its
internal interfaces are bound. This can be easily defined in Isabelle by the following
primitive recursive predicate.

primrec Complete::Component ⇒ bool and
CompleteList::Component list ⇒ bool where

Complete (Primitive N itf s) = True |
Complete (Composite N itf sub bindings s) =

(∀ C∈set sub. allExternalItfsBound C bindings) ∧
(allInternalItfsBound (Composite N itf sub bindings s) bindings) ∧
(CompleteList sub)

CompleteList [] = True |
CompleteList (C#CL) = (Complete C ∧ CompleteList CL)

A primitive component is considered to be always complete; we only check
completeness constraints for composite components. (allInternalItfsBound
C b) checks that all external interfaces of C are bound by bindings b, and
(allExternalItfsBound C b) that all internal interfaces of C are bound by bind-
ings b. Finally, similar to cpListlist in Section 5.3.2, CompleteList recursively
checks that all subcomponents are complete. Note that Complete and CompleteList
are mutually recursive.

Fractal allows the definition of optional interfaces; an optional interface may
or may not be bound. All other non-optional interfaces must be bound before a
component can be started. As there is no notion of optional interface in our model
(see Table 7.1), our definition is really straightforward and requires all interfaces to
be bound. For a complete component, any request emitted by a component will
arrive at a destination component.

5.4. Runtime Reconfiguration of Components 113

5.4.2 Reconfiguration Primitives: Unbind and Replace

As stated previously, not all reconfiguration primitives have been formalised yet.
We show two such reconfiguration primitives in the following.

Unbind primitive The unbind primitive removes one of the bindings defined by
a composite component. Recall that only composite components have bindings.

primrec unbind:: Component ⇒ Binding ⇒ Component where
unbind (Primitive N itf s) b = (Primitive N itf s) |
unbind (Composite N itf sub bindings s) b =

(Composite N itf sub (bindings - {b}) s)

The operation unbind removes one of the bindings from bindings inside the
composite component. Of course un-binding does not maintain completeness, and
this can be proved in our framework.

lemma unbinding_incomplete:
Jb∈bindings; CorrectComponentStructure (Composite N itf sub bindings s)K

=⇒ ¬ Complete (unbind (Composite N itf sub bindings s) b)

This lemma is proved in only 35 lines of simple Isabelle/HOL code, thanks to
the properties presented in Section 5.3.5. The proof can be sketched as follows.
CorrectComponentStructure imposes that in bindings src b is connected only
once, thus, in bindings-{b}, src b is not connected anymore. Now, src b can
be either This N if b connects an internal client interface to a sub-component, or of
the form CN.N if it connects a sub-component to another interface. In the first case,
the new component does not ensure allInternalItfsBound anymore, and in the
second case, it is allExternalItfsBound that is not true for the component with
name CN; note that CorrectComponentStructure ensures the existence of such a
component.

Component replacement Let us now introduce a reconfiguration primitive that
combines several basic Fractal primitives. This Replace primitive automatically
maintains completeness.

primrec Replace:: Component ⇒ Name ⇒ Component ⇒ Component where
Replace (Primitive N itf s) N1 C = (Primitive N itf s) |
Replace (Composite N itf sub binds s) N1 C = addSubCp (removeSubCp
(Composite N itf sub ((λb.RenameBinding b N1 (getName C))‘binds) s) N1) C

The primitive Replace relies on a number of other operations, some of which
appear in previous sections. removeSubCp removes the subcomponent of component
C with name N. addSubCp adds a subcomponent or replaces the subcomponent if
there is already a component with the same name.

114 Chapter 5. Framework for Reasoning on Component Composition

constdefs RenameBinding:: Binding ⇒ Name ⇒ Name ⇒ Binding
RenameBinding b oldName newName ==
(| src = RenameQName (src b) oldName newName,

dest = RenameQName (dest b) oldName newName|)

RenameBinding allows one to change the src or destination of a binding. The
Replace primitive maintains completeness of a correct component as expressed in
the following lemma:

lemma replace_complete:
Jsub^(getName C’) = None; sub^N’ = Some oldC; getItfs oldC = getItfs C’;
Complete C’; Complete (Composite N itf sub bindings s);
CorrectComponentStructure C’;
CorrectComponentStructure (Composite N itf sub bindings s)K

=⇒ Complete (Replace (Composite N itf sub bindings s) N’ C’)

This lemma requires that all involved original components are correct and complete,
that the replaced component is in the composition, while the the replacement com-
ponent is not in the composition, and that those two components have the same
interfaces. The proof of replace_complete takes around 50 lines and relies on other
simpler lemmas. One such lemma remove_diff_Name_Comp, easily proved, is shown
below. The lemma simply states that given a component with correct structure
there is only single component with a given name.

lemma remove_diff_Name_Comp:
J CorrectComponentStructure (Composite N itf sub bindings s); C’ ∈ set sub;
C ∈ set (remove1 C’ sub)K =⇒ getName C’6= getName C

A similar lemma to replace_complete proving CorrectComponentStructure
for the result of the replacement operation is also proved.

lemma replace_correct:
J sub^(getName C’) = None; sub^N’ = Some oldC; getItfs oldC = getItfs C’;
Complete (Composite N itf sub bindings s); Complete C’;
CorrectComponentStructure (Composite N itf sub bindings s);
CorrectComponentStructure C’K =⇒
CorrectComponentStructure (Replace (Composite N itf sub bindings s) N’ C’)

Of course, the replace primitive can be expressed by lower level reconfiguration
operations, i.e. an unbind, remove, add, bind sequence. A lemma equivalent to the
preceding one could also be proved. Such a lemma would be more general but a
little more complex to express because it would need to relate the set of unbound
bindings, the set of re-bound ones, and the component involved in the add-remove
operations.

The formalisation of reconfiguration primitives and the proofs provided here
show that our framework is detailed enough to allow reasoning on component
configuration-reconfiguration. In this thesis we focus on formalisation of compo-
nents with future update strategies and properties on the interplay between futures

5.4. Runtime Reconfiguration of Components 115

and components. More detailed proofs and formalisation of other primitives are left
as future directions. Now that we have established a good understanding of our
framework for reasoning on GCM-like components, the next chapter (Chapter 6)
presents the runtime semantics of components in the presence of eager message-
based future update strategy.

Chapter 6

Asynchronous Components with
Futures : Semantics and Proofs

Contents
6.1 An Asynchronous Component Model with Futures 119
6.2 Run time Semantics for GCM-like Components 121

6.2.1 Structure and Notations . 121
6.2.2 Semantics of Component Model 126

6.3 Formalisation in Isabelle and Properties 133
6.3.1 Semantics . 134
6.3.2 Properties and Proofs on Eager message-based Strategy . . . 135

118 Chapter 6. Components with Futures: Semantics and Proof

Chapter 5 presented a model for distributed components communicating asyn-
chronously using futures as placeholders for results. This GCM-like component
model is derived from GCM. To summarise from previous chapter, components in
our component model communicate via asynchronous requests and replies where
the requests are enqueued atomically at the target component, and the invoker re-
ceives a future. Then, future references can be dispersed among components. To
increase asynchronism, our futures are first class; meaning a future may be passed
as parameter of requests or as part of return values. As a consequence, futures
spread everywhere. Under reasonable hypotheses, it has been shown that the order
in which results are returned has no influence on the computation [7]. When the
result is available for a future, it has to be transmitted to all interested components,
as determined by a future update strategy ; discussed in Chapter 3.

Even if the execution is insensitive to the order in which futures are returned,
in a real implementation of the component platform, a strategy has to be chosen to
optimally perform the communication of results. We call future update the opera-
tion that sends a result to replace a future reference; and future update strategies,
the different ways of performing those operations. Future update strategies have
been covered in detail in Chapter 3. Formalising future updates is of little interest
concerning the language properties, but it is crucial to study the implementation of
this language. In order to prove the correctness of the implementation of GCM, our
work aims at specifying formally future update strategies and proving correctness or
efficiency properties on futures. In this chapter, we focuses on one particular strat-
egy called eager message-based future update strategy (Chapter 3). We presented
the formalisation of our GCM-like component model and the various infrastructure
lemmas and operations required for manipulating component hierarchies in Chap-
ter 5. Here, we build upon Chapter 3 and Chapter 5, and present the formal
semantics of our component model incorporating formalisation of one future update
strategy. Although we only have proofs on one such future update strategy, we
present the semantics of a second strategy in Appendix B, showing the flexibility
of our approach. As shown before, our model has been mechanically formalised in
Isabelle/HOL, together with the proof of properties. This approach validates the
actual implementation of the future update strategy itself.

Our intent is to provide a reliable and strong basis for reasoning on futures and
components. For this we prove a correctness property on the registration of futures
along the reduction. As already shown, the Isabelle/HOL development correspond-
ing to this work is already consequent and shows that: our model is adequate and
precise, it can be used to reason about futures and components, and the specified
future update strategy guarantees basic correctness properties. This work is not
restricted to the GCM component model, for example our formalisation should also
provide a model for frameworks like Creol [6].

6.1. An Asynchronous Component Model with Futures 119

6.1 An Asynchronous Component Model with Futures

We gave an informal overview of our GCM-like component model in Section 5.2;
Section 5.2.2 describes the structure of our GCM-like components, whereas Sec-
tion 5.2.3 covers informally the communication model. In order to precisely define
the future update strategies, the following paragraph recalls briefly key points of
our component and communication model.

Component structure and behaviour Our GCM-like component model is a
subset of GCM model and consequently our components inherit most of their struc-
ture from GCM. The components are hierarchical and are either primitive or com-
posite. Primitive components are leaf-level components encapsulating the business
logic and can have any internal behaviour. The external behaviour of a primitive
component is captured by a Behaviour LTS, presented in Section 5.2.4 and more
formally in Section 5.3.3. The behaviour of composite components is quite limited;
essentially, a composite component serves the requests in a FIFO order, and dele-
gates all incoming requests to its bound components. Our communication model is
a request-reply model with futures; all incoming requests are enqueued at the target
component in a request queue. All interaction between components is by means of
requests. All request parameters are passed by copy semantics. Details on compo-
nent structure and behaviour appear in previous chapter. A component can receive
a request at any time. The requests are enqueued in the request queue, one or more
execution threads execute (serve) these requests. On termination, results are placed
in the computed results list for future use. The component can send requests to
other components via its client interfaces. A result can arrive at any time and is
used to update the corresponding future in the request queue, current component
state, and the computed results list. Our futures are first class objects: no thread
is blocked when a future is transferred as part of requests or results.

Future update strategy In a real implementation, updating a future value is not
a simple task. Futures may be spread over a number of components, all requiring
the future value. Additionally futures can appear in computed results, message
queue, and current state of each component. To update all these futures efficiently,
future update schemes have to be devised. The chosen scheme must ensure that any
component needing a result that has been computed receives it.

First class futures can be updated using different strategies, as seen in Chapter 3.
To summarise, we classified those strategies as either eager or lazy. Strategies are
called eager when all the references to a future are updated as soon as the future
value is calculated. They are called lazy if futures are only updated upon need,
which minimises communications but increase the time spent waiting for the future
value. Two eager strategies can be envisioned. Eager forward-based strategy, where
each component remembers only the components to which it has sent the futures,
and forward them the values when they become available; flow of future updates
is along the same path as the futures themselves. On the other hand, in eager

120 Chapter 6. Components with Futures: Semantics and Proof

message-based strategy, each component is responsible for sending the future value
to all components which have a reference to the future. For this, all components
receiving the future must register themselves as a future recipient. Finally, the lazy
message-based strategy is the lazy version of eager message-based strategy where
the future values are transferred on-demand: accessing a future reference triggers
the future update.

[f,v,itf]

[f,v,itf]
host(f) = NH

N1 N2

N3

NH

register for f in NH

Figure 6.1: Future registration

Based on our component structure, we can derive semantics using any of the
previously mentioned strategies; all three strategies are semantically equivalent, as
demonstrated in ASP-calculus [7]. Eager forward-based strategy is simpler to imple-
ment as the flow of future updates follow the same path as the futures themselves.
Therefore each component needs to remember only the component to which it has
transferred the future. On the other hand, for the message-based strategies, the
component serving the request needs to know about all components to which re-
sults should be sent. This is achieved by registering all components that require
the future value with the component serving the request. Such registrations are
more complex compared to simple mechanism used in eager forward strategy. Ea-
ger message-based and lazy message-based strategies are similar in nature, the only
difference being the on-demand nature of component registration in lazy strategy.
For eager message-based strategy, every forwarded future has to be registered with
the component computing its value; including futures inside request parameters and
result values. Registration mechanism for the lazy strategy is simpler because it is
only triggered on future access. To conclude, eager message-based strategy is the
most complex strategy and we selected it for our formalisation and proofs shown
here. We do however, show the semantics of lazy message-based strategy in Ap-
pendix B. Our intent is to show that future update strategies can be formalised
using our framework, and their properties shown. Finally, our formalisation can
also be used in the context of other frameworks like Creol [6], which uses a update
mechanism similar to eager message-based strategy.

6.2. Run time Semantics for GCM-like Components 121

NH
End of
service

N3

N2N1

Result sent to all
registered recipients

+

Figure 6.2: Future update

Figure 6.1 summarises the working of eager message-based future update strat-
egy, showing the registration process for a future f which will be computed by the
component NH . Components N1, N2 and N3 all have references to the future f ,
and consequently register with component NH as required by eager message-based
strategy. These registrations are captured in the future recipients list. Once the
result is computed and placed inside the computed results list, NH sends this result
to all registered components (N1, N2, and N3) as shown in Figure 6.2.

6.2 Run time Semantics for GCM-like Components

We presented our framework for reasoning on GCM-like components in Chapter 5.
Here, we build on that formalisation and provide run time semantics for our compo-
nents. We base our semantics on the semantics for GCM-like components presented
in [1], adding precise semantics for the future update mechanism. We start by the
general notations, and gradually move to more component and GCM specific nota-
tions. Similar to the reasoning framework, the component semantics are formalised1

in Isabelle/HOL.

6.2.1 Structure and Notations

As discussed in Section 5.3.1, we make extensive use of lists and sets. We denote
lists as [ai]i∈1..n, while {ai}i∈1..n is used for a finite set. Pairs are represented with
the notation (a, b). For convenience, we define a number of operators for used in our
formalism. The operator # is the list append operation whereas the operator \ used
as [ai]i∈1..n \ b removes b from the list [ai]i∈1..n whatever its position is. We use the

1 Prototype specification available at www.inria.fr/oasis/Ludovic.Henrio/misc

www.inria.fr/oasis/Ludovic.Henrio/misc

122 Chapter 6. Components with Futures: Semantics and Proof

notation [ai 7→ bi]i∈1..n to indicate a mapping from ai to bi. A new entry is added
to an existing mapping simply by ([ai 7→ bi]i∈1..n)[c 7→ d]. ([ai 7→ bi]i∈1..n)[c 7→ ∅]
removes the entry corresponding to c in the mapping, if it exists. It should be noted
that all of the above operations have their counterparts available through various
Isabelle/HOL theories.

Let f range over futures, v range over values, itf range over interfaces and C

range over components. Additionally, we use S to denote a composite component
representing the component system (all components currently instantiated). S pro-
vides context for our semantic rules; it is necessary to know the whole system to
retrieve request results and to update futures and to model change in the whole
component system. A future f is a pair (identifier, component name): f ::= (id,N).
id is a unique identifier for the future, while N is the name of the component com-
puting the value of the future. Similarly, we define a value v as a pair (“object
value”, finite set of referenced futures): v ::= (V, {fii∈1..n}), where “object value”
(V) is a structure representing the values of the underlying language but that we
abstracted away by integers. This prevents values from being defined recursively;
a value may contain other values. We denote (Vf , f0) the value containing only a
future reference f0, i.e., the object consisting only of a future reference to future f0.
The second element of v, is a finite set of futures contained in the value.

Our framework allows partial results; the value v may be incomplete, i.e., may
itself contain yet to be computed futures. Also, it is possible that the result value
of a future f1 is simply another future f0, modelled by (Vf , f0) construct. For our
semantics, we chose to use a finite set instead of a list for futures inside a value; we
use a list in Isabelle/HOL. As mentioned in previous chapter, finite sets are more
suitable for our semantics and formalisation but Isabelle/HOL does not provide
ample support for inductive reasoning on finite sets. Hence, we resort to lists in
Isabelle/HOL. A Request R is a triple (future, value, interface): R ::= (f, v, itf)
where f is the future for the result of the request, v is the parameter value and
itf is the name of target interface. In order to decouple the runtime semantics
of components from Isabelle, we use these mathematical notations in place of the
actual Isabelle/HOL syntax (shown in Chapter 5). The mathematical notation is
not only concise but also enable us to use finite sets where needed, side stepping the
implementation issues of Isabelle/HOL.

Component structure

As discussed before in Section 5.3.1, our representation of components includes
static information like component interfaces and bindings. This allows our model to
be expressive enough to support properties and proofs interleaving the component
structure and more dynamic features like future update strategies. On a longer term
basis it will also allow us to prove properties on component reconfiguration, some
of which were presented in Section 5.4.2.

As seen in Section 5.2.2 and Section 5.3.1, components can be either composites

6.2. Run time Semantics for GCM-like Components 123

or primitives :

C ::= Comp[N, itfs, subCp, bindings, CompState] | Prim[N, itfs, PrimState]

All components have a unique name N (there is only one component with a given
name), a list of interfaces itfs ::= [itfi]i∈1..n, and a component state s. Additionally,
a composite has a list of subcomponents subCp ::= [Ci]i∈1..n, and a set of bindings
bindings ::= {(Ni.itfi, N ′i .itf

′
i)
i∈1..n} (See Figure 5.10). (Ni.itfi, N ′i .itf

′
i) belongs to

bindings if interface itfi of component named Ni is plugged to the interface itf ′i of N
′
i :

where Ni and N ′i can either be a component name or This if the plugged interface
is the composite component that defines the bindings.

Each component state s contains a request queue: queue ::= [Ri]i∈1..n, a list of
results mapping futures to computed values: results ::= [fi 7→ vi]i∈1..n, and a list
of futures recipients: FRL ::= [fi 7→ {Nj}j∈1..ni]i∈1..n. As discussed in Section 3.3,
some additional constructs are required to support future update mechanism. Future
Recipient list is one such construct and corresponds to FR list used in specification
of future update strategies. Here, FRL is a list of mappings; each entry maps a
future to a set of component names; these are the components which require the
value for this future. We use FRL for tracking components which should receive the
value for a given future when the value becomes available.

Request queue

Results

In
co

m
in

g
Re

qu
es

ts

Request
service

End of
service

Results returned to components in
Future Recipient list

Request sent

Results received from other components

Future Recipient list

+

Figure 6.3: Structure and behaviour of a primitive component

Figure 6.3 captures the behaviour of a primitive component along with its
structure. A primitive component state additionally contains an internal state
(intState), and an associated behaviour behaviour. Behaviour, presented formally
in Section 5.3.3, is a labelled transition system where the actions of the primitive
components are the labels of transitions and the states are the values of intState.
An internal state contains a list of current requests: currReq ::= [fi]i∈1..n and a
list of futures referenced by the internal state: refF ::= [fi]i∈1..n. Fields of a state
are accessed through functions. For example, queue(s) returns the current queue
of the state s. Here, we use queue(s) style for field access instead of the more
functional style of (queue s) used in the Isabelle/HOL formalisation. The op-
eration Enqueue(C,R) returns the component C where its state s is replaced by

124 Chapter 6. Components with Futures: Semantics and Proof

s Lqueue := queue(s) #R M. In our notation, fields are modified by the operator :=
as shown in s Lqueue := queue(s) #R M. The queue is modified to show the new
queue obtained after enqueing the request R.

Additional constructs

To incorporate future update strategies in component semantics, we introduce a
number of additional constructs in the formalism. We have already seen one such
construct FRL. We now introduce a second construct, a registration list RL. RL
maps a future to the set of components that require the value for this future:
RL ::= [fj 7→ {Ni}i∈1..nj]j∈1..n. The structure of registration list RL is the same
as for future recipients list FRL. Each entry of RL is a mapping from a future to a
list of component names; the names of components which should receive the future
value when it becomes available. For eager message-based strategy to work, each
component that receives a future f , must be registered with the component that
will compute the value for this future (host(f)). We use the registration list to keep
track of all such registrations and perform them during the global reduction. Details
on the reduction semantics for our component model appear in Section 6.2.2. The
mapping inside the registration list for a given future f is accessed by RL(f). To
simplify our notation, if f /∈ dom(set RL) – there is no matching future in RL – then
we note RL(f) = ∅. A similar semantics can be achieved in Isabelle/HOL by defining
the filed access operation using the optional datatype as shown in Section 5.1.

We define three operators for manipulating lists of components. Operator ^ is a
find operation: (subCpˆN) is the element of subCp which has the name N . The cor-
responding Isabelle/HOL function getSubCp has already appeared in Section 5.3.2.
Similarly, operator ˆˆ is the recursive version (getRecSubCp), which looks for a sub-
component recursively inside the component hierarchy. Note that the two operators
^ and ^^ are same as the shorthand notations defined for Isabelle/HOL functions
for consistency. Operator ← is the list replacement operator: (subCp ← C1) re-
places by C1 the component in subCp that has the same name as C1. List append
operator # is overloaded for recipient list RL as:

RL#RL′ , [fj 7→Mj | fj ∈ dom(RL) ∪ dom(RL′) ∧ Mj = RL(fj) ∪ RL′(fj)]

To simplify our semantics we introduce a number of support functions. Most
of these have their corresponding Isabelle/HOL operations in our framework and
were presented in Section 5.3.2. These functions deal with efficient manipulation of
component structure.

RqIdsSet(S) is the set of ids of all requests computed by S. It is the union of the do-
mains of the request queue of S (queue), its currently executing requests (currReq),
and its computed results (results), but also, recursively, requests computed by all
its subcomponents. The corresponding Isabelle/HOL operation ComputedRqs is dis-

6.2. Run time Semantics for GCM-like Components 125

cussed in Section 5.3.2.

RefFutSet(S) is the set of all futures referenced by S and all its subcomponents
recursively. It contains futures referenced in the current state (refF), futures in the
parameters of the requests in the request queue (queue), futures in the the value of
computed results (results), and futures referenced by subcomponents. The Isabelle
counterpart operation is ReferencedRqs. By extension, we define similar function
RefFutSet(v), giving set of futures in a value v. In Isabelle/HOL code, the opera-
tion(snd v) gives the same result. Finally, we define a LocalRefFutSet(C), which
returns the set of all futures locally referenced by component C, without entering
any subcomponents (if component is composite).

host(f) is the name of the component computing the value for future f , ((snd f)
in Isabelle/HOL). host(f) , snd(f).

cpSet(C) is the set formed of C and all the components recursively contained in
C. cpSet of a primitive component is the component itself. The corresponding Is-
abelle/HOL operation is cpSet. Recall that cpSet is built from cpList.

removeResult(f, C, N) looks recursively inside the component C until a component
C ′ with name N is found. It returns C where the state s of C ′ is replaced by
s L results := results(s)[f 7→ ∅],FRL :=FRL(s)[f 7→ ∅] M. Recall that we use compo-
nent names as component identifiers.

updateFV(v, f, v′) abstracts away the operation that updates a value v by replacing
the occurrences of future f in value v by the new value v′. Here, as a consequence
of this operation, the future f is removed from RefFutSet(v). The futures inside the
new value v′ (recall that we allow partial values) given by RefFutSet(v′) replace the
future f . A new value is returned which verifies the property:

RefFutSet (updateFV(v, f, v′)) = RefFutSet(v) \ {f} ∪ RefFutSet(v′)

The corresponding Isabelle/HOL function is UpdateFuture, which replaces all
occurrences of future f inside the value v2 by the new value v1. All futures inside
value v1 are appended to remaining futures in value v2.

definition UpdateFuture:: Fid ⇒ Value ⇒ Value ⇒ Value where
UpdateFuture f v1 v2 ≡ if (f ∈ set (snd v2)) then

(fst v2,(removeAll f (snd v2)) @ (snd v1))
else v2

getName(C) is the name of the component C, corresponding to the getName oper-
ation in Isabelle/HOL code.

126 Chapter 6. Components with Futures: Semantics and Proof

registerListFutures(S,RL) takes a component system S and a registration list RL
and returns a new component system S′ such that all the entries in the RL have
been added to the recipient lists (FRL) of relevant components. More precisely,
∀ f. RL(f) 6= ∅, we look inside the component system S and locate the component
with name host(f) inside the hierarchy. Once the component is located, we update
the state s of this component such that its new state is:

s LFRL := FRL(s)[f 7→ (FRL(s)(f)) ∪ RL(f)]M

In Isabelle/HOL this corresponds to RegisterListOfFutures function; which lo-
cates the good component inside the component hierarchy and performs the regis-
tration for all entries in RL list (using thelocCompAndRegFuture). Note that due to
similar reasons as before, the RL has somewhat different structure in Isabelle/HOL
code (((Fid ×Name) list)).

primrec RegisterListOfFutures::Component⇒((Fid× Name)list)⇒ Component
where
RegisterListOfFutures C [] = C |
RegisterListOfFutures C (R#L) = RegisterListOfFutures

(locCompAndRegFuture C (snd (fst R)) (fst R) (snd R)) L

Appendix A summarises the various constructs used in this chapter.

6.2.2 Semantics of Component Model

The formal semantics of our component model are given by a number of reduction
relations defined by a set of inductive rules. The global reduction of the component
system is , it triggers either −\f, v,N Z→F , or →R reductions. S ` C →R C

′, RL
(read as C R-reduces to C ′, RL in context S) if in component system S, component
C can be reduced to the component C ′. Recall that S is a composite component that
contains all instantiated components. RL contains the list of future registrations to
be performed as a consequence of this reduction.

The parametrised relation −\ itf, f, v Z→O (interface name, future, value) emits
messages (R ::= (f, v, itf)). In order to be matched with a receive action, the state-
ments −\ itf, f, v Z→O are used as hypotheses to the rules for →R for composite com-
ponents. Message emission (−\ itf, f, v Z→O) is matched to a communication rule that
enqueues the message. If S ` C −\ itf, f, v Z→OC

′, then in the component system S, C
emits a request on the interface itf, with parameter v, and is associated to a future
f ; after the emission, C becomes C ′. A final parametrised relation −\f, v,N Z→F

(future, value, component name) expresses that a component receives the new value
v for a future f (future update message). If C −\f, v,N Z→F C

′, RL, then the com-
ponent C with name N receives the value v for the future f . As discussed before,the
value v (v ::= (V, fii∈1..n)) may contain other futures; therefore N should register
for all such incoming futures by adding an entry in the RL list.

6.2. Run time Semantics for GCM-like Components 127

In the following, we provide first the semantic rules for primitive components,
followed up by the semantic rules for composite components; both semantics incor-
porate the formalisation of eager message-based future update strategy. Finally, we
give the semantics for triggering the future update globally and the semantics for our
global reduction , which ensures that relevant future registrations are performed;
this completes our semantics for GCM-like components with eager message-based
future update strategy.

Tau
(PintState(s),Tau, s2) ∈ behaviour(s)

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2M], []

Call
(PintState(s),Call(i1, v, f), s2) ∈ behaviour(s) f /∈ RefFutSet(S)

S ` Prim[N, itfs, s]−\ i1, f, v Z→O Prim[N, itfs, sLPintState := s2M]

EndService
(PintState(s),EndService(f, v), s2) ∈ behaviour(s)

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState :=s2, results :=results(s)#[f, v]M], []

ServeNext
(PintState(s),NewService(v, f), s2) ∈ behaviour(s) queue(s) = [f, v, i]#Q

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2, queue := QM], []

RcvResultPrim
(s,ReceiveResult(f, v), s′) ∈ behaviour(s)

s′′=s′L results = [fi 7→ vi | fi∈dom(results(s))∧
v1 =updateFV((results(s))(fi), f, v)],

queue = [[fi, vi, itfi] | [fi, v′i, itfi] ∈ queue(s) ∧ vi=updateFV (v′i, f, v)]M

S ` Prim[N,itfs, s]−\f, v,N Z→F Prim[N,itfs, s”], [(f ′′, N) | f ′′ ∈ RefFutSet(v)]

Figure 6.4: Primitive Component Semantics

Semantics for primitive components Figure 6.4 presents the semantic rules for
primitive components. As stated previously, the external behaviour of a primitive
component is given by an LTS Behaviour; discussed in Section 5.3.3. For each of
the Actions in Behaviours there is a semantic rule which encompasses the internal
action. Recall that the actions for primitive components are: internal transition,
request service, request emission, result reception, and service termination.

Tau: gives semantics for a non observable internal behaviour of a primitive compo-
nent. If the internal state of the component is s, and there is an internal transition
Tau to an internal state s2, then the internal state of the component can be changed
to s2. No further change occurs in the component. In Figure 6.3, it corresponds to
the internal transitions inside the contents of the component.

128 Chapter 6. Components with Futures: Semantics and Proof

Call: gives the semantics for emitting a request to another component. Given
the internal state s, the call transition with the parameters i1, v, f to the internal
state s2 requires that the future f should be a newly created future. Recall that
RefFutSet(S) is the set of all futures referenced in S and all its subcomponents recur-
sively. This internal transition in the behaviour results in emission of request on the
interface i1. This is captured through the parametrised reduction−\ i1, f, v Z→O. The
internal state is modified to s2. This parametrised reduction will synchronise with
the operation that enqueues a request on the component bound to the interface. In
Figure 6.3, this corresponds to the “Request send ” arrow towards right-hand side
client interface.

EndService: gives the semantics for termination of request execution. More pre-
cisely, it indicates that one of the execution threads is finished executing a current
request in this primitive component, producing the result value v. The pair [f,v]
is added to the computed result list and the internal state is modified. As per re-
quirements for the internal action Endservice, after the reduction, the just finished
request id f is no longer in the component’s list of current requests. Any futures
inside the produced value v must be previously known; therefore the registration list
is empty. In Figure 6.3, this rule corresponds to the arrow marked “End of Service”.

ServeNext: gives the semantics for start of execution for a request. The inter-
nal action NewService(v, f), results in the oldest request to be added to the list of
current requests in the internal state of this primitive component. f is the future as-
sociated with this request. After the reduction, the internal state of the component
is modified to s2 and the request at the head of the message queue (which is now
a current request) is removed. In Figure 6.3, this corresponds to the arrow marked
“Request Service”.

RcvResultPrim: gives the semantics for future update for a primitive component.
The behaviour of primitive components always allows for the ReceiveResult(f, v)
transition; results may be received at any time. All references to the future f in
the computed results and the message queue are replaced with the new value v.
As stated before, the received result value v may contain other futures; therefore
the receiving component must register for those futures as well. This is captured
by making an entry in RL list for every future in v (RefFutSet(v)). Interaction
between the component semantics and the internal state of the primitive is enabled
by triggering internal transitions on the primitive behaviour, here ReceiveResult.
The internal state of the component is changed to take into account these changes.
In Figure 6.3, this corresponds to the “Results received from other components”,
incoming arrows.

Semantics for composite components Figure 6.7 and Figure 6.11 present the
reduction rules dealing with composite components. The first rule embeds subcom-
ponent reduction in composite contexts; the second rule allows composite compo-

6.2. Run time Semantics for GCM-like Components 129

nents to emit requests on their external client interfaces. The three Comm-rules
define the request transmission over the three different kinds of bindings; these arise
from the nature of relationship between the communicating components. Finally,
the two Rcv rules performs future updates inside composite components based on
whether it is the right component for doing the update or not.

CommBrothers CompositeCall

CommParentCommChild

Figure 6.5: Component Communications

Figure 6.5 illustrates the different kinds of communications expressed by the
Comm-rules and the composite call rule. The existence of the different form of rules
is due to the component structure. Additionally, as there are three kind of bindings
(from a parent component to a subcomponent, between two subcomponents, or from
a subcomponent to its parent), there are three kind of communication rules (resp.
CommChild, CommBrother, or CommParent).

N

Resultsf = f'

[f,v,itf] dequeue

[f',v,itf]

itf itf

Figure 6.6: CompositeCall

Hierarchy: Hierarchy defines the compositionality of components. If a component
C reduces to a component C ′ in isolation, then it also does so inside a composite.
The registration list is the one for the subcomponent.

CompositeCall: This rule describes how a composite component emits a call on
the external client interface as illustrated in Figure 6.6. The request [f, v, itf], re-
ceived on internal server interface itf, is sent on the matching external client interface

130 Chapter 6. Components with Futures: Semantics and Proof

Hierarchy
(subCp ↑ N) = C S ` C →R C ′, RL

S ` Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, (subCp← C ′), bindings, s], RL

CompositeCall
queue(s) = [f, v, itf] # Q

f ′ /∈ RqIdSet(S) s′ = sLqueue := Q, results := results(s)[f 7→ (Vf , {f ′})]M
S ` Comp[N, itfs, subCp, bindings, s]−\ itf, f ′, v Z→O Comp[N, itfs, subCp, bindings, s′]

CommBrothers
C = (subCp ↑ N)

[N.itf, N ′.itf ′]∈bindings S ` C −\ itf, f, v Z→O C
′ host(f) = N ′

subCp′ = subCp← C ′ subCp′′ = subCp′ ← (Enqueue(subCp′ ↑ N ′, [f, v, itf ′]))
S ` Comp[N0, itfs, subCp, bindings, s]→R

Comp[N0, itfs,SubCp′′, bindings, s], [(f ′′, N ′) | f ′′ ∈ RefFutSet(v)] # [f,N]

CommChild
queue(s) = [f, v, itf] #Q [This.itf, N ′.itf ′] ∈ bindings f ′ /∈ RefFutSet(S)
host(f ′) = N ′ subCp′ = subCp← (Enqueue((subCp ↑ N ′), [f ′, v, itf ′]))

s′ := sLqueue := Q, results := results(s)[f 7→ (Vf , f
′)]M

S ` Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, subCp′, bindings, s′],
[f ′, N0] # [(f ′′, N ′) | f ′′ ∈ RefFutSet(v)]

CommParent
(subCp ↑ N) = C [N.itf ′, This.itf] ∈ bindings

subCp′ = subCp← C ′ S ` C −\ itf ′, f, v Z→O C
′ host(f) = N0

S ` Comp[N0, itfs, subCp, bindings, s]→R Enqueue(Comp[N0, itfs, subCp′, bindings, s],
[f, v, itf]), [f,N] # [(f ′′, N0) | f ′′ ∈ RefFutSet(v)]

RcvResultComposite(1)
s′ = sLresults = [fi 7→ vi | ∃ v′i. [fi 7→ v′i] ∈ results(s) ∧ vi = updateFV(v′i, f, v)],
queue = [[fj , vj , itfj] | ∃ v′j . [fj , v

′
j , itfj] ∈ queue(s) ∧ vj = updateFV(v′j , f, v)]

S ` Comp[N,itfs, subCp, bindings, s]− \f, v,N Z→F

Comp[N,itfs, subCp, bindings, s’], [(f ′′, N) | f ′′ ∈ RefFutSet(v)]

RcvResultComposite(2)
N0 6= N ′ (subCp ↑ N)− \f, v,N ′ Z→F C

′, RL subCp′ = subCp← C ′

S ` Comp[N0, itfs, subCp, bindings, s]−\f, v,N ′ Z→F Comp[N0, itfs, subCp′, bindings, s], RL

Figure 6.7: Semantics of the component composition (a)

(with same name). This call will be matched against a Comm rule that enqueues
this request. Consequently, this request will be handled by the enclosing composite.
A fresh future f ′ is found for this new request. The composite component records
that the value of f is now the new future f ′, and dequeues the request. The grey
arrow in Figure 6.6 show the call semantics, a request received on the internal server
interface is delegated unchanged to the external client interface. In Figure 6.5, this

6.2. Run time Semantics for GCM-like Components 131

rule corresponds to the outgoing arrow from the external client interface of the com-
posite component.

itf

[f,v,itf']

N

N'

[N.itf,N ′.itf ′] ∈ bindings

itf'
[f, v, itf ′]

[f !→ N]FRL

N' registers for all futures in v

Figure 6.8: CommBrother

CommBrothers: This rule expresses communication between two sibling subcom-
ponents of a composite component, as illustrated in Figure 6.8. If N and N ′ are the
names of two subcomponents of component N0, then component N can pass a call
to component N ′ if the client interface itf of N is bound to the server interface itf ′

of N ′ ([N.itf, N ′.itf ′] ∈ bindings). The call parameters f, v are passed unchanged
to interface itf ′ of subcomponent N ′. The operation Enqueue is used to place the
request [f, v, itf ′] onto the request queue of the destination. N is reduced simul-
taneously, sending the request. Component N then registers (in the RL list) for
receiving the result for future f when it is available. Similarly, N ′ also registers for
all futures inside the parameter v. In Figure 6.5, this rule corresponds to the arrow
(showing the binding) between the two subcomponents of the composite.

CommChild: This rule expresses request delegation between a composite compo-
nent and its subcomponent as shown in Figure 6.9. The request [f, v, itf] is dequeued
from the request queue of the parent. A new future f ′ is created and added to the
result list of the parent as the result for this request. The new request [f ′, v, itf ′]
is enqueued at the subcomponent. The exact subcomponent is determined using
the bindings: a request delegated to a subcomponent necessarily arrived an external
server interface, call it itf, if This.itf is bound to N ′.itf ′ then the request is sent to
the interface itf ′ of the subcomponent N ′. The component N0 registers in the RL
list to receive the result for f ′, also the destination N ′ registers for any future inside
the request parameter v. In Figure 6.5, this rule corresponds to left most arrow
binding the internal client interface of the composite with the server interface of the
subcomponent.

CommParent: This rule expresses communication between a subcomponent and
the composite component containing it, see Figure 6.10. When a subcomponent N

132 Chapter 6. Components with Futures: Semantics and Proof

[f',v,itf']
fresh f'

N'

f=f'

[f, v, itf]

itf
itf'

[f ′, v, itf ′]

Results

FRL

N0

[f ′ !→ N0]

N' registers for all futures in v

[This.itf,N’.itf’] ∈ bindings

Figure 6.9: CommChild rule

of a composite component N0 emits a request [f, v, itf ′] to its parent, the request
is added to the composite component’s request queue. For this, the subcomponent
interface N.itf ′ must be bound to the parent component interface This.itf. The
component N registers to receive the value for f when it is available; also, the values
for any future inside v must be sent to N0. In Figure 6.5, this rule corresponds to
the communication between the subcomponent and the right most internal client
interface of the composite component.

[f,v,itf]

N0

N

itf' itf

FRL

[f, v, itf]

[f !→ N]

N0 registers for all futures in v

[N.itf’,This.itf] ∈ bindings

Figure 6.10: CommParent

RcvResultComposite(1): This rule expresses future update for a composite com-
ponent which is the destination of the update. At the component N , the state s is
updated such that the new value v for the future f , replaces the old value inside
both the results and queue. The values for any futures inside v should be sent to
N , this is recorded in the RL list.

RcvResultComposite(2): This rule ensures that a future update is applied at the
component that is the destination of the future update, i.e., only at the component
which has the same name as given in reduction parameter −\f, v,N Z→F . Only the

6.3. Formalisation in Isabelle and Properties 133

sub-component that contains a component of name N is able to be reduced. This
rule navigates in the component hierarchy, finds the component with name N , and
applies rule RcvResultComposite(1)or in case of a primitive component, the rule
RcvResultPrim.

Trigger future update and global reduction We have shown the semantic
rules for both primitive and composite components. The final set of rules, com-
pleting the runtime semantics of our GCM-like components with first class futures
appear below. Trigger future update rule defines the mechanisms for initiating fu-
ture updates. The last rule Global-Reduction triggers the global reduction .
TriggerFutureUpdate: This rule selects a computed result of a component C

TriggerFutureUpdate
C ∈ cpSet(So) the state of C is s results(s)(f) = v FRL(s)(f) = {Ni}i∈1..n

∀i ∈ 1..n, Si−1− \f, v,Ni Z→F Si, RLi S′ = RemoveResult(f, Sn, getName(C))

` So regListFutures(S′, RL1 #RL2 # . . .#RLn)

Global-reduction
S ` S →R S′,RL

S registerListFutures(S′,RL)

Figure 6.11: Semantics of the component composition (b)

in the component system So for initiating the future update process. The value v for
the future f , has to be sent to all components (Ni

i∈1..n) in future recipient list FRL
for the future f (FRL(f)). For every component Ni, a future update is triggered on
N (host(f), this is matched by a RcvResult rule.
Global-reduction: From →R, a reduction for the global component system
can be performed, after performing all future registrations.

6.3 Formalisation in Isabelle and Properties

This section outlines the mechanisation of our component semantics in Isabelle/HOL
including eager message-based strategy, and several formalised proofs. We have al-
ready seen the definition of the component structure in Chapter 5 and now we
present the component semantics, directly translated from the preceding sections.
We also describe some properties we have already proved using our formalisation,
showing that our formalisation is able to handle mechanised proofs entailing reason-
ing on components, their structure, and first class futures. While the formalisation
represents a few hundreds lines of code, the proofs are much longer (above 5000
lines) and entail reasoning interleaving component structure, semantics, and future
registration aspects.

134 Chapter 6. Components with Futures: Semantics and Proof

6.3.1 Semantics

The semantics of primitive and composite components, as detailed in Section 6.2.2
has been entirely specified in Isabelle/HOL. The various semantic rules presented
for composite and primitive components are grouped under the different inductive
definitions, corresponding to the four differed reductions presented above (global
reduction , r-reduction →R, and parametrised reductions →O and →F).

inductive comm::[Component, Component, Name, Fid, Value, Component]⇒ bool
(_ ` _ -[_ ,_ ,_] 7→O _ 50) where
Call: J (PintState s,Call i1 v f,s2) ∈ (Behaviour s);

f /∈ (set (RqIdList S)) K
=⇒ S`(Primitive N itf s)− \il,f,vZ→O Primitive N itf (L PintState:=s2 M)|

CompositeCall:J Cqueue s= R#Q; (kind (the (itf (invokedItf R)))) = Client;
f/∈(set (RqIdList S)) K

=⇒ S` (Composite N itf subCp bindingss)
− \(invokedItf R),f,(parameter R)Z→O

Composite N itf subCp bindings
(sL Cqueue:=Q,CcomputedResults:=CcomputedResults s @

[L fid=id R,fValue=(0,[f])M]M)

To compare semantic specification in Isabelle to its mathematical equivalent, we
show the Isabelle/HOL version of some semantic rules. The inductive definitions of
→O reduction, consisting of Call rule for primitive component and Composite-
Call rule for the composite components is shown above. We start with the defini-
tion of →O and specify its structure; (_`_ -[_ ,_ _] 7→O_ 50) which is same as
the mathematical notation for parametrised →O reduction, S ` C −\ itf, f, v Z→OC

′.
Here S is of type component and gives the context, then comes C the component to
be reduced. This is followed by the three reduction parameters : (interface name,
future, and value). Finally we have the reduced component C ′. It is easy to see
the equivalence of the two specifications. Only a few intermediate variables and
operations were removed/changed in the Isabelle version. For example, f /∈(set
(RqIdList S)) is simplified as f /∈ RqIdSet(S).

Similarly, the CommParent rule in Isabelle/HOL is shown below and can be
compared with its mathematical equivalent in Figure 6.7. Our mathematical notion
however, is easier to follow as compared to Isabelle/HOL formulas. It also allows
us to avoid the Isabelle/HOL implementation issues and models our data structures
in a formal language independent manner. For example, as already discussed, our
definition of RL is semantically closer to mathematical notation one could use for
such a data structure, than its Isabelle/HOL alternative (also correct) which relies
on lists instead of finite sets (or maps) due to possibility of inductive reasoning on
lists. Additionally, we are able to simplify our notation by using set comprehension,
which is not supported for lists. We can write [f,N] # [(f ′′, N0) | f ′′ ∈ RefFutSet(v)]
instead of (f,N) # (map (λid. (id,N0)) (snd (v)), for building the list of
futures to be registered.

6.3. Formalisation in Isabelle and Properties 135

CommParent:
J(subCp ^ N) = Some C, L src=N.itf’,dest = This.itf M ∈ bindings;

snd f= N0; S` C− \il,f,vZ→O C’K
=⇒ S` (Composite N0 itfs subCp bindings s) →R

(Composite N0 Itf (subCp<-C’) bindings s)
← L id=f, param= v,invokedItf= itf M,

(f,N) # (map (λ id. (id,N0)) (snd (v)) |

6.3.2 Properties and Proofs on Eager message-based Strategy

The formalisation sketched above and entirely written in Isabelle/HOL is rich enough
to allow proofs of various lemmas. Our objective is to have a framework rich enough
to address most aspects of distributed components features, but also the framework
should be close enough to the existing component framework so that equivalence
between the implementation of the framework and the specification is simple and
convincing. We believe that our approach is adequate to prove properties entailing
component structures, asynchronous communications, and component behaviours.
Here, we focus on the formalisation of a future update strategy; we selected eager
message-based strategy for formalisation here as discussed in Section 6.1. Conse-
quently, we only present below theorems related to future updates and registration
of futures in eager message-based strategy. Of course those properties rely on nu-
merous other lemmas mainly related to component structure, and navigation inside
component hierarchy, presented in the previous chapter describing our reasoning
framework. Most of the lemmas are proved by induction on the component struc-
ture or on the reduction rules.

A first crucial theorem we proved is UpdatedFutureDisappear; it assures that
when a future has been updated, no reference to this future exist in the updated
component. More precisely, when the future f is updated at the component with
the name N inside the component system S, the new component C (with the name N)
inside the reduced system S2 no longer has a reference to future f. As already shown,
LocalReferencedRqs returns the list of futures referenced locally by C; it is similar
to RefFutSet but does not enter subcomponents. Recall that ˆˆ corresponds to
getRecSubCp function and looks for the subcomponent with the name N recursively
in a component hierarchy, in this case the component system S2. The hypothesis
f /∈set (snd v) captures a crucial requirement for this property; there should not
be any future cycles. More precisely, the new value v for the future f does not
contain a reference to f itself or simply put, there are no future loops. As shown
in Appendix A.8 of [7] in case of cycles, the future update may not terminate, thus
making any reasoning quite complex. For more details on future loops refer to [7].
Theorem 6.3.1 (Updated Future Disappears) Future update removes all references
to a given future.

theorem UpdatedFutureDisappear:
J S− \f,v,NZ→F S2, RL; CorrectComponent S;(S2^^N) = Some C; f /∈ set (snd v)K
=⇒ f /∈ LocalReferencedRqs C)

136 Chapter 6. Components with Futures: Semantics and Proof

The proof for UpdatedFutureDisappear is approximately 80 lines, and relies on
a number of simpler lemmas (not included in count) on local update on values and
futures. For example:

lemma UpdateFutureSet:
set (snd (UpdateFuture f v v’)) ⊆ set (snd v) ∪ set (snd v’)

lemma UpdFut_futdisappear:
f/∈ set (snd v) =⇒ f /∈ set (snd (UpdateFuture f v v’))

The lemma UpdateFutureSet simply recalls that once the the current value v′

for a future f is updated with the new value v, the referenced futures in the final
value are a subset of the the referenced futures inside the two values combined. The
future update does not introduce any future outside those that are already known
in either v or v′. UpdFut_futdisappear on the other hand implies that after the
update, any future that is not referenced inside the value v disappears. Recall that
UpdateFutures f v v’ replaces the future id f with value v in value v’.

Concerning future registration, the main theorem we proved in Isabelle is the
following one :

Theorem 6.3.2 (Globally Registered Futures) For a correct component system, the
global reduction maintains complete future registration.

theorem FuturesRegistered:
J` C1 C2; CorrectComponent C1; GlobalRegisteredFuturesComp C1K
=⇒ GlobalRegisteredFuturesComp C2

GlobalRegisteredFuturesComp, shown in Section 5.3.2 (under Future registration)
checks that all futures are registered in the given component system. It states that
after global reduction `C1 C2, all futures registered in C1 are also registered
in the reduced system C2 along with any new future generated as the result of
component communications. Although, the proof for this theorem is approximately
70 lines, the proof relies on lemmas about transmission of registered futures, and
registration of newly created futures, which are proved separately. Most of those
lemma entail much longer proofs and some of them are shown below.

First we show some properties on the underlying reductions that are needed
before any proofs on future registrations. Those properties ensure that the various
reductions used in our semantics maintain some key constraints. For example, R_-
maintains_name and O_maintains_name verifies that the component keep it’s name
after →R and →O reduction. Similar lemma exists for →F reduction.

lemma R_maintains_name: S ` c1 →R c2, RL =⇒ getName c2 = getName c1
lemma O_maintains_name: ` c1− \il,i,vZ→O c2=⇒ getName c2 = getName c1
lemma R_names_eq: J S ` c1 →R c2,RL; CorrectComponentWeak c1 K

=⇒ getName ’(cpSet c2)= getName ’ (cpSet c1)

The proof for R_names_eq is approximately 40 lines and verifies that the compo-
nent names involved in the composition are the same before and after the reduction.

6.3. Formalisation in Isabelle and Properties 137

Using the above mentioned lemmas (and similar ones on other properties)
we can prove lemmas on future transmission which are required for our theorem
FuturesRegistered. The R_maintainsRegFutures states that, if a future f (in
component named N) is registered in C, and C reduces by →R to C’, then the f is
also registered in C’. RegisteredFuture is shown in Section 5.3.2 (under Future
registration).

lemma R_maintainsRegFutures:
J S` C →R C’,RL; CorrectComponent C; RegisteredFuture f N C; C∈cpSet S K
=⇒ RegisteredFuture f N C’

Similarly, the lemma O_maintainsRegFutures states that, if a future fa is reg-
istered in component C in the component system S, then it is registered in C’ after
emitting the message (and reducing to C’ subsequently).

lemma O_maintainsRegFutures:
J S ` C −\il,f,vZ→O C’; RegisteredFuture fa N C K
=⇒ RegisteredFuture fa N C’

The next lemma concerns registration of new futures and is a crucial lemma for
proving the theorem FuturesRegistered. It states that : if in a source configura-
tion, all futures contained in a subcomponent of C1 are registered in S (expressed
by LocalRegisteredFuturesComp, shown in Section 5.3.2) and the component C1
reduces to C2, then a future referenced from a subcomponent C’ of C2 is either
initially registered in S or will be registered because a corresponding entry is in
the registration list RL (Recall that RL stores the registrations required for eager
message-based strategy).

lemma registeredFutures_R:
JS ` C1 →R C2,RL; C1∈cpSet S;∀C∈cpSet C1. LocalRegisteredFuturesComp C S;

C’∈cpSet C2; f∈LocalRefFutSet C’ K
=⇒ RegisteredFuture f (getName C’) S ∨ (f, getName C’)∈set RL

The proof of the above lemma is more than 200 lines, and itself relies on a
number of lemmas, including a similar lemma for →O reduction.

lemma registeredFutures_O:
J S ` C1 −\itf,f,vZ→O C2 ; C1 ∈ cpSet S;
∀ C ∈ cpSet C1. LocalRegisteredFuturesComp C S;
∀ C’ ∈ cpSet C2. ∀ f’. (f’∈ LocalReferencedRqs C’) K

=⇒ (RegisteredFuture f’ (getName C’) S ∨ (f=f’ ∧ C’=C2))

Above proofs are almost entirely mechanised: only properties ensuring preser-
vation of CorrectComponentWeak by the reductions are left for future works. In-
formally, it can still be shown why weak correctness should hold for the presented
reductions. Recall that CorrectComponentWeak requires that the component should
have correct structure, all subcomponents (cpList) of the component have distinct

138 Chapter 6. Components with Futures: Semantics and Proof

names and all the request identifiers are distinct. Taking the example of →O, the
O_maintains_name lemma along with O_names_eq and other similar lemmas ensure
that component names after the reduction are also distinct (they are distinct before
due to CorrectComponentWeak constraint).

axioms R_maintains_WF:
J S` C→R C’,RL ; CorrectComponentWeak C K =⇒ CorrectComponentWeak C’
axioms O_maintains_WF:
J S` C− \itf,f,vZ→O C’; CorrectComponentWeak C K

=⇒ CorrectComponentWeak C’
axioms F_maintains_WF_:
J S−\f,v,NZ→F S,RL; CorrectComponentWeak CK =⇒ CorrectComponentWeak C’

Similarly, we have lemmas (O_sameRqIdList) which verify that the reduction
preserves the RqIdList. Consequently, if the weak correctness holds before the
reduction, then in the reduced component the request identifiers are also distinct.
Same reasoning applies to the interfaces through comm_maintains_itfs and similar
lemmas.

lemma O_sameRqIdList:
S ` C − \il,f,vZ→O C’ =⇒ (RqIdList C’) = (RqIdList C)

lemma comm_maintains_itfs:
S` C−\il,f,vZ→O C’=⇒ (getItfs C’) N = (getItfs C) N

In the same way, we can reason on correct referencing of requests and correctness
of component bindings with are required for correct component structure. We hope
to formally prove the correctness properties for our reductions in future. For now,
as seen above, we use them as axioms.

The theorems and lemmas presented in this section ensure that the eager
message-based future update strategy is complete, that is it keep track of the future
references in all the component system, and then it updates all those references, re-
moving all references to the considered futures. Consequently, the future can safely
be garbage collected. This strategy can be thus adopted in the implementation of
the GCM; this guarantees safety of the future update implementation. Although
we have only presented our formal semantics with eager message-based future up-
date strategy, other strategies can also be easily formalised. The semantics of our
components with lazy message-based strategy appear in Appendix B. Due to the
similarities between the two strategy we are quite confident that most of the proofs
on basic properties can be easily modified for lazy strategy. Eventually, it could
be interesting to prove the semantic equivalence of the three strategies. Indeed the
confluence property ASP [7] ensures that that in the absence of deadlocks the re-
sults produced by all three strategies are semantically equivalent. We believe that
it should be possible to show similar results for our formalisation. Additionally, for
the most part ASP proofs were done on paper, while we would have a mechanised
version of each proof. Further discussion is provided in Chapter 9.

Chapter 7

Positioning and Concluding
Remarks on Formalisation

Chapters 5 and 6 presented a model for distributed components communicating
asynchronously using futures. The component model is a subset of GCM model
with hierarchical components. The components communicate using an asynchronous
request-reply paradigm with futures, where requests are enqueued atomically at the
target component and the invoker receives a future representing the result. Futures
are first class and consequently future references can spread across components.
When the results are available, they are sent to the relevant components using a
future update strategy. Three of those strategies are studied in Chapter 3. In this
part, we formalised a component model with a full specification of a given future
update strategy.

Formalised models. We formalise a subset of GCM model, a European standard
for grid component models. To the best of our knowledge ours is the only work
focusing on formalising (part of) GCM model. As stated before, our goal is to study
the interplay between components and futures. Consequently, our formalisation
takes futures into account.

Components in our formalised component model derive most of their structure
from GCM. At our level of abstraction, this structure is shared by several com-
ponent models like Fractal, GCM, and SCA (presented in Section 2.5). However
most implementations of SCA (except FraSCAti) do not instantiate the component
structure at runtime. By contrast, to allow component introspection and reconfig-
uration at runtime, we consider a specification where structural information is still
available at runtime. This enables adaptive and autonomic component behaviours.
Indeed, component adaptation in those models can be expressed by reconfiguration
of the component structure. For example, reconfiguration allows replacement of an
existing component by a new one, which is impossible or very difficult to handle
in a model where component structure disappears at runtime. FraSCAti [72] is an
implementation of the SCA model built upon Fractal making this implementation
close to GCM. It provides dynamic reconfiguration of SCA component assemblies,
a binding factory, a transaction service, and a deployment engine of autonomous
SCA architecture. Due to the similarity between FraSCAti and GCM, our approach
provides a good formalisation of FraSCAti implementation.

ProActive/GCM, a reference implementation of GCM model, comes closest to
our formalised component model. ProActive/GCM may be considered one possible

140 Chapter 7. Positioning and Concluding remarks

implementation of our formalised model. Table 7.1 highlights some of the differences
between the GCM specification, its reference implementation ProActive/GCM and
our formalised model. As seen in the table, GCM specification allows for a lot
of flexibility, for example the specification does not impose any particular concur-
rency or communication model. ProActive/GCM only implements mono-threaded
components. Each component in ProActive/GCM has a single execution thread
with serves the requests. Our formalisation allows concurrent execution of requests.
Similarly, GCM allows for a variety of communication models, synchronous, asyn-
chronous, event-based, etc. For reasoning on components, a more precise formal
specification is required. Consequently, we restrict the communication model to
an asynchronous request-reply paradigm with futures. All communication between
components is in the form of asynchronous method invocations with futures as place-
holders for result values. Communication in ProActive/GCM takes place using the
same communication model. In contrast to GCM and ProActive/GCM, for now all
bindings in our formalised model are one to one (it is still possible to have several
bindings reaching the same server interface); all interfaces are unicast interfaces and
do not support group communication. GCM and ProActive/GCM supports spec-
ification/implementation of functional and non-functional interfaces. However, in
our formalisation we focus solely on functional interfaces and do not model non-
functional interfaces. We also do not have the notion of optional interfaces, which
are allowed by the specification. There are no controllers or non-functional interfaces
in our component structure. ProActive/GCM provides a detailed process for compo-
nent deployment through ProActive deployment framework [15]. Our formalisation
does not cover deployment.

Most existing works on formal methods for components focus on the support
for application development whereas we focus on the support for the design and
implementation of component models themselves. To our knowledge, this work is
the only one to support the design of component models in a theorem prover. It
allows proving very generic and varying properties ranging from structural aspects
to component semantics and component adaptation.

Finally, there is no formalisation available for GCM specification. In [88, 89], au-
thors focus on verification of behaviour of GCM components. However, they prove
properties of specific applications rather than provide a formalisation of the compo-
nent model itself. [82] comes closes and provides a comprehensive formalisation of
Fractal component model specification, from which GCM components inherit most
of their structure.

Summary of contributions A first formalisation of GCM model and its runtime
semantics appear in [1]. Our work is an extension of the model presented there, and
we focus on formalisation of the component model and its runtime semantics in the
presence of a future update strategy.

Chapter 5 presents our framework for supporting mechanised proofs for dis-
tributed components, formalised in Isabelle/HOL theorem prover. In particular we

141

Features of Component Models
Property GCM ProActive/GCM Formalised

model
Hierarchy Yes Yes Yes
Distribution Primitive/ Primitive/ Primitive/

composite composite composite
Concurrent Un-specified Mono-threaded Potentially
execution multi-threaded
Group Yes Yes No
Communication
Communication Un-specified asynchronous asynchronous
paradigm requests requests

with futures with futures
Functional Yes Yes Yes
interfaces
Non-functional Yes Yes No
interfaces
Non-functional Yes Yes No
components
Formal semantics No Partial Yes
Deployment High level Yes No
Optional Yes Yes No
interfaces

Table 7.1: Properties of our formalised model vs ProActive/GCM

focus on the handling of component structure, on a basic set of lemmas providing
valuable tooling for further proof, and the illustration of the presented framework
to prove a few properties dealing with component semantics and reconfiguration.
We present the logical machinery of a mechanised framework for reasoning about
structured component systems; especially targeting distributed components with fu-
tures. We have first illustrated and motivated the specification of components and
the provided proof infrastructure. Furthermore, we have shown this machinery in
action by showing how reconfiguration of components can be formally specified, and
how properties over component structure and reconfiguration can be handled.

Chapter 6 relies on the reasoning framework built in Chapter 5 and presents
the runtime semantics of our components, incorporating one future update strategy.
Future update strategies are somewhat neglected in the literature. We believe that
even though future update strategies need not be included for studying properties
of a language, they are still important for reasoning on the implementation of this
language. Consequently, our semantics include formalisation of one future update
strategy, the eager message-based strategy. We also sketch the first proofs and
supporting lemmas related to properties on future registrations. Our model is precise
and expressive enough to reason about futures and components, and to guarantee
correctness properties. Component semantics for a second future update strategy,
the lazy message-based appear in Appendix B, demonstrating that our formalisation

142 Chapter 7. Positioning and Concluding remarks

is flexible enough to support multiple future update strategies.
All of our work, the component model specification, its semantics, and proofs

of properties, has been mechanised in Isabelle/HOL theorem prover. Those mech-
anised proofs ensure the correctness of the implementation of future updates in
ProActive/GCM. Overall, the developed framework consists of more than 4000 lines,
including almost 300 lemmas and theorems, approximately 500 lines for defining the
component model and its semantics, and 1800 lines focusing on properties specific
to future update strategy. The remaining code proves auxiliary lemmas and general
properties on the component structure.

Chapter 8

Conclusion

A natural way to benefit from distribution is via asynchronous invocations to meth-
ods or services. Upon invocation, a request is enqueued at the destination side and
the caller can continue its execution. But a question remains: what if one wants to
manipulate the result of an asynchronous invocation? First class futures provide a
transparent and easy-to-program answer: a future acts as the placeholder for the
result of an asynchronous invocation and can be safely transmitted between com-
municating remote processes while its result is not needed. Synchronisation occurs
automatically upon an access to the result. As references to futures disseminate,
a strategy is necessary to propagate the result of each request to the process that
needs it. In this thesis, we studied the first class futures focusing on the mechanisms
for transmitting the results for futures; the future update strategies.

The first part of the thesis provided a detailed semi-formal specification of three
main future update strategies adapted from [7]; we then used this specification
for implementing the strategies in a distributed programming library. We studied
the efficiency of the three update strategies through experiments. The semi-formal
specifications and the experimental results are published in [9, 10].

The second half of the thesis dealt with more formal aspects. Proving correct-
ness of distributed protocols has always been a challenging task. In our opinion,
modern theorem provers are sufficiently advanced to make mechanised reasoning
feasible. Mechanised proofs remove the chances for human errors that may occur in
the traditional pen-and-pencil proofs. In particular they remove the possibility of
proving wrong statements given that the underlying logic is consistent and valid.

We presented a model for hierarchical distributed components communicating
asynchronously using futures. The communication model is based on a request-reply
paradigm, where requests are enqueued at target component and invoker receives
a future, representing the result. Futures are first class: and consequently future
references can be spread across components. When the results are available, they
are sent to the relevant components using a future update strategy. Our component
model, its semantics, and proofs on properties are all formalised in Isabelle/HOL
theorem prover. Our presented formalisation and the proof of various properties are
published in [13, 14].

Contributions, results, and impact

The contributions of this thesis include:

144 Chapter 8. Conclusion

A Generic semi-formal notation
We introduced a generic and language independent notation for modelling the
future update protocols. Our chosen notation interprets the future update
strategies as combination of events and support operations. Support opera-
tions simplify the task of specifying the details of different strategies. For
example, register futures, local update of futures, and garbage collection of fu-
tures are all support operations. Future update strategies react to various
events/stimuli, triggered by application or the middleware. Our approach
allows us to model the actions taken by a future update strategy to ensure
proper response to a particular event/occurrence. For example, creation of a
future, transmission of a future, computation of the value for a future, etc.,
are all events in the life-cycle of a future. Decoupling the notation from real
implementation allows us to specify future update strategies in a generic man-
ner; the resulting specification can be used for other works using first class
futures, for example Creol and AmbientTalk, as well.

Semi-formal specification of update protocols
We used our generic semi-formal notation to specify three future update strate-
gies; two eager strategies (eager forward-based and eager message-based) and
one lazy strategy (lazy message-based) were presented. A higher-level view of
these strategies appeared in [7]. However, in comparison to our work, [7] is
more abstract and does not sketch the working of each strategy and how it may
be implemented. In contrast, our specification is more detailed (and precise)
and clearly specifies the underlying mechanisms and data-structures required
for implementing the strategies. For example, we show when should a process
register for a future, and which data-structures (FR and FL) are needed to
keep track of futures. Our Semi-formal specification is precise-enough and
contain sufficient details to be used – and has been used – as basis for a real
implementation. We believe that such semi-formal approaches strike a good
balance between the ambiguities inherent in informal descriptions and the
complexities of formal mathematical notations. Finally, even-though we pre-
sented three future update strategies, in our opinion, the presented approach
is flexible enough to model other strategies that may be envisioned.

Analysis of future update strategies
Availability of a detailed specification of future update protocols, allowed us to
informally estimate the efficiency of strategies in terms of message exchanges,
and time to update futures. We showed a basic cost-analysis model for our
selected strategies to understand the costs and trade-offs required by each
strategy. We estimated the costs using indicators such as total number of
messages exchanged, time to update a given future, and time to transmit a given
result to all processes with corresponding future. We analysed those indicators
on parameters such as number of intermediate hops/processes, possible number
of concurrent updates, and the time required for serialising the payload. The
goal was to provide directions on a possible way of analysing the strategies;

145

we consider a detailed (and consequently more complex) cost model to be out
of scope of this thesis.

Implementation of missing strategies
We presented our implementation of future update strategies in ProActive
middleware – a distributed programming library based on ASP-calculus. By
default, ProActive provides two modes: no automatic continuation mode (con-
figured in ProActive descriptor) disables the use of first class futures. Al-
ternatively, the programmer can decide to use first class futures, which are
supported using eager forward-based strategy. We extended the support for
first class futures in ProActive and implemented eager message-based and lazy
message-based strategies. Our implementation builds on the work presented
in [16], and provides support for nested futures, newer configuration options,
along with numerous other modifications necessary to work with new versions
of ProActive. In addition to the default options of ProActive, we now offer
two additional modes corresponding to the two additional strategies; these
may be configured via an XML descriptor. While our implementation of up-
date strategies is not optimised, we believe that it provides a good starting
point for studying the behaviour of various future update strategies.

Experiments on future update strategies
To validate the implementation and to further improve our analysis, we pre-
sented results for two experiments using different future update strategies.
Our experiments were carried out in collaboration with authors of [16], and
together with our analysis on future updates, strove to answer the non-trivial
question: Which is the best future update strategy? While the presented ex-
periments are not sufficient to settle this question, they demonstrate that the
performance of a strategy can greatly vary depending on the nature of the
application (and with the previously presented parameters). Lazy strategy
is most suited in situations when only some of the processes with the future
actually require the result value. On the other hand, lazy strategy also intro-
duces an additional time delay before the result can be acquired and as such
may not be suited for applications which require result values to be transmit-
ted as soon as they become available. The single step update characteristic of
message-based strategies reduces the time delay as results are serialised only
once. However, compared to eager forward-based strategy, they consume more
bandwidth and are more memory intensive. We believe that the presented re-
sults justify our decision of studying various future update mechanisms and
sufficiently demonstrates that there is no single best strategy suited to all sce-
narios. Rather, applications can benefit from having more than one supported
strategy. A large scale experimental study would be instrumental in analysing
the various future update strategies; however we consider such a study to be
out of scope of this thesis.

146 Chapter 8. Conclusion

A formalised distributed component model
We formalised in Isabelle/HOL [12], a subset of GCM model – a European
standard for grid component models. Our formalisation includes distributed
components, futures and asynchronous communications by means of requests.
Hierarchy is modelled as follows: our components can be primitive or com-
posite, primitive components are leaf-level components and implement the
business logic; Composite components compose one or more subcomponents.
Each component has a unique Name, a list of component interfaces, and a
component state. All communications between the components is via their
public interfaces (uni-cast). Components receive incoming messages on server
interfaces and emit messages (invoke method-calls) on client interfaces. Com-
posite components have, in addition, a list of subcomponents, and a set of
component bindings. The asynchronous communication is supported through
first class futures. Incoming requests are enqueued atomically in the message
queue, while the invoker receives a future. As opposed to GCM specification,
our formalisation does not include non-functional interfaces. All our interfaces
are uni-cast, and we do not support multi-cast or gather-cast interfaces.

The behaviour of primitive components is governed by a LTS behaviour, the
possible internal actions are: internal transition, request service, request emis-
sion, result reception, and end of service which associates a result to a request.
In comparison, the behaviour of composite components is quite limited. Es-
sentially, a composite component serves the requests in a FIFO order, and
delegates all incoming requests to its bound components. A request is emitted
by a client interface of a primitive component, and received unchanged by the
server interface of the primitive component that is (indirectly) bound to it.
The delegated requests arrive at the bound component unchanged and may
traverse several composite components and bindings.

To the best of our knowledge ours is the only work focusing on formalising
(subset of) GCMmodel. The GCM reference implementation ProActive/GCM
can be considered as a possible implementation of our formalised component
model.

Infrastructure for efficient manipulation of component structure
Component models ensure that components have a well-determined structure
which facilitates reasoning on component structure and interactions. To take
advantage of this strict adherence to the structure and to manipulate com-
position hierarchy, we built an infrastructure for handling components in Is-
abelle/HOL. Various operations that allow us to effectively manipulate com-
ponents were shown; those include: operations for accessing component state,
mechanisms for traversing component hierarchies, and means for replacing and
updating components inside the hierarchical structure. For example, we pre-
sented cpList construct that gives a list of all subcomponents of a component
recursively. Operations like getRecSubCp, and changeCp, etc., were shown to
demonstrate how we manipulate the components inside a composition hierar-

147

chy. Similarly, we have operations for manipulating requests and computed
results, needed for reasoning on correctness of update strategies. For exam-
ple, the operation ComputedRqs allows us to retrieve all computed requests
in all subcomponents of a composite. All these operations are primitive re-
cursive functions enabling an encoding in Isabelle/HOL using the primrec
construct. Using this construct has great advantages for the automation of
interactive reasoning process. Automated proof procedures of Isabelle/HOL,
like the simplifier, are automatically adapted to new equations; simple cases
can be solved automatically. Moreover, the definitions themselves must use
pattern matching leading to readable definitions.

Properties on correct components
We specified the structure of well-formed and correct components in Sec-
tion 5.3.4. We only reason on a subset of all possible components (which meets
these two criteria) that can be constructed according to the described compo-
nent structure. A composite component is well-formed (has correct structure)
if : each binding connects an existing client interface to another existing server
interface; each client interface is connected only once; all subcomponents have
a distinct name; and all requests in the request queue of the composite refer
to existing server interfaces. A primitive component has a correct structure
if it follows the last requirement plus some additional constraints relating its
behaviour with its interfaces.

A correct component is a well-formed component that also has uniquely defined
request identifiers (recursively), and all future referenced by the components
should correspond to an existing request. Finally, names of all components
in the composition should be unique. This differs from the well-formedness
requirement which only requires the names of all direct subcomponents to be
unique.

The requirement of checking correct future referencing throughout the com-
position hierarchy is stronger than what is needed for most proofs, and can
at times be relaxed resulting in a weak correctness requirement. Weak cor-
rectness eases proofs involving component hierarchy because if a component
verifies weak correctness, then all its subcomponents also verify it; which is
not the case for correct component.

We proved properties on the correctness of component structure. The prop-
erties logically relate the degree of correctness of the structure. We presented
some of those lemmas. For example, we showed lemmas that established the
well-formedness of the subcomponents of a well-formed composite component.
Another lemma established the well-formedness of all constituent components.
Other presented properties included: properties relating weak correct com-
ponents with correct components, verifying uniqueness of components (w.r.t
names), etc.

As a consequence of the mapping between component structure and Isabelle’s

148 Chapter 8. Conclusion

structural support, it has been relatively easy to prove properties of component
structure by automatic steps plus induction on the component structure.

Runtime handling of components reconfiguration
Reconfiguration represents all the transformations of the component structure
or content that can be handled at runtime. We considered only structural
reconfiguration, which includes changes of the bindings, and of the content
of a component. Our framework includes the structural information in the
formalisation. This not only allows us to efficiently manipulate and reason on
component structure, but also enables reasoning on reconfiguration primitives
and behaviour of a reconfigured component system. We showed two reconfigu-
ration primitives : unbind removes one binding inside a composite component,
while replace changes the subcomponent of a composite component. We de-
fined a completeness property for our composites. A composite component is
complete if all interfaces of its subcomponents and all its internal interfaces
are bound (note that we do not have optional interfaces). Using this definition
of completeness (derived from Fractal), we showed that our replace component
primitive respects the completeness constraint.

Component configuration and reconfiguration is a vast topic, and is not the
goal of this thesis. The formalisation of reconfiguration primitives and the
properties provided here only serve to show that our framework is detailed
enough to allow reasoning on component configuration-reconfiguration.

Runtime semantics with eager message-based strategy
We presented a runtime semantics for our components; our semantics incorpo-
rate formalisation of one future update strategy. Formalising future updates is
of little interest concerning the language properties, but it is crucial to study
the implementation of this language. In order to prove the correctness of the
implementation of GCM, our work aimed at specifying formally future update
strategies and proving correctness properties on futures.

Based on the presented component structure, we can derive semantics using
any of the previously mentioned strategies; all three strategies are semantically
equivalent under a decidability hypothesis, as demonstrated in ASP-calculus [7].
Of the three presented future update strategies, eager message-based strategy
is the most complex strategy and consequently, we selected it for our formali-
sation and proofs. Semantics of a second strategy (lazy message-based) were
also shown in an Appendix, demonstrating the flexibility of our approach.
Our semantics are fully formalised in Isabelle/HOL, together with the proof
of properties.

We define the runtime semantics of our components by a number of inductively
defined reduction relations. The global reduction of the component system is
 , which triggers either −\f, v,N Z→F , or→R reductions. Also a parametrised
reduction relation −\ itf, f, v Z→O (interface name, future, value) emits messages
and is used by→R reduction. The parametrised relation −\f, v,N Z→F (future,

149

value, component name) expresses future updates. Using these reduction rules,
we provided first the semantic rules for primitive components, followed up by
the semantic rules for composite components. Both semantics incorporate the
formalisation of eager message-based future update strategy. Finally, we give
the semantics for triggering the future update globally and the semantics for
our global reduction , which ensures that relevant future registrations are
performed; this completes our semantics for GCM-like components with eager
message-based future update strategy.

Correctness of future updates
Our presented formalisation in Isabelle/HOL is rich enough to allow proofs of
various lemmas. Our objective was to have a framework rich enough to ad-
dress most aspects of distributed components features; but also the framework
should be close enough to the existing component framework so that equiv-
alence between the implementation of the framework and the specification
is simple and convincing. We believe that our approach is adequate to prove
properties entailing component structures, asynchronous communications, and
component behaviours. We focused on the formalisation of a future update
strategy; we selected eager message-based strategy for formalisation here as
already discussed. Consequently, we only presented theorems related to future
updates and registration of futures in eager message-based strategy. Of course
those properties rely on numerous other lemmas mainly related to component
structure, and navigation inside component hierarchy. Most of the lemmas are
proved by induction on the component structure or on the reduction rules.

We have proved two main theorems concerning futures. The first theorem
ensures the correctness of future update operation and verifies that a future
update removes all references to a given future. The second theorem is the
main property that we prove on future registrations and establishes the cor-
rectness of formalised future update protocol; the theorem verifies that for a
correct component system, the global reduction maintains complete registration
of futures. These two theorems (and the other presented lemmas) ensure that
the eager message future update strategy is complete, that is it keep track
of the future references in all the component system, and then it updates all
those references, removing all references to the considered futures. Conse-
quently, the future can safely be garbage collected. This strategy can be thus
adopted in the implementation of the GCM; it guarantees safety of the future
update implementation.

The proofs of the above theorems are almost entirely mechanised: only prop-
erties ensuring preservation of correct component structure by the reduction
rules are left for future works. Informally, we sketched in Section 6.3.2 how a
possible proof can be constructed.

150 Chapter 8. Conclusion

8.1 Final remarks

This thesis focused on a study of first class futures, in particular on the mechanisms
for transmitting the result values. Future update strategies are somewhat neglected
in the literature. We believe that even though future update strategies need not be
included for studying properties of a language, they are still important for reasoning
on the implementation of this language. The work encompassed both applied and
formal aspects. We presented a semi-formal specification for future update protocols.
Based on the semi-formal specification, we implemented the future update strategies
in ProActive and performed some experiments to validate our strategies. We believe
that even without a large scale experimental study, the results are sufficient to justify
the need for having more than one future update mechanisms. Our implementation
provides a good starting point for studying and analysing the performance of various
strategies. Although, the implementation is in one particular middle-ware, it is
based on a language independent specification. As a result, we believe that the
results presented here can be applied to other frameworks that make use of first
class futures as well.

The formal part of the thesis presented the logical machinery of a mechanised
framework for reasoning about structured component systems; especially targeting
distributed components. We first illustrated and motivated the specification of com-
ponents and the provided proof infrastructure. Furthermore, we have shown this
machinery in action by showing how reconfiguration of components can be formally
specified, and how properties over component structure and reconfiguration can be
handled. We also illustrated our approach by showing the specification of a seman-
tics for components, and associated proofs. Throughout our formalisation process,
we provide a justification and reasoning behind our design choices.

Our approach focuses on increasing confidence in global properties of component
models. For this, we provide a framework and apply it to prove generally valid re-
sults. The established infrastructure of structured components with asynchronous
communication provides an elegant abstraction from implementation details while
fully preserving the communication structure, and defining a precise semantics that
is required for mechanised reasoning. We provide support for distributed com-
ponents communicating by asynchronous requests with futures. Overall we have
developed a reliable basis for the mechanical proofs of properties of hierarchical
component models, and we have shown its adequacy to deal with first proofs entail-
ing reconfiguration, and component semantics.

We now have sufficient formal constructs and tools to express future update
strategies and to study their properties. This work showed that it is possible to
formally prove completeness and correctness of our future update mechanism, and
of the corresponding implementation in ProActive/GCM. A crucial point during
the specification phase was to find the good Isabelle/HOL abstraction to represent
the component structures. We think we found a good balance between expressive-
ness and abstraction, that allows formal reasoning on the interplay between the
execution and component structure, but is close enough to the component model

8.1. Final remarks 151

implementation.
Finally, the work presented in this thesis is by no means complete. We hope that

it leads to further discussion and study of first class futures, in both the applied and
theoretical fields. We discuss some of the future possibilities in the next and final
section of the thesis.

Chapter 9

Future Works

As discussed in relevant sections, this work is not complete. Rather we hope to pro-
vide a strong basis for further research on future update protocols. In the following
sections, we present some perspectives for future efforts; we discuss some short term
and long term future perspectives. Following the pattern of the thesis, we discuss
separately the directions for the formal and the applied domains.

9.1 Applied Aspects

Our implementation of future update strategies provides a good starting point for
further optimisations and experimental evaluation. We discuss some of the possibil-
ities in the following:

Case study to evaluate efficiency of future update strategies
We presented the results from some experiments on evaluating the performance
of different strategies. As discussed, those experiments are not sufficient to
fully evaluate the efficiency of the presented strategies. Therefore, an im-
portant next step is to carry out a large scale experimental study on future
updates. The current set of experiments were carried out using a relatively
small local cluster. The case study could be executed and analysed in a Grid
or Cloud infrastructure. In particular, using Grids with nodes at different
physical locations would help measuring the network related issues in more
detail. Such a case study would help improve the confidence in the analysis
presented in this thesis.

Some possible parameters that could be better explored with a case study are:

Size of the result value: As discussed, size of the result value has impor-
tant repercussions for all strategies. For eager forward-strategy, results are
serialised-deserialised at each intermediate process. To evaluate the impact of
the size of the result value on eager forward-based strategy, one could tailor
use cases that require transferring large amounts of data as part of future up-
dates. An important improvement would be to separately measure the ratio
of time spent in serialisation-deserialisation, and the actual data-transfer.

Memory usage: The message-based strategies in general utilise more memory
than eager forward-based strategy; results have to be stored for longer du-
rations. For example, in theory the computed results in lazy message-based

154 Chapter 9. Future Works

strategy can not be garbage collected. A comparative analysis of memory us-
age of each strategy could be of interest, particularly for applications where
memory could be an issue.

Network bandwidth: Network bandwidth is another property of interest while
discussing message-based strategies. The message-based strategies rely on
being able to perform all updates in a central manner. This can potentially
create a bottleneck, particularly for eager message-based strategy, if sufficient
bandwidth is not available for concurrent updates of future values.

We presented a worst-case scenario for eager forward-based future update
strategies (future updates along a chain of processes). Similarly, different
scenarios could be constructed and evaluated to exploit potential weaknesses
of each strategy. For example, lazy message-based strategy can (potentially)
perform worse than eager message-based strategy if every process that receives
a future, makes a future access. If the future is accessed after computing
process has produced a result, then additional delays would be encountered as
each process sends a message asking for the result and waits until the result
arrive. In contrast, eager message-base strategy would communicate the result
as soon as it is computed; result would arrive faster.

Garbage collection
Garbage collection is an important aspect of programming. However, this
thesis was oriented towards study of future updates and we did not cover
garbage collection of computed results. An interesting follow up to our work
could be to implement proper garbage collection mechanisms for our strategies.

For eager forward-based strategy, garbage collecting the computed values is a
straight forward process; a result can be removed as soon as it is forwarded to
all processes to which the corresponding future was previously communicated.

However, for message-based approaches, garbage collection is a more chal-
lenging task. In eager message-based strategy, computed results can only be
garbage collected when: Every processes that registered for a particular re-
sult, receives the result; and the corresponding future is not in transit. Once
these two requirements are met, results may be safely garbage collected. As
already discussed, it is easier to check for in-transit futures in a sender-based
implementation of registration mechanism.

Similarly, solutions could be explored for garbage collecting the computed
results for lazy message-based strategy. In theory, processes could ask for a
computed value at any time, thus requiring the processes to hold computed
values indefinitely. In practise however, application dependent timeouts could
be used for removing results.

A possible way ahead could be as follows:

• Design of a distributed algorithm to check in-transit futures,

9.1. Applied Aspects 155

• Implementation of mechanisms for allowing the programmer to specify
timeout values for computed results,

• Correctness proofs on garbage collection mechanisms.

Formal reasoning on such algorithms is important to guarantee correct op-
eration of the algorithm. For eager message-based strategy, it would assure
that there are no futures in-transit. For lazy message-based strategy, in addi-
tion, we could have proofs ensuring that the garbage collected future is indeed
redundant, and can (will) no longer be accessed by any processes.

An alternative to a distributed garbage collection algorithm could be to allow
the programmer to designate one process (preferably with access to high band-
width connection) as a ‘results server’. Then all processes that require a result
could be redirected to this result sever. Once results have been communicated
to the results server, they could be garbage collected locally. However, the
results server would still require a proper garbage collection mechanism.

Optimising the implementation
We provide a real implementation of future update protocols. However, the
implementation is not fully optimised and a number of improvements could
be suggested.

Eager message-based and lazy message-based strategies both rely upon cen-
tralised concurrent updates. Currently, we perform these updates using a
thread pool approach. The result value is serialised, and is handed over to a
thread pool which can then do concurrent transfers of future value. A better
approach could be to use a group-communication API to multicast the pro-
duced result. There are a number of such APIs available that provide a simple
and optimised solution for communicating data-values to a group of interested
processes.

Another long term perspective improvement could be the implementation of an
‘un-registering’ protocol, allowing a process to declare that it is not interested
in the result of a received future anymore. Such a protocol could potentially
be quite useful for eager message-based strategy. A similar protocol could
be designed to allow eager forward-based strategy to skip some intermediate
processes that do not require the results (in case of long process chains). A
set of possible steps could be:

• Design of an un-registering algorithm for forward-based and message-based
strategies,

• implementation of the algorithm,

• correctness proofs ensuring that the algorithm does not result in futures
that cannot be resolved anymore.

Design and implementation of such protocols is a challenging task requiring
significant analysis, to ensure that such un-registering does not effect any other

156 Chapter 9. Future Works

futures. However, if implemented efficiently, it could potentially improve the
performance of the implemented strategies. A formal study along side the
design and implementation of the algorithm would improve the confidence in
the ‘correctness’ of the algorithm. A correct un-registering algorithm must
ensure that there are no futures depending on the arrival of that particular
result.

Hybrid strategies
Another challenging follow up could be supporting use of mixed strategies.
Currently, we use the same future update strategy for all processes/compo-
nents. A more interesting approach could be to select a particular strategy
on per process or component basis. For example, each future created as a
consequence of method-invocation on a particular component would be up-
dated following a certain strategy. In other words, each process or component
would decide how it wants to communicate all the results that it computes.
Such flexibility would be quite advantageous, as it would allow each process
or component to be configured to use the (somewhat) optimal strategy based
on the characteristics (data-size for example) of the results it produces. The
information on result computation policy (for example, strategy-name and the
computing process in case of eager message-based strategy) could then be em-
bedded in the future when it is created. Each component would however need
to support all three strategies as the incoming futures could require different
strategy.

Mixing strategies in this way can be quite challenging. Each process would
need to treat incoming futures differently based on the policy associated with
that future. So for one future a process might perform a registration, while for
the other the results would arrive via eager forward-based strategy. Such mix-
ing will also greatly increase the complexity of garbage collection algorithm.

An approach can also be envisioned where its the receiving processes that
decide how the results should be communicated to them. For example, a
time critical process may decide that to minimise the transmission delays,
it wants to receive results for all incoming futures in a eager manner (eager
message-based strategy would be more suited here). This would force the
process producing the result to fine tune its result communication policy for
individual futures. An extreme case could be when one process asks for receive
the result in an eager manner, but another process will ask for the result using
lazy message-based strategy. This kind of coordination between the various
processes and garbage collection of such result is indeed be a difficult challenge,
requiring considerably amount of further research work.

9.2. Theoretical Aspects 157

9.2 Theoretical Aspects

We have formalised a subset of GCM component model and proved some correctness
properties on future updates. Our proofs are not exhaustive and some interesting
results are left as future work. We discuss some such results in the following:

Reduction rules and component correctness
We present our semantics as a set of inductively defined reduction rules.
As we discussed in Section 6.3.2, the presented proofs of properties on fu-
ture update (with eager message-based strategy) are almost entirely mech-
anised. The only properties remaining are those that ensure preserving of
CorrectComponentWeak by the reduction rules. We are confident that these
properties are preserved by the reductions; most of the lemmas and properties
required for this proof are already proved. We showed an informal sketch of
how this proof can be constructed. In short term we intend to complete the
mechanised proof on preservation of weak correctness by the reduction rules,
hence arriving at fully mechanised proofs.

Correctness properties on lazy message-based strategy
We presented the semantics of lazy message-based strategy in Appendix B.
Currently we do not have any proofs on this strategy. In short term, we hope
to prove the correctness of lazy message-based update protocol. In particular,
we wish to prove that if the result for a future is computed, and the future is
awaited at some component, the component will receive the result.

Lazy message-based strategy is quite close to eager message-based strategy;
as can be observed from comparison of the two semantics. Both strategies
utilise similar data structures and rely on a registration mechanism. The
main differentiating point between the two semantics is the timing of future
registration. In lazy message-based strategy, futures are registered only on a
wait-by-necessity; registration is triggered on future access. Due to the sim-
ilarities between the two semantics, we are confident that the basic lemmas
(and operations) can be easily adapted to the lazy approach. Once the basic
blocks are there, a correctness proof could be constructed for lazy message-
based strategy as well. In the short term we intend to focus on this particular
proof.

Formalisation of eager forward-based strategy: semantics and proofs
We presented the formal semantics for our components with eager message-
based future update strategy (with properties), while the semantics with lazy
message-based approach were shown in the Appendix B. While we believe that
eager forward-based strategy would be easier to formalise, we currently do not
provide a formal semantics for this strategy.

A potential direction could be to formalise the eager forward-based strategy.
In particular, such a formalisation would be needed for the eventual long term
goal; proving equivalence of future update mechanisms.

158 Chapter 9. Future Works

Semantic equivalence of future update protocols
Once all three main future update strategies are formalised, a logical next
step could be to prove that the three main update protocols are semantically
equivalent. Work done in ASP-calculus [7] could be used as a potential starting
point for establishing such semantic equivalence. Under similar hypothesis, it
should be feasible to show that the order of future updates is not important,
and all three strategies may yield similar results. Moreover, in our case it
would be required to introduce additional hypothesis on the behaviour of each
primitive component. Indeed ASP semantics is more precise than the formali-
sation presented here; we purposely left the behaviour of primitive components
underspecified in order to take into account several programming models. Ad-
ditionally, the properties proved in ASP are for mono-threaded processes, and
would require establishing an equivalent specification for our components (our
components can have more than one service threads).

Formal semantics and proofs for hybrid strategies
As already discussed, mixing of the three strategies can be a challenging task.
A formalisation would be quite helpful in ensuring correct behaviour of the
resulting system. However, such a formalisation is a non-trivial task. Indeed
for proving properties on such mixed strategies, one would need to either:

• Combine the semantics of the future update strategies. Our presented ap-
proach currently favours defining different semantics for each future update
strategy. A long term goal is to have semantic equivalence for the presented
strategies. However, for proofs on correctness of mixed strategies, this cur-
rent approach is not sufficient. Instead of having three different semantics,
a single semantics with all three strategies is required. From our experi-
ence with the semantics of the presented strategies, defining such combined
semantics would be a long process. The resulting semantics would contain
a lot of complex rules.

Or a second approach could be to:

• Define a parametrised semantics with the parameters identifying the par-
ticular strategy. In our opinion, developing such a parametrised semantics
will be a very challenging task. Indeed, the design of such a semantics
is far from trivial, and reasoning on a parametrised semantics will reveal
more complexities.

In either case, this provides some interesting possibilities for future work.

Formalisation of a larger set of reconfiguration primitives
Component reconfiguration is an important research area. We presented the
formalisation of two reconfiguration primitives, showing that our framework
is expressive enough to support structural reasoning on component reconfigu-
ration. An interesting further development could be to formalise a larger set

9.2. Theoretical Aspects 159

of reconfiguration primitives for distributed components. For example in [98],
the authors present a reconfiguration primitive for reconfiguring components
in a distributed manner, and to allow remote invocation of reconfiguration
scripts. Such work could go with the design of a new language for writing re-
configuration procedures. It also takes into account the distributed execution
of reconfiguration scripts and the synchronisation between them. A formal
representation could help in proving the correctness of reconfiguration and
adaption procedures.

Appendix A

Summary of terms and notations

Table A.1: Summary of symbols and notations

symbol and operations description
Chapter-3

A Set of processes(activities): α, β.. ∈ A
F Set of futures

fα→β
Future f created as a result of an asynchronous
method call by process α on process β. β will
compute the future value.

FLα
Future list at process α. Keeps track of all refer-
enced futures for this process.

FRδ
List of future recipients at process δ. Keeps track
of all the processes to which a result should be sent
when available.

Regδ
Register future operation at process δ. Adds <fu-
ture, process/location> in FL or FR.

Updateδ(loc, v)
Future update operation at process δ. Locally up-
dates all occurrences of a given future (at memory
position loc) with the result value v.

Clearδ(fα→β, L)
Remove future operation. Removes all occurrences
of a future fα→β from the list L (either FLδ or
FRδ).

SendValueδ→γ(fα→β, v)
Transmit future value operation. Sends the result
value v corresponding to future fα→β , from pro-
cess δ to process γ. The value v may also contain
futures.

Createα(fα→β, loc)
Create a new future operation. Creates the result
value v corresponding to future fα→β , from process
δ to process γ.

SendRefδ→γ(fα→β, loc)
Future forwarding operation. Communicates a fu-
ture fα→β , from process δ to process γ.

Continued on next page

162 Appendix A. Summary of terms and notations

Table A.1 – continued from previous page
symbols and operations description

FutureComputedβ(fα→β, v)
Request execution termination operation . Occurs
when the execution of a request corresponding to
futurefα→β is completed and a result value v is
produced. v may contain other futures.

Waitα
Access to an unresolved future. This event occurs
when a process attempts to access the value of an
unresolved future. The accessing execution thread
is blocked until the result arrives.
Chapter-4

newActive(...)
Method for creating a new active object. Requires
the class of the object.

turnActive(...)
Method for turning a normal java object into an
active object.

FuturePool
Class in ProActive which keeps track of futures.
Provides the functionality of FR, FL list in semi-
formal specification.

FutureMap
Class in ProActive which implements a mapping
between a future and its corresponding automatic
continuation (mechanism for updating the results
of first class futures).

ActiveACQueue
A thread inside an active object for communicating
future values.

RequestForFutures
A registration message for adding processes as fu-
ture recipients. Used in message-based strategies.
Chapter-5

Isabelle/HOL Syntax and Notation

HOL
A theory in Isabelle/HOL theorem prover, encod-
ing the higher order logic.

(a1, a2) Pairs with the datatype (τ1×τ2), where a1has type
τ1 and a2 has type τ2.

nat Datatype for natural numbers.
bool Boolean datatype.
Operator for constructing lists.
@ List append operation.

option
Option datatype in Isabelle/HOL. Allows to cater
for an exceptional case for a given datatype.

datatype
Isabelle/HOL keyword for defining new (possibly
recursive) datatypes .

Continued on next page

163

Table A.1 – continued from previous page
symbols and operations description

List,Set
Isabelle/HOL theories providing lists and sets
(with their related operations and properties) re-
spectively.

map
List operation which applies a given function to all
elements inside the list.

x.P
Set comprehension notation for all elements that
satisfy the given predicate P. Sets in Isabelle/HOL
are typed and all elements of a set share the same
datatype τ .

set
List operation which returns a set of all elements
in a given list. Useful for quantifying over elements
of a list.

⇒ Isabelle/HOL notation for specifying a function
type. (nat list)⇒(nat set) is a function that
takes a list of natural numbers and returns a set
of natural numbers. All functions in Isabelle/HOL
are curried.

(f a b)
Function application. Applies the function f on
the two arguments. The type of the function is
τ1 ⇒ τ2 ⇒ τ3.

primrec
Isabelle/HOL keyword used for defining primitive
recursive functions.

constdef
Isabelle/HOL keyword used for defining non-
recursive functions.

record
Isabelle/HOL keyword used for grouping multiple
fields (attributes) into a single collection.

theorem Isabelle/HOL keyword for defining a theorem.

lemma
Isabelle/HOL keyword for defining a lemma.
Lemma and theorems are treated the same way.

−→ Implication inside HOL code.

=⇒ Meta-level implication. Used in Isabelle/HOL code
to separate assumptions from conclusions. In our
code, where possible we re-format our lemmas to
convert −→ into meta-level implications =⇒.

J ; K
Isabelle/HOL meta-level notation for conjunction
∧. Used for separating assumptions when there are
more than one assumptions. Inside the HOL code,
we use the traditional ∧ conjunction notation for
specifying multiple assumptions.

Continued on next page

164 Appendix A. Summary of terms and notations

Table A.1 – continued from previous page
symbols and operations description

Operations and constructs used in Formalisation

getName
Field access operation. Returns the Name (identi-
fier) of the component.

getItfs
Field access operation. Returns the component in-
terfaces itf(s).

getQueue Returns the message queue of a component.

getComputedResults
Returns the results previously computed by a com-
ponent.

cpList
Returns a list of all subcomponents of a compo-
nent recursively. cpListList is a mutually recur-
sive auxiliary function of cpList and operates on
a list of components.

cpSet
Gives a set representation of elements in the
cpList of a component.

cpListSet
Gives a set representation of elements in the
cpListList of a component list.

getCp
Retrieves a component from a component lists
based on the component name.

^ Shortcut notation for getCp.

getSubCp
Retrieves a component from the list of subcom-
ponents of a component (does not step inside the
component hierarchy).

getRecSubCp
Retrieves a subcomponent recursively from all the
subcomponents of that component. It searches
inside the component hierarchy using cpList.
getRecSubCpList is the auxiliary mutually recur-
sive function for component lists.

^^ Shortcut notation for getRecSubCp.

changeCp
Changes a component inside a component list
based on component name.

<- Shortcut notation for changeCp.

removeSubCp
Removes a subcomponent from given component
based on subcomponent name.

ComputedRqs
Retrieves the list of request id’s for already com-
puted requests in all subcomponents inside a
given component. Has an auxiliary function
ComputedRqsList.

RegisteredFuture
Verifies if the given future is registered in a com-
ponent system.

Continued on next page

165

Table A.1 – continued from previous page
symbols and operations description

LocalReferencedRqs
Gives all the futures referenced from a component,
without entering its subcomponents.

LocalRegisteredFutureComp
Verifies if all the futures in a given component are
registered (without stepping inside the subcompo-
nents).

GlobalRegisteredFuturesComp
Verifies if all the futures in a given component sys-
tem are registered.

Behaviours
An LTS defining the possible behaviours of a prim-
itive component.

Tau Internal transition
NewService Request service
Call Request emission
ReceiveResult End of service

CorrectComponentStructure
Verifies if the component is well-formed. The aux-
iliary functions CorrectComponentStructureList
operates on lists of components.

CorrectComponent Verifies if the component is well-formed and has
the correct structure.

CorrectComponentWeak Weak correctness condition. Removes the condi-
tion of checking correct future referencing in the
hierarchy.

CorrectComponentWeakList Gives the weak correctness condition for list of
components.

CorrectComponentWeakList
Gives the weak correctness condition for list of
components.

Complete
Verifies the completeness property for our com-
ponents. All internal interfaces of a component
and all interfaces of its subcomponents should be
bound.

Component configuration-reconfiguration

unbind
Removes a binding from the set of bindings inside
the composite component.

Replace
Replaces a subcomponent while maintaining the
complete component property.

RenameBinding
Allows to change the src or the destination of a
binding .
Chapter-6

[ai]i∈1..n List of n elements .
{ai}i∈1..n Finite set of n elements .

Continued on next page

166 Appendix A. Summary of terms and notations

Table A.1 – continued from previous page
symbols and operations description

(a, b) Pairs.
List append operation.
\ Remove element from list. [ai]i∈1..n\ b removes b

from list [ai]i∈1..n.
[ai 7→ bi]i∈1..n A mapping from ai to bi.
([ai 7→ bi]i∈1..n)[c 7→ d] Add [c 7→ d] to an existing mapping.
([ai 7→ bi]i∈1..n)[c 7→ ∅] Remove an entry from mapping.
FRL List of future recipients:[fi 7→ Nj

j∈1..n]i∈1..n

queue Message queue of the component: [Ri]i∈1..n

R Request: R : (f, v, itf) <future, value, interface>
currReq list of current requests: [f]i∈1..n

refF
list of futures referenced by internal state of com-
ponent [f]i∈1..n

Enqueue(C,R)
Returns the component C, where the request R is
enqueued.

RL List of future registrations:[fi 7→ Nj
j∈1..n]i∈1..n

ˆ getSubCp operation.
ˆˆ getRecSubCp.
← List replacement operator.
RqIdSet(S) Set of all futures reference in the composite S

(ComputedRqs). S is a composite representing the
component system.

RefFutSet(S) Set of all futures referenced in component system
S.

host(f) Name of the component computing the result for
a future.

cpSet Set formed of C and all subcomponents of C recur-
sively.

removeResult(f, C,N) Remove a computed result from inside a compo-
nent hierarchy.

updateFV(v, f, v′) Update the value of future by replacing every oc-
currence of the future by the new value.

getName Returns the name of the given component.
registerListFutures(S,RL) Registers all the entries in RL in the component

system S.

Appendix B

Semantics of Lazy message-based
Strategy

Tau
(PintState(s),Tau, s2) ∈ behaviour(s)

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2M], []

Call
(PintState(s),Call(i1, v, f), s2) ∈ behaviour(s) f /∈ RefFutSet(S)

S ` Prim[N, itfs, s]−\ i1, f, v Z→O Prim[N, itfs, sLPintState := s2M]

EndService
(PintState(s),EndService(f, v), s2) ∈ behaviour(s)

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState :=s2, results :=results(s)#[f, v]M], []

ServeNext
(PintState(s),NewService(v, f), s2) ∈ behaviour(s) queue(s) = [f, v, i]#Q

S ` Prim[N, itfs, s]→R Prim[N, itfs, sLPintState := s2, queue := QM], []

RcvResultPrim
(s,ReceiveResult(f, v), s′) ∈ behaviour(s)

s′′=s′L results = [fi 7→ vi | fi∈dom(results(s))∧
v1 =updateFV((results(s))(fi), f, v)],

queue = [[fi, vi, itfi] | [fi, v′i, itfi] ∈ queue(s) ∧ vi=updateFV (v′i, f, v)]M

S ` Prim[N,itfs, s]−\f, v,N Z→F Prim[N,itfs, s”]

WaitByNecessity
fidSet = ApplyWait(PintState(s)) fidSet 6= ∅

S ` Prim[N, itfs, s]→R Prim[N, itfs, s], [(f ′′, N) | f ′′ ∈ fidSet]

Figure B.1: Primitive Component Semantics (Lazy message-based)

Comments The semantics of primitive components with Lazy message-based
strategy appear in Figure B.1. The two strategies are closely related, only dif-
fering in the time of future registration. Consequently, the two semantics are close
to one another. However, in lazy message-based strategy, no registrations are per-
formed when receiving futures or transmitting futures. The registrations are only

168 Appendix B. Semantics of Lazy message-based Strategy

performed on wait-by-necessity, which triggers future registration (by adding the
awaited futures to the RL list).

Hierarchy
(subCp ↑ N) = C S ` C →R C ′, RL

S ` Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, (subCp← C ′), bindings, s], RL

CompositeCall
queue(s) = [f, v, itf] # Q

f ′ /∈ RqIdSet(S) s′ = sLqueue := Q, results := results(s)[f 7→ (Vf , {f ′})]M
S ` Comp[N, itfs, subCp, bindings, s]−\ itf, f ′, v Z→O Comp[N, itfs, subCp, bindings, s′]

CommBrothers
C = (subCp ↑ N)

[N.itf, N ′.itf ′]∈bindings S ` C −\ itf, f, v Z→O C
′ host(f) = N ′

subCp′ = subCp← C ′ subCp′′ = subCp′ ← (Enqueue(subCp′ ↑ N ′, [f, v, itf ′]))
S ` Comp[N0, itfs, subCp, bindings, s]→R

Comp[N0, itfs,SubCp′′, bindings, s], []

CommChild
queue(s) = [f, v, itf] #Q [This.itf, N ′.itf ′] ∈ bindings f ′ /∈ RefFutSet(S)
host(f ′) = N ′ subCp′ = subCp← (Enqueue((subCp ↑ N ′), [f ′, v, itf ′]))

s′ := sLqueue := Q, results := results(s)[f 7→ (Vf , f
′)]M

S ` Comp[N0, itfs, subCp, bindings, s]→R Comp[N0, itfs, subCp′, bindings, s′], []

CommParent
(subCp ↑ N) = C [N.itf ′, This.itf] ∈ bindings

subCp′ = subCp← C ′ S ` C −\ itf ′, f, v Z→O C
′ host(f) = N0

S ` Comp[N0, itfs, subCp, bindings, s]→R Enqueue(Comp[N0, itfs, subCp′, bindings, s],
[f, v, itf]), []

RcvResultComposite(1)
s′ = sLresults = [fi 7→ vi | ∃ v′i. [fi 7→ v′i] ∈ results(s) ∧ vi = updateFV(v′i, f, v)],
queue = [[fj , vj , itfj] | ∃ v′j . [fj , v

′
j , itfj] ∈ queue(s) ∧ vj = updateFV(v′j , f, v)]

S ` Comp[N,itfs, subCp, bindings, s]− \f, v,N Z→F

Comp[N,itfs, subCp, bindings, s’]

RcvResultComposite(2)
N0 6= N ′ (subCp ↑ N)− \f, v,N ′ Z→F C

′ subCp′ = subCp← C ′

S ` Comp[N0, itfs, subCp, bindings, s]− \f, v,N ′ Z→F Comp[N0, itfs, subCp′, bindings, s]

Figure B.2: Semantics of the component composition (a)

Comments The semantics of composite components with lazy message-based
strategy appear in Figure B.2. Again, the registration lists are only used with
the →R reduction, which may require registrations due to wait-by-necessity.

169

TriggerFutureUpdate
C ∈ cpSet(So) the state of C is s results(s)(f) = v FRL(s)(f) = {Ni}i∈1..n

∀i ∈ 1..n, Si−1− \f, v,Ni Z→F Si S′ = RemoveResult(f, Sn, getName(C))

` So S′

Global-reduction
S ` S →R S′,RL

S registerListFutures(S′,RL)

Figure B.3: Semantics of the components

Comments Finally, the TriggerFutureUpdate and Global-reduction for
our components with lazy message-based strategy are given in Figure B.3. As com-
pared to the eager message-based strategy, the TriggerFutureUpdate rule is
simpler, and does not require any registrations. Only the→R reduction may trigger
future registration.

Bibliography

[1] Henrio, L., Kammüller, F., Rivera, M.: An asynchronous distributed compo-
nent model and its semantics. (2009) 159–179

[2] Agha, G.: Actors: a model of concurrent computation in distributed systems.
MIT Press, Cambridge, MA, USA (1986)

[3] Halstead, Jr., R.H.: Multilisp: A language for concurrent symbolic computa-
tion. ACM Transactions on Programming Languages and Systems (TOPLAS)
7 (1985)

[4] Yonezawa, A., Briot, J.P., Shibayama, E.: Object-oriented concurrent program-
ming abcl/1. In: OOPLSA ’86: Conference proceedings on Object-oriented
programming systems, languages and applications, New York, NY, USA, ACM
(1986) 258–268

[5] Niehren, J., Schwinghammer, J., Smolka, G.: A concurrent lambda calculus
with futures. Theoretical Computer Science 364 (2006) 338–356

[6] Johnsen, E.B., Owe, O., Yu, I.C.: Creol: a type-safe object-oriented model for
distributed concurrent systems. Theor. Comput. Sci. 365 (2006) 23–66

[7] Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag
(2005)

[8] Dedecker, J., Van Cutsem, T., Mostinckx, S., D’Hondt, T., De Meuter, W.:
Ambient-oriented programming. In: OOPSLA ’05: Companion to the 20th
annual ACM SIGPLAN conference on Object-oriented programming, systems,
languages, and applications, New York, NY, USA, ACM (2005) 31–40

[9] Khan, M.U., Henrio, L.: First class futures: a study of update strategies.
Research Report RR-7113, INRIA (2009)

[10] Henrio, L., Khan, M.U., Ranaldo, N., Zimeo, E. Coregrid. In: First Class Fu-
tures: Specification and implementation of Update Strategies. Springer (2010)
Accepted for publication.

[11] Baude, F., Caromel, D., Dalmasso, C., Danelutto, M., Getov, V., Henrio, L.,
Pérez, C.: Gcm: a grid extension to fractal for autonomous distributed com-
ponents. Annales des Télécommunications 64 (2009)

[12] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle/HOL – A Proof Assistant for
Higher-Order Logic. Volume 2283 of LNCS. Springer-Verlag (2002)

[13] Henrio, L., Kammüller, F., Khan, M.U.: A framework for reasoning on com-
ponent composition. In: FMCO 2009. Lecture Notes in Computer Science,
Springer (2010)

172 Bibliography

[14] Henrio, L., Khan, M.U.: Asynchronous components with futures: Semantics
and proofs in isabelle/hol. In: Proceedings of the Seventh International Work-
shop, FESCA 2010, ENTCS (2010)

[15] ProActive: Parallel, Distributed, Multi-Core Computing for Enterprise Grids
and Clouds (2008) http://proactive.inria.fr/.

[16] Ranaldo, N., Zimeo, E.: Analysis of different future objects update strategies
in proactive. In: IPDPS 2007: Parallel and Distributed Processing Symposium,
IEEE International. (2007) 23–66

[17] Bertot, Y., Castéran, P.: Interactive Theorem Proving and Program Develop-
ment, Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag (2004)

[18] Hibbard, P.: Parallel processing facilities. New Directions in Algorithmic
Languages (1976) 1–7

[19] JSR 166: Concurrency utilities. http://download.oracle.com/docs/cd/
E17476_01/javase/1.5.0/docs/guide/concurrency/index.html (2004)

[20] Taura, K., Matsuoka, S., Yonezawa, A.: Abcl/f: A future-based polymorphic
typed concurrent object-oriented language - its design and implementation. In:
Proceedings of the DIMACS workshop on Specification of Parallel Algorithms,
American Mathematical Society (1994) 275–292

[21] Alice ML: Alice project, programming systems lab, saarland university. http:
//www.ps.uni-saarland.de/alice (2007)

[22] Dedecker, J., Cutsem, T.V., Mostinckx, S., Meuter, W.D.: Ambient-oriented
programming in ambienttalk. In: Proceedings of 20th European Conference on
Object-oriented Programming (ECOOP), Springer (2006)

[23] Andrews, G.R.: Concurrent programming: principles and practice. Benjamin-
Cummings Publishing Co., Inc., Redwood City, CA, USA (1991)

[24] Johnsen, E.B., Owe, O.: An asynchronous communication model for distributed
concurrent objects. In: SEFM ’04: Proceedings of the Software Engineering
and Formal Methods, Washington, DC, USA, IEEE Computer Society (2004)
188–197

[25] Abelson, H., Dybvig, R.K., Haynes, C.T., Rozas, G.J., Adams, IV, N.I., Fried-
man, D.P., Kohlbecker, E., Steele, Jr., G.L., Bartley, D.H., Halstead, R., Oxley,
D., Sussman, G.J., Brooks, G., Hanson, C., Pitman, K.M., Wand, M.: Revised
report on the algorithmic language scheme. SIGPLAN Lisp Pointers IV (1991)
1–55

[26] McCarthy, J.: Recursive functions of symbolic expressions and their computa-
tion by machine, part i. Commun. ACM 3 (1960) 184–195

http://download.oracle.com/docs/cd/E17476_01/javase/1.5.0/docs/guide/concurrency/index.html
http://download.oracle.com/docs/cd/E17476_01/javase/1.5.0/docs/guide/concurrency/index.html
http://www.ps.uni-saarland.de/alice
http://www.ps.uni-saarland.de/alice

Bibliography 173

[27] Katz, M., Weise, D.: Continuing into the future: on the interaction of futures
and first-class continuations. In: LFP ’90: Proceedings of the 1990 ACM
conference on LISP and functional programming, New York, NY, USA, ACM
(1990) 176–184

[28] Smith, B.C.: Reflection and semantics in lisp. In: POPL ’84: Proceedings of
the 11th ACM SIGACT-SIGPLAN symposium on Principles of programming
languages, New York, NY, USA, ACM (1984) 23–35

[29] Flanagan, C., Felleisen, M.: The semantics of future and an application. Jour-
nal of Functional Programming 9 (1999) 1–31

[30] Flanagan, C., Felleisen, M.: The semantics of future and its use in program op-
timization. In: POPL ’95: Proceedings of the 22nd ACM SIGPLAN-SIGACT
symposium on Principles of programming languages, New York, NY, USA,
ACM (1995) 209–220

[31] Feeley, M.: An efficient and general implementation of futures on large scale
shared-memory multiprocessors. PhD thesis, Waltham, MA, USA (1993)

[32] Moreau, L.: The semantics of future in the presence of first-class continuations
and side-effects. Technical report (1995)

[33] Hewitt, Baker: Laws for parallel communicating processes. In: Proc. IFIP-77,
Toronto (1977)

[34] Rossberg, A., Botlan, D.L., Tack, G., Brunklaus, T., Smolka, G. In: Alice
Through the Looking Glass. Volume 5 of Trends in Functional Programming.
Intellect Books, Bristol, UK, ISBN 1-84150144-1, Munich, Germany (2006) 79–
96

[35] Milner, R., Tofte, M., Macqueen, D.: The Definition of Standard ML. MIT
Press, Cambridge, MA, USA (1997)

[36] Smolka, G.: The oz programming model. In: JELIA ’96: Proceedings of the
European Workshop on Logics in Artificial Intelligence, London, UK, Springer-
Verlag (1996) 251

[37] Liskov, B., Shrira, L.: Promises: linguistic support for efficient asynchronous
procedure calls in distributed systems. In: PLDI ’88: Proceedings of the ACM
SIGPLAN 1988 conference on Programming Language design and Implemen-
tation, New York, NY, USA, ACM (1988) 260–267

[38] Gosling, J., Joy, B., Steele, G., Bracha, G.: Java Language Specification,
Second Edition: The Java Series. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA (2000)

174 Bibliography

[39] Welc, A., Jagannathan, S., Hosking, A.: Safe futures for java. In: OOPSLA
’05: Proceedings of the 20th annual ACM SIGPLAN conference on Object-
oriented programming, systems, languages, and applications, New York, NY,
USA, ACM (2005) 439–453

[40] Pratikakis, P., Spacco, J., Hicks, M.: Transparent proxies for java futures.
SIGPLAN Not. 39 (2004) 206–223

[41] Zhang, L., Krintz, C., Nagpurkar, P.: Language and virtual machine support
for efficient fine-grained futures in java. In: PACT ’07: Proceedings of the 16th
International Conference on Parallel Architecture and Compilation Techniques,
Washington, DC, USA, IEEE Computer Society (2007) 130–139

[42] Zhang, L., Krintz, C., Nagpurkar, P.: Supporting exception handling for futures
in java. In: PPPJ ’07: Proceedings of the 5th international symposium on
Principles and practice of programming in Java, New York, NY, USA, ACM
(2007) 175–184

[43] Hoare, C.A.R.: Monitors: an operating system structuring concept. Commun.
ACM 17 (1974) 549–557

[44] Grabe, I., Steffen, M., Torjusen, A.B.: Executable interface specifications for
testing asynchronous creol components. Technical Report Research Report No.
375, University Of Oslo (2008)

[45] Ábrahám, E., Grabe, I., Grüner, A., Steffen, M.: Behavioral interface descrip-
tion of an object-oriented language with futures and promises. Journal of Logic
and Algebraic Programming 78 (2008) 491–518

[46] Clavel, M., Durán, F., Eker, S., Lincoln, P., Martí-Oliet, N., Meseguer, J., Que-
sada, J.F.: Maude: specification and programming in rewriting logic. Theor.
Comput. Sci. 285 (2002) 187–243

[47] Boer, F.S.D., Clarke, D., Johnsen, E.B.: A complete guide to the future. In:
Proc. 16th European Symposium on Programming (ESOP’07). Volume 4421.,
LNCS (2007) 316–330

[48] Igarashi, A., Pierce, B.C., Wadler, P.: Featherweight java: a minimal core
calculus for java and gj. ACM Trans. Program. Lang. Syst. 23 (2001) 396–450

[49] Caromel, D., Henrio, L., Serpette, B.: Asynchronous and deterministic objects.
In: Proceedings of the 31st ACM SIGPLAN-SIGACT symposium on Principles
of programming languages, ACM Press (2004) 123–134

[50] Abadi, M., Cardelli, L.: A Theory of Objects. Springer-Verlag New York, Inc.,
Secaucus, NJ, USA (1996)

Bibliography 175

[51] Henrio, L., Kammüller, F., Sudhof, H.: Aspfun: A functional and distributed
object calculus semantics, type-system, and formalization. Research Report
6353, INRIA (2007)

[52] Henrio, L., Kammüller, F.: Functional active objects: Typing and formal-
isation. In: Proceedings of the International Workshop on the Foundations
of Coordination Languages and Software Architecture (FOCLASA), Elsevier
(2009)

[53] AmbientTalk: Ambient oriented programming. http://soft.vub.ac.be/
amop/ (2010)

[54] Miller, M.S., Tribble, E.D., Shapiro, J., Laboratories, H.P.: Concurrency
among strangers: Programming in e as plan coordination. In: In Trustwor-
thy Global Computing, International Symposium, TGC 2005, Springer (2005)
195–229

[55] Sessions, R.: COM and DCOM: Microsoft’s vision for distributed objects. John
Wiley & Sons, Inc., New York, NY, USA (1998)

[56] Grimes, R., Grimes, D.R.: Professional Dcom Programming. Wrox Press Ltd.,
Birmingham, UK, UK (1997)

[57] Burke, B., Monson-Haefel, R.: Enterprise JavaBeans 3.0 (5th Edition). O’Reilly
Media, Inc. (2006)

[58] OMG: Corba component model (v.3.0). http://www.omg.org/technology/
documents/formal/components.htm (2005)

[59] OMG: Object Management Group (2010) http://www.omg.org.

[60] Denis, A., Pérez, C., Priol, T., Ribes, A.: Bringing high performance to the
corba component model. In: SIAM Conference on Parallel Processing for Sci-
entific Computing. (2004)

[61] Pérez, C., Priol, T., Ribes, A.: A parallel corba component model for numerical
code coupling. In: GRID ’02: Proceedings of the Third International Workshop
on Grid Computing, London, UK, Springer-Verlag (2002) 88–99

[62] Denis, A., Pérez, C., Priol, T., Ribes, A.: Padico: A component-based software
infrastructure for grid computing. In: IPDPS ’03: Proceedings of the 17th
International Symposium on Parallel and Distributed Processing, Washington,
DC, USA, IEEE Computer Society (2003) 2.1

[63] Armstrong, R., Gannon, D., Geist, A., Keahey, K., Kohn, S., McInnes, L.,
Parker, S., Smolinski, B.: Toward a common component architecture for high-
performance scientific computing. In: HPDC ’99: Proceedings of the 8th IEEE
International Symposium on High Performance Distributed Computing, Wash-
ington, DC, USA, IEEE Computer Society (1999) 13

http://soft.vub.ac.be/amop/
http://soft.vub.ac.be/amop/
http://www.omg.org/technology/documents/formal/components.htm
http://www.omg.org/technology/documents/formal/components.htm

176 Bibliography

[64] Gannon, D., Bramley, R., Fox, G., Smallen, S., Rossi, A., Ananthakrishnan,
R., Bertrand, F., Chiu, K., Farrellee, M., Govindaraju, M., Krishnan, S., Ra-
makrishnan, L., Simmhan, Y., Slominski, A., Ma, Y., Olariu, C., Rey-Cenvaz,
N.: Programming the grid: Distributed software components, p2p and grid
web services for scientific applications. Cluster Computing 5 (2002) 325–336

[65] CCA-Forum: The Common Component Architecture (CCA) Forum home page
(2005) http://www.cca-forum.org/.

[66] Malawski, M., Gubala, T., Kasztelnik, M., Bartynski, T., Bubak, M., Baude,
F., Henrio, L.: High-level scripting approach for building component-based
applications on the grid. In: CoreGRIDWorkshop on Grid Programming Model
Grid and P2P Systems Architecture Grid Systems, Tools and Environments,
Heraklion, Crete, Springer (2007)

[67] Bramley, R., Chiu, K., Diwan, S., Gannon, D., Govindaraju, M., Mukhi, N.,
Temko, B., Yechuri, M.: A component based services architecture for building
distributed applications. In: HPDC ’00: Proceedings of the 9th IEEE Interna-
tional Symposium on High Performance Distributed Computing, Washington,
DC, USA, IEEE Computer Society (2000) 51

[68] Globus: Globus Toolkit (2010) http://www.globus.org/toolkit/.

[69] Beisiegel, M., Blohm, H., Booz, D., Edwards, M., Hurley, O.: SCA service
component architecture, assembly model specification. Technical report
(2007) www.osoa.org/display/Main/Service+Component+Architecture+
Specifications.

[70] Erl, T.: Service-Oriented Architecture: Concepts, Technology, and Design.
Prentice Hall PTR, Upper Saddle River, NJ, USA (2005)

[71] Bruneton, E., Coupaye, T., Stefani, J.B.: The Fractal Component Model.
Technical report, ObjectWeb Consortium (2004) http://fractal.objectweb.
org/specification/index.html.

[72] OW2.Consortium: FraSCAti, Open SCA middleware platform. https://wiki.
objectweb.org/frascati/Wiki.jsp?page=FraSCAti (2009)

[73] Seinturier, L., Merle, P., Fournier, D., Dolet, N., Schiavoni, V., Stefani, J.B.:
Reconfigurable sca applications with the frascati platform. In: SCC ’09: Pro-
ceedings of the 2009 IEEE International Conference on Services Computing,
Washington, DC, USA, IEEE Computer Society (2009) 268–275

[74] SENSORIA: Software engineering for service-oriented overlay computers (2005)

[75] Bruni, R., Lafunete, A.L., Montanari, U., Tuosto, E.: Service oriented archi-
tectural design. In Barthe, G., Fournet, C., eds.: TGG 2007. Volume 4912 of
LNCS., Springer (2008) 186–203

www.osoa.org/display/Main/Service+Component+Architecture+Specifications
www.osoa.org/display/Main/Service+Component+Architecture+Specifications
http://fractal.objectweb.org/specification/index.html
http://fractal.objectweb.org/specification/index.html
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti
https://wiki.objectweb.org/frascati/Wiki.jsp?page=FraSCAti

Bibliography 177

[76] Plasil, F., Balek, D., Janecek, R.: Sofa/dcup: Architecture for component
trading and dynamic updating, IEEE CS Press (1998) 43–52

[77] Bures, T., Hnetynka, P., Plasil, F.: Sofa 2.0: Balancing advanced features in
a hierarchical component model. In: SERA ’06: Proceedings of the Fourth
International Conference on Software Engineering Research, Management and
Applications, Washington, DC, USA, IEEE Computer Society (2006) 40–48

[78] Hnetynka, P., Plasil, F.: Dynamic reconfiguration and access to services in hier-
archical component models. In: Proceedings of CBSE 2006, Vasteras, Sweden,
LNCS 4063, Springer-Verlag (2006) 352–359

[79] Shaw, M.: Procedure calls are the assembly language of software interconnec-
tion: Connectors deserve first-class status. In: ICSE ’93: Selected papers from
the Workshop on Studies of Software Design, London, UK, Springer-Verlag
(1996) 17–32

[80] Plasil, F., Visnovsky, S.: Behavior protocols for software components. IEEE
Trans. Softw. Eng. 28 (2002) 1056–1076

[81] Bruneton, E., Coupaye, T., Leclercq, M., Quéma, V., Stefani, J.B.: The fractal
component model and its support in java: Experiences with auto-adaptive and
reconfigurable systems. Softw. Pract. Exper. 36 (2006) 1257–1284

[82] Merle, P., Stefani, J.B.: A formal specification of the Fractal component model
in Alloy. Research Report RR-6721, INRIA (2008)

[83] Jackson, D.: Alloy: a lightweight object modelling notation. ACM Trans.
Softw. Eng. Methodol. 11 (2002) 256–290

[84] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Be-
havioural models for distributed fractal components. Annales des Télécommu-
nications 64 (2009) 25–43

[85] OW2.Consortium: Julia, Fractal reference specification. http://fractal.
ow2.org/julia/index.html (2010)

[86] OW2.Consortium: Dream, a Component-based communication framework.
http://dream.ow2.org/ (2008)

[87] Baude, F., Caromel, D., Henrio, L., Naoumenko, P. Coregrid. In: A Flexible
Model And Implementation Of Component Controllers. Springer (2008)

[88] Cansado, A., Madelaine, E.: Specification and verification for grid Component-
Based applications: From models to tools. In: Formal Methods for Components
and Objects. (2009) 180–203

[89] Barros, T., Ameur-Boulifa, R., Cansado, A., Henrio, L., Madelaine, E.: Be-
havioural models for distributed fractal components. Annales des Télécommu-
nications 64 (2009) 25–43

http://fractal.ow2.org/julia/index.html
http://fractal.ow2.org/julia/index.html
http://dream.ow2.org/

178 Bibliography

[90] Caromel, D., Delbé, C., di Costanzo, A., Leyton, M.: ProActive: an integrated
platform for programming and running applications on grids and P2P systems.
Computational Methods in Science and Technology 12 (2006) 69–77

[91] Cansado, A., Canal, C., Salaün, G., Cubo, J.: A formal framework for struc-
tural reconfiguration of components under behavioural adaptation. Electron.
Notes Theor. Comput. Sci. 263 (2010) 95–110

[92] Tretola, G., Zimeo, E.: Activity pre-scheduling for run-time optimisation of
grid workflows. Journal of Systems Architecture 54 (2008)

[93] Tretola, G., Zimeo, E.: Extending semantics of web services to support asyn-
chronous invocation and continuation. In: Proceedings of the IEEE Interna-
tional Conference on Web Services (ICWS). (2007) 208–215

[94] Paulson, L.C.: Isabelle: a Generic Theorem Prover. Number 828 in Lecture
Notes in Computer Science. Springer – Berlin (1994)

[95] Nipkow, T., Paulson, L.C., Wenzel, M.: Isabelle’s logics: Hol (2008)

[96] Henrio, L., Rivera, M.: Stopping safely hierarchical distributed components. In:
Proceedings of the Workshop on Component-Based High Performance Comput-
ing (CBHPC’08) in conjunction with ACM SIGPLAN CompArch 2008. (2008)

[97] Tejedor, E., Badia, R.M., Naoumenko, P., Rivera, M., Dalmasso, C.: Or-
chestrating a safe functional suspension of gcm components. In: CoreGRID
Integration Workshop. Integrated Research in Grid Computing. (2008)

[98] Bannour, B., Henrio, L., Rivera, M.: A reconfiguration framework for dis-
tributed components. In: SINTER Workshop on Software Integration and
Evolution @ Runtime, ACM (2009)

A Study of First Class Futures: Specification, Formalisation and
Mechanised Reasoning

Futures enable an efficient and easy to use programming paradigm for distributed applica-
tions. A future is a placeholder for result of concurrent execution. Futures can be first class
objects; first class futures may be safely transmitted between the communicating processes.
Consequently, futures spread everywhere. When the result of a concurrent execution is
available, it is communicated to all processes which received the future. In this thesis, we
study the mechanisms for transmitting the results of first class futures; the future update
strategies. We provide a detailed semi-formal specification of three main future update
strategies adapted from ASP-calculus; we then use this specification for a real implementa-
tion. We study the efficiency of the three update strategies through experiments. Ensuring
correctness of distributed protocols, like future update strategies is a challenging task. To
show that our specification is correct, we formalise it together with a component model.
Components abstract away the program structure and the details of the business logic;
this paradigm thus facilitates reasoning on the protocol. We formalise in Isabelle/HOL, a
component model comprising notions of hierarchical components, asynchronous communi-
cations, and futures. We present the basic constructs and corresponding lemmas related to
structure of components, and formal operational semantics of our components in presence of
a future update strategy; proofs showing correctness of future updates are presented. Our
work can be considered as a formalisation of ProActive/GCM, and shows the correctness
of the middleware implementation.

Une Étude des Futurs de Première Classe: Spécification,
Formalisation et Preuves Formelles.

Les futurs fournissent une modèle de programmation efficace pour le développement des
application distribuées. Un futur est une objet temporaire qui représente le résultat d’une
exécution concurrente. Les futurs peuvent être des objet de «première classe», et ainsi être
transmis en toute sécurité entre les processus communicants. En conséquence, les futures
se propagent partout dans le système. Lorsque le résultat d’une exécution simultanée est
disponible, il est communiquée à tous les processus qui ont reçu le futur. Nous étudions les
mécanismes de transmission des résultats des futurs; les "stratégies pour mise à jour des
futurs". Nous fournissons une spécifications semi-formelle détaillées, de trois principales
stratégies. Nous utilisons ensuite cette spécification pour une véritable implementation et
nous étudions l’efficacité des trois strategies. C’est une tâche difficile d’assurer la correc-
tion des protocoles distributes. Pour montrer que notre spécification est correcte, nous
la formalisons avec un modèle de composants. Les composants abstraient la structure du
programme; ce paradigme facilite donc le raisonnement sur le protocole. Nous formalisons
dans Isabelle/HOL un modèle de composants comprenant des notions de composants hiérar-
chiques, les communications asynchrones, et les futurs. Nous présentons les constructions
de base et des lemmes liés à la structure des composants. Nous présentons une séman-
tique formelle des nos composants en présence d’une stratégie de mise à jour de futurs; Les
preuves montrant la correction de notre stratégie sont présentées. Notre travail peut être
considéré comme une formalisation de ProActive / GCM.

	Acknowledgment
	Introduction
	Motivation
	Results and Contributions
	Specification and Implementation of Future Update Strategies
	Formalisation of Component Model and Proofs

	Impact of Thesis
	Thesis Outline

	Related Works
	Background: Why Futures ?
	Some basic questions about futures

	Distributed and Concurrent Programming
	Distributed Concurrent Programming with Futures
	Futures in Multilisp World
	Futures in ABCL/1 and ABCL/f
	Futures in Alice ML and (fut)

	Distributed Concurrent Programming with Futures and Objects
	Future in Java-verse
	Futures in Creol
	Futures in ASP, ProActive and ASPfun
	Futures in AmbientTalk

	Component Models and Frameworks
	Common Object Model (COM) and DCOM
	Enterprise Java Beans
	CORBA Component Model (CCM) and GridCCM
	Common Component Architecture (CCA)
	Service Component Architecture (SCA) and FraSCAti
	SOFtware Appliances Component Model (SOFA)
	Fractal component model
	Grid Component Model (GCM)

	Summary of Related Works and Positioning

	I Future Update Strategies: Specification and Implementation
	 First Class Futures: Specification of Update Strategies
	Background: Futures in ASP-Calculus
	Background: Update Strategies for Futures
	Classification of Future Update strategies
	Eager Forward-based Strategy
	Eager Message-based Strategy
	Lazy Message-based Strategy

	 Semi-Formal Specification of Update Strategies
	General Notation
	Eager Forward-based Strategy
	Eager Message-based Strategy
	Lazy Message-based Strategy

	Analysis of Future Update Strategies
	Remarks on Semi-formal Specification of Strategies

	Implementing Future Update Strategies in ProActive
	Background: First Class Futures in ProActive
	First Class Futures in ProActive: Automatic Continuation

	Missing Future Update Strategies
	Eager Message-based Strategy
	Lazy Message-based Strategy

	Experimental Evaluation
	Concluding Remarks on Future Update Strategies

	II Formal Reasoning on Components: Semantics and Proofs
	A Framework for Reasoning on Component Composition
	Background: Isabelle/HOL
	Isabelle/HOL Syntax

	An Asynchronous Component Model with Futures
	Component Model Overview
	Component Structure
	Communication Model
	Component Behaviour
	Why First Class Futures in GCM ?

	Formalisation of a Component Model in Isabelle/HOL
	Component Structure
	Efficient Specification of Component Manipulation
	Component State
	Correct Component
	Basic Properties on Component Structure and Manipulation
	Properties on Component Correctness

	Runtime Reconfiguration of Components
	Complete Component
	Reconfiguration Primitives: Unbind and Replace

	Asynchronous Components with Futures : Semantics and Proofs
	An Asynchronous Component Model with Futures
	Run time Semantics for GCM-like Components
	Structure and Notations
	Semantics of Component Model

	Formalisation in Isabelle and Properties
	Semantics
	Properties and Proofs on Eager message-based Strategy

	Positioning and Concluding Remarks on Formalisation
	Conclusion
	Final remarks

	Future Works
	Applied Aspects
	Theoretical Aspects

	Summary of terms and notations
	Semantics of Lazy message-based Strategy
	Bibliography

