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Formalisms and Distributed Calculi

This second chapter provides a broad overview of formalisms and languages
used for distribution, parallelism, and concurrency.

We successively study basic formalisms (such as the λ- and π-calculus),
concurrent calculus, and finally formalisms with some object concepts.

Among distributed, concurrent, or parallel languages, mainly those bene-
fiting from a formal definition will be analyzed in this chapter. Programmatic
and algorithmic issues related to distributed systems are covered at large in
[155]. With respect to concurrent programming, see for instance [16, 108].
Finally, for a comprehensive study of parallel programming languages and
associated environments, see [148] or [149] and [59].

2.1 Basic Formalisms

This section reviews the main calculi and formalism from which most of the
(formally described) concurrent languages and calculi have been derived.

Figure 2.1 provides an informal classification of calculi considering the
different concurrency principles.

2.1.1 Functional Programming and Parallel Evaluation

the λ-calculus and pure functional languages provide a simple framework for
designing parallel languages. In fact, it is well known that the λ-calculus is con-
fluent [22] whatever evaluation strategy is chosen. In other words, the absence
of side effects allows one to evaluate expressions composing the programs in
any order. A parallel evaluation of functional languages is both deterministic
and deadlock free.
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Fig. 2.1. Classification of calculi (informal)

We recall below the syntax of the λ-calculus:

M,N ::= x variable
|λx.M abstraction
| (MN) application

Functional languages are directly inspired and modeled by the λ-calculus.
Figure 2.2 gives an example of a binary tree in CAML (a classical functional
language). This example is composed of the declaration of a btree type, and
two functions, one for adding an element and one checking if an element is
in the tree. This example is written in a purely functional style and does
not contain any side effect. Consequently, the function insert has to return
the whole tree which could be inefficient in a distributed implementation. As
this example is purely functional, any execution of these functions can be
performed in parallel without loss of determinacy.

The parallel functional evaluators have been widely studied, see for exam-
ple [101] for a lazy parallel evaluation, or [84] for a survey of parallel functional
programming.
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type ’a btree = Empty | Node of ’a * ’a btree * ’a btree;;

let rec member x btree =

match btree with

Empty -> false

| Node(y, left, right) -> if x = y then true else

if x < y then member x left else member x right;;

let rec insert x btree =

match btree with

Empty -> Node(x, Empty, Empty)

| Node(y, left, right) ->

if x <= y then

Node(y, insert x left, right)

else

Node(y, left, insert x right);;

Fig. 2.2. A binary tree in CAML

2.1.2 Actors

Actors [9, 10, 11] are a typical example of the uniform object activity aspect:
each actor is a rather functional process. Actors interact by asynchronous
message passing. Instead of having an internal state, actors can change their
behavior, i.e., their reaction to received messages.

Agha, in [9], presented an actor language. More formal syntax, operational
semantics, equivalence, and bisimulation techniques for actors are given in [10]
and [11]. Actors are based on a functional language but are organized in an
object-based style. An actor is an object for which each method is written in
a purely functional language. Communication is ensured by a mailbox mecha-
nism and thus is asynchronous. Fairness is an important requirement of actor
specification. According to Agha, fairness is a realistic hypothesis that pro-
vides semantical properties. Characteristics specific to actors are:

� An actor may send a message to another actor; send(a,v) creates a mes-
sage with receiver a and contents v and sends it.

� An actor may change its own behavior. During a message treatment, an
actor must specify its new behavior (which can be the same as before the
message treatment) by the primitive become(b).

� An actor may create other actors with the primitives newaddr() for cre-
ating an address and initbeh(a,b) for initializing an actor behavior.

While actors are originally based on a purely functional paradigm, some
actor languages (e.g. Thal [103]) use imperative constructs for local behavior in
order to provide efficient execution on standard computers. However, since the
semantics of imperative sequential programs can be represented in the lambda-
calculus using store-passing style translations (see, for example, [135]), this
optimization is semantically not significant though of pragmatic importance.
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The history-sensitive aspect of actors is performed by the become primitive.
In other words, the state of an actor is specified by its behavior. This means
that the behavior of an actor at invocation time (on message sending) may
differ from its behavior at execution time (on message reception). In ASP, such
behavior modification will be forbidden and replaced by an imperative aspect
allowing objects to modify their state (their data). These two approaches are
somewhat opposite. Indeed, Agha and others store the state of the actors
inside their functions, while in ASP the state is only stored in the data part
of objects (field).

Table 2.1 defines the syntax of an actor language. This syntax only includes
the primitives that are characteristic of an actor language.

〈act program〉 ::= 〈behavior definition〉∗ (〈command〉)

〈behavior definition〉 ::= (define (id {(with identifier 〈pattern〉)}∗)
〈communication handler〉∗)

〈communication handler〉 ::= (Is-communication〈pattern〉 do 〈command〉)

〈command〉 ::= let 〈let binding〉∗ 〈command〉
| (if 〈expression〉 then 〈command〉 else 〈command〉)
| (send 〈expression〉 〈expression〉)
| (become 〈expression〉)

Table 2.1. The syntax of an Actors language [9]

(define (Factorial ())

(Is-Communication (a eval (with customer ≡ c)

(with number ≡ n)) do

(become Factorial)

(if (NOT (= n 0))

(then (send x 1))

(else (let (x (new FactCust (with customer c)

(with number n)))

(send Factorial (a eval (with customer x)

(with number n-1))))))))

(define (FactCust (with customer ≡ m)

(with number ≡ n))

(Is-Communication (a number k) do

(send m n*k)))

Fig. 2.3. A factorial actor [9]
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A notion of futures for actors is also presented in [9]. A λ-calculus-based
actor calculus is presented in [10, 11]. Actors are presented as an open system:
they can receive messages from outside actors. These articles specify an op-
erational semantics, an operational equivalence, and operational bisimulation
techniques for actors.

Figure 2.3 defines an actor computing a factorial that distributes the work
to customers. More precisely, a chain of FactCust objects is created. Each
customer performs one multiplication and forwards the result to the follow-
ing customer, thus each call to factorial first creates a FactCust actor and
recursively calls the Factorial actor with the newly created customer, for
n− 1.

In [105], an actor-like concurrent language is presented but is more re-
lated to typing theory and can capture “message not understood” errors. It is
based on ML-like typing of record calculus. Indeed, this article considers that
a concurrent object-oriented programming language is an assemblage where
records are added to a concurrent calculus (à la π-calculus). Actor semantics
can also be built out of the pi-calculus by adding typing restrictions [12, 128].

Aspects Possible Values:

Activity Actor
Sharing No

Communication Base Channel
Communication Passing Generalized reference
Communication Timing Asynchronous, with a fairness guarantee
Synchronization Filtering patterns (futures can exist at a higher level)

Object RMI No
Object Activity Yes, all objects (uniform)
Wait-by-necessity No

Table 2.2. Aspects of Actors

A popular actor inspired language in current use is E [62], which is partic-
ularly useful for scripting P2P systems. It offers capabilities for secure distri-
bution. Other systems use a library approach to provide actor functionalities
in a conventional language such as Java (see for example, the Actor Foundry
[8]).

Table 2.2 summarizes the fundamental aspects of Actors. Most of these
characteristics are a direct consequence of the uniform model of Actors and
of the fact that communications are performed with message passing and pat-
tern matching on message reception. Communications are asynchronous but
a fairness hypothesis ensures that every sent message will finally be delivered;
however, some implementations of actors ensure a FIFO preserving commu-
nication timing.
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2.1.3 π-calculus

π-calculus is one of the most popular calculi modeling communications.
Compared to actors, π-calculus does not have a built-in notion of object, nor
a notion of object identity. Moreover, in its original version π-calculus offers
synchronous communications.

π-calculus activities are expressions that communicate synchronously with
channels. The expressive power and the concept of mobility in π-calculus come
from the possibility to send channels along other channels: the first class
entities of π-calculus are the channels.

CCS [117] was introduced by Milner; in this book, we decided to focus on
π-calculus which can be considered as an extension of CCS. π-calculus is a
concurrent calculus based on communications over channels and introduced
by Milner et al. [119, 120, 144]. It is a very small calculus where channels
are first-class entities and communication is due to synchronization between
a process performing an output on a channel and another process performing
a blocking input on the same channel. Channel names are first-class entities
and can be passed over channels.

Several versions of π-calculus exist and π-calculus syntax can be presented
in different ways. We will use the syntax of Table 2.3 and present the main
variants of π-calculus below.

P, Q ::=0 nil
|P |Q parallel composition
| (νx.P ) restriction of name x
| τ.P unobservable action
|x(y).P input
|x〈y〉.Q output
| [x = y].Q name matching
|P + Q choice
| !P replication

Table 2.3. The syntax of π-calculus

Informally,
� x〈y〉.Q sends y along channel x and, after synchronization with a process

x(z).P listening on channel x, continues as Q. Similarly and synchronously,
x(z).P receives y on channel x and continues as P where z is replaced by
y.

� νx.P creates a fresh channel x with lexical scope P .
� P |Q corresponds to the parallel composition of two processes; !P is an

infinite number of P processes running in parallel.
� P + Q denotes an external choice: as soon as P can be reduced, Q is

discarded, or vice versa.
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� Name matching only exists in some variants of π-calculus. In that case
[x = y].Q executes Q if x and y are the same channel.

Table 2.5 defines an operational semantics for (synchronous) π-calculus with-
out matching similar to the one that can be found in [119]. From the structural
congruence relation defined in Table 2.4, a reduction relation→ can be defined
({{y ← z}} denotes the substitution of y by z).

P ≡ Q if P is obtained from Q by change of bound names (alpha conversion)

P + 0 ≡ P, P + Q ≡ Q + P, P + (R + R) ≡ (P + Q) + R

P |0 ≡ P, P |Q ≡ Q|P, P |(R|R) ≡ (P |Q)|R

(νx.(P |Q)) ≡ P |(νx.Q) if x /∈ fn(P ), (νx.0) ≡ 0, (νy.(νx.P )) ≡ (νx.(νy.P ))

!P ≡ P |!P

Table 2.4. π-calculus structural congruence

In Table 2.5 the tau rule is associated to unobservable actions. react

is the (synchronous) communication rule between two processes. par means
that except for the reaction rule, processes evolve asynchronously. res allows
reduction inside a binder. struct expresses that the terms are reduced mod-
ulo structural equivalence; for example, one can reorder processes in order to
allow the reaction between two processes. The use of the rules struct and
react with bound channels allows the restriction scope of these channels to
be changed, this mechanism is sometimes called scope extrusion.

Most of the π-calculus derived languages and calculi presented below do
not include name matching. Name matching makes different equivalence rela-
tions on π-calculus [69] equivalent, but this is not directly linked to the subject
of this study.

Some variants of π-calculus exclude the choice operator mainly for sim-
plicity.

Nearly all π-calculus theoretical developments are based on the definition
of one or several bisimulation relations. The main idea of bisimulation is to
define an equivalence between terms based on (potentially infinite) reduction.
In very short, two terms are bisimilar if every reduction performed on one
term (e.g., receiving z on the channel x) can be performed on the other term,
and the two terms after reduction are still bisimilar. Bisimulation definition
and techniques are based on a coinduction principle. Several variants of bisim-
ulation relations exist which are more or less discriminating (this also depends
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tau:

τ.P + M → P

react:

(x(y).P + M)|(x〈z〉.Q + N)→ P{{y ← z}}|Q

par:

P → P ′

P |Q→ P ′|Q

res:

P → P ′

(νx.P )→ (νx.P ′)

struct:

P → P ′ ∧ P ≡ Q ∧ P ′ ≡ Q′

Q→ Q′

Table 2.5. π-calculus reaction rules

on the variant of π-calculus on which it is applied). The study of bisimulation
is beyond the scope of this book, see for example [144] for a rather complete
study of π-calculus variants and some bisimulation relations and techniques.

Variants of π-calculus

Polyadic π-calculus [118] allows one to send/receive several channels on a
channel (i.e., x(y).P becomes x(y1 . . . yn).P ). Polyadic π-calculus can be en-
coded in monadic π-calculus; thus, polyadic π-calculus is mainly useful for
introducing the concept of sorts in π-calculus.

π-calculus can be either synchronous or asynchronous. Asynchrony is ob-
tained by disallowing an output prefix. This means that output messages
do not have any continuation; that is to say, x〈y〉.Q is replaced by x〈y〉 in
the syntax above. Asynchronous π-calculus without a choice operator was
first proposed by Honda and Tokoro in [90] and Boudol in [35]. Synchronous
π-calculus can be encoded in asynchronous π-calculus, but behavioral equiv-
alence differs in synchronous and asynchronous π-calculus. Translation from
asynchronous π-calculus to synchronous π-calculus is a convenient model for
programming languages where synchronized communications are built upon
asynchronous primitives.

Merro and Sangiorgi introduce a (variant of) “local π-calculus” (Lπ)
in [115] which forbids the use of a received channel for input or name matching.
In [143], Sangiorgi extends this calculus with the capacity of sending processes
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through channels (LHOπ: Local Higher Order π-calculus) and shows the com-
pilation from LHOπ to Lπ. A more general compilation of the HOπ (Higher
Order π-calculus) into the π-calculus was presented in [141].

Pict is a language based on π-calculus and is briefly described in
Sect. 2.2.2.

Linear and Linearized Channels

Linear and linearized channels use typing techniques to provide confluence for
some π-calculus terms. A channel with a linear type [104] can only be used
once in input and once in output. Thus communication over a linear channel
can not be affected by a third process.

Nestmann and Steffen in [124] introduce a generalization of linear chan-
nels: “linearized” channels which can be reused after a “unique” usage. This
article aims at ensuring, with typing techniques, that at any time only one
communication is possible through a given channel.

Communication over linear and linearized channels is deterministic. Thus
π-calculus terms only communicating over linear and linearized channels are
confluent. This technique seems to be a convenient criterion for deciding
statically whether a π-calculus program is deterministic or not.

What is Mobility?

In [119], Milner classifies mobility in three main categories:

(A) processes move, in the physical space of computing sites;
(B) processes move, in the virtual space of linked processes;
(C) links move, in the virtual space of linked processes.

π-calculus adopts the choice (C) and Milner considers that (B) can be reduced
to (C). This book partly follows this idea and will not focus on the site where
an activity is placed but will rather adopt choice (B) because ASP calculus is
based on the notion of activities rather than channels.

Even if some kinds of channels can be implemented in ASP and communi-
cated between processes, this book will be more focused on the concurrency
aspects than on mobility of names as presented by Milner. However, a notion
of mobility à la Milner is intrinsic to ASP through the mobility of global ref-
erences to some objects: ASP global references can be transmitted between
processes.

With respect to the concept of physical place, we consider that the inter-
action between physical location and the methodology of communication is
beyond the scope of this study. Consequently, Chap. 12 will introduce migra-
tion in ASP by considering that the content of an activity moves to another
activity.
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In short, to come back to Milner’s classification, this book rather adopts
the choice (B) and considers that it can be easily reduced to (A) in practice.

Table 2.6 summarizes the fundamental characteristics of synchronous π-
calculus. Of course asynchronous π-calculus features asynchronous communi-
cation timing without guarantee. The absence of a buffer for storing messages
prevents the existence of other communication timing in π-calculus. Indeed,
asynchronous with rendezvous communication would require distinguishing
message reception and message treatment which is not compatible with the
fact that messages cannot be stored and only an acknowledgment can be
returned to the sender. Moreover, asynchronous FIFO preserving commu-
nication timing cannot be performed by a simple syntactic modification of
π-calculus; for example, asynchronous π-calculus forbids an activity to send
several messages. Moreover, the control synchronization can be complemented
with simple name matching, if such a primitive is allowed.

Aspects Values:

Activity Expression evaluation
Sharing No

Communication Base Channel
Communication Passing Generalized reference

Copy of activities (mobility of activities) in HOπ
Communication Timing Synchronous
Synchronization Control

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.6. Aspects of π-calculus

2.1.4 Process Networks

Process Networks are mainly characterized by process-based activities commu-
nicating with asynchronous FIFO preserving channels (buffers). They feature
dataflow synchronization and determinacy but are rather restrictive on the
patterns of communications that can be expressed.

The Process Networks of Kahn and others [99, 100, 159] are explicitly
based on the notion of channels between processes, performing put and get
operations on them. Each process is an independent sequential computing
station (no shared memory). They are linked with channels (one to one or one
to many) behaving like unbounded FIFO queues making the communications
asynchronous.

One Process Network channel can link at most one source process and
many destinations. The destinations do not split the channel output, but each
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one reads every value put in the channel (a kind of broadcast). The reading
on a channel is performed by a blocking get primitive. The order of reading
on channels is fixed by the source program. Process Networks provide deter-
ministic parallel processes, but require that the order of service is predefined
and two processes cannot send data on the same channel.

Figure 2.5 shows the example of the sieve of Eratosthenes written in Pro-
cess Networks. Note that all communications are performed through explicit
and blocking PUT and GET operations which impose a lot of (not always nec-
essary) synchronizations. The behavior of this example is rather simple: an
INTEGER process generates integers which pass through as many FILTER pro-
cesses as prime numbers found. Integers finally arriving at the SIFT process
are used to spawn a new FILTER process and sent to the OUTPUT. Figure 2.4
shows the graph of processes when two prime numbers have been found.

INTEGER FILTER
2

FILTER
3put

get
SIFT OUTPUT

Fig. 2.4. Execution of the sieve of Eratosthenes in Process Networks

Table 2.7 summarizes the fundamental characteristics of Process Networks.
The dataflow synchronization aspect is a direct consequence of the blocking
get primitive.

Aspects Values:

Activity Process
Sharing No

Communication Base Channel
Communication Passing Copy
Communication Timing Asynchronous FIFO preserving
Synchronization Dataflow

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.7. Aspects of Process Networks

2.1.5 ς-calculus

We conclude our basic formalisms with the sequential ς-calculus, at the root
of the proposed theory of distributed objects.
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Process INTEGERS out Q0

Vars N; 1 → N;

repeat INCREMENT N; PUT(N,Q0) forever

Endprocess;

Process FILTER PRIME in QI out QO

Vars N;

repeat GET(QI) → N;

if (N MOD PRIME)6=0 then PUT(N,QO) close

forever

Endprocess;

Process SIFT in QI out QO

Vars PRIME; GET(QI) → PRIME;

PUT(PRIME,QO); emit a discovered prime
doco channels Q;

FILTER(PRIME,QI,Q); SIFT(Q,QO);

closeco

Endprocess;

Process OUTPUT in QI;

repeat PRINT(GET(QI)) forever

Endprocess

Start doco channels Q1 Q2;

INTEGERS(Q1);SIFT(Q1,Q2); OUTPUT(Q2);

closeco;

Fig. 2.5. Sieve of Eratosthenes in Process Networks [100]

Abadi and Cardelli [3, 1, 2] present a calculus for modeling object-oriented
languages: ς-calculus. The main contribution of [3] deals with typing in object
calculi. Even if this aspect is important, it will not be studied in this book.
Indeed in our case, classical typing could be considered as orthogonal with
concurrency.

Abadi and Cardelli studied both functional and imperative behavior, start-
ing from an object-based functional calculus (no classes) without typing, then
adding imperative aspects and most importantly studied typing. A class-based
object calculus can also be translated to ς-calculus; an example of translation
is defined in [3]. ς-calculus is a base calculus for several parallel calculi (e.g.,
Øjeblik [114], the concurrent object calculus of [78], etc.).

ASP calculus is based on an untyped imperative ς-calculus (impς-
calculus). In [3], several equivalent variants of impς-calculus. The ASP calcu-
lus is closer to impςf -calculus are discussed. The basic impς-calculus syntax
is described in Table 2.8.

We present below the semantics of impς-calculus as defined in [3]. It
is based on the following syntactic constructs (:: stands for the concate-
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a, b ∈ L ::= x variable

| [mj = ς(xi)ai]
i∈1..n object definition

| a.mi method invocation
| a.li↼↽ς(x)b method update
| clone(a) superficial copy
| let x = a in b let

Table 2.8. The syntax of impς-calculus [3]

nation of lists and + the update of an entry in an association map):

ι store location (e.g., an integer)

v ::= [mi = ιi]
i∈1..n result (mi distinct)

σ ::= {ιi 7→ 〈ς(xi)bi, Si〉}
i∈1..n store (ιi distinct)

S ::= {xi 7→ vi}
i∈1..n stack (xi distinct)

S ` � well-formed store judgment

σ•S ` � well-formed stack judgment

σ•S ` a ; v • σ′ term reduction judgment

The semantics presented by Abadi and Cardelli is a big-step, closure-based
semantics; it is based on three different judgments, and the reduction rules are
presented in Table 2.11. Well-formedness judgments are defined in Tables 2.9
and 2.10.

store ∅:

∅ ` �

store ι:

σ•S ` � ι /∈ dom(σ)

{ι 7→ 〈ς(x)b, S〉} :: σ ` �

Table 2.9. Well-formed store

Gordon et al. presented a substitution-based semantics of impς-calculus
(small step and big step), and proved their equivalence with Abadi and
Cardelli closure-based semantics in [79, 80]. We based our semantics on the
operational semantics of [79] because it is more intuitive and concise than the
one of Abadi and Cardelli. However, such a semantics is based on a substitu-
tion that is more difficult to implement efficiently.
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stack ∅:

σ ` �

σ•∅ ` �

stack x:

σ•S ` � ι /∈ dom(σ)

σ•
(

{x 7→ [mi = ιi]
i∈1..n} :: S

)

` �

Table 2.10. Well-formed stack

x:

σ · (S :: {x 7→ v} :: S′) ` �

σ• (S :: {x 7→ v} :: S′) ` x ; v•σ

object:

σ•S ` � ∀i ∈ i..n, ιi /∈ dom(σ)

σ•S ` [mj = ς(xi)ai]
i∈1..n

; [mj = ιi]
i∈1..n

•{ιi 7→ 〈ς(xi)ai, S〉
i∈1..n} :: σ

select:

σ•S ` a ; [mi = ιi]
i∈1..n

•σ′

σ′(ιj) = 〈ς(xj)aj , S
′〉 xj /∈ dom(S′) j ∈ 1..n

σ′•(xj 7→ [mj = ιi]
i∈1..n :: S′) ` aj ; v•σ′′

σ•S ` a.mj ; v•σ′′

update:

σ•S ` a ; [mi = ιi]
i∈1..n

•σ′ j ∈ 1..n ιj ∈ dom(σ′)

σ•S ` a.mj↼↽ς(x)b ; [mi = ιi]
i∈1..n

• ({ιj 7→ 〈ς(x)b, S〉}+ σ′)

clone:

σ•S ` a ; [mi = ιi]
i∈1..n

•σ′ ∀i ∈ 1..n, ιi ∈ dom(σ′) ∧ ι′i /∈ dom(σ′)

σ•S ` clone(a) ; [mi = ι′i]
i∈1..n

• ({ι′i 7→ σ′(ιi)}+ σ′)

let:

ισ•S ` a ; v′•σ′ σ′• ({x 7→ v′}) :: S ` b ; v′′•σ′′

σ•S ` let x = a in b ; v′′•σ′′

Table 2.11. Semantics of impς-calculus (big-step, closure based)

Note that Gordon et al. [79, 80] also present compilation and CIU (Closed
Instance of Use) equivalence on imperative objects. Moreover Gordon and
Rees also present a bisimilarity equivalence of the typed object calculi of
Abadi and Cardelli in [81]. These aspects deal with the equivalence of static
terms. In this book, we will not use this framework because, to be as general
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as possible, we are interested in relations that are still defined on (partially)
reduced terms. Indeed, this book is rather a study of parallel reduction than
a study of (statically) equivalent programs.

Figure 2.6 presents an example of a prime number sieve expressed in ς-
calculus. It mainly follows the same principle as the Process Network sieve,
cloning a new sieve object for each prime number found.

Sieve , [m = ς(s) λ(n)
let sieve′ = clone(s)
in s.prime := n;

s.next := sieve′;
s.m↼↽ς(s′) λ(n′)

if(n′ mod n) = 0
then [ ]
else sieve′.m(n′);

[ ],
prime = ς(x) x.prime,
next = ς(x) x.next];

↼↽ denotes the method update: modifies the body of a method.

The sieve can be used in the following way:

for i in 2..99 do sieve.m(i) initializes primes ≤ 100

sieve.next.next.prime returns the third prime

Fig. 2.6. Sieve of Eratosthenes in ς-calculus [3]

Figure 2.7 presents a binary tree class example. It has been slightly mod-
ified: types were removed. λx.b and (a b) denote abstraction and application
of λ-calculus.1

Concurrent extension of ς-calculus will be presented in Sect. 2.2.

2.2 Concurrent Calculi and Languages

2.2.1 MultiLisp

To our knowledge, MultiLisp is the first language to define the concept of
a future and the automatic dataflow synchronization that follows from this
notion.

1 λ-terms can be encoded in ς-calculus.
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binClass , [new =
ς(z) [isleaf = ς(s) z.(isleaf s),

lft = ς(s) z.(lft s),
rht = ς(s) z.(rht s),
consLft = ς(s) z.(consLft s),
consRht = ς(s) z.(consRht s)],

isLeaf = λ(self) true,
lft = λ(self) self.lft
rht = λ(self) self.rht
consLft = λ(self) λ(newlft)

((self.isleaf := false).lft := newlft).rht := self,
consRht = λ(self) λ(newrht)

((self.isleaf := false).lft := self).rht := newrht]

Fig. 2.7. Binary tree in ς-calculus [3]

Halstead defined MultiLisp [83], a language with shared memory and fu-
tures. The construct (future X) immediately returns a future for the value of
X and concurrently evaluates X. A future without a value associated to it is
said to be undetermined ; it becomes determined when its value has been com-
puted. The combination of shared memory and side effects prevents MultiLisp
from being determinate.

The main parallelism primitive is a PCALL that performs an implicit
fork and join and evaluates its arguments concurrently: (PCALL F A B)
concurrently evaluates F , A, and B to f , a, and b; and applies f to the
arguments a and b.

In MultiLisp, as the addition operator + needs a value of its arguments,
the two following expressions yield essentially the same parallelism:

(+ (future A) (future B))

(pcall + A B)

Halstead classifies the programming languages by specifying whether they
have explicit parallelism, side effects, and shared memory. For example, CCS
is characterized by explicit parallelism, side effects and no shared memory,
and MultiLisp by explicit parallelism, side effects and shared memory.

According to Halstead [83], the fact that no data is shared between dif-
ferent threads (no shared memory) is one of the failings of CSP. But the
interleaving of processes accessing and modifying data can also be considered
as disturbing for the programmer as different interleaving between the threads
can lead to different results (MultiLisp is not deterministic). Another draw-
back of CSP pinpointed by Halstead is that it leads to non-uniform access to
data. Indeed local accesses can be performed classically, whereas accesses to



2.2 Concurrent Calculi and Languages 37

data belonging to another process need a communication through channels.
In ASP no memory is shared but the copying of shared data is implicit. Con-
sequently, concerning the non-uniform access to data in ASP, the programmer
only has to know that objects sent between activities are deeply copied and
to deal with the coherence of these deep copies if necessary.

Katz and Weise [102] studied the interactions between futures and con-
tinuations and problems arising when those two functionalities are mixed.
Flanagan and Felleisen gave a semantics formalization of futures in MultiLisp
in [66].

Table 2.12 summarizes the fundamental characteristics of MultiLisp. Most
of the items of this classification have a poor signification because of the
multithreaded aspect of MultiLisp.

Aspects Values:

Activity Expression evaluation
Sharing Yes

Communication Base No communication
Communication Passing No communication
Communication Timing No communication
Synchronization Future

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.12. Aspects of MultiLisp

2.2.2 PICT

Pict [132] is a language based on π-calculus. It is based on an asynchronous
π-calculus without choice and name matching. Thus it features asynchronous
communications through channels, and Pict activities are based on expres-
sions.

A core language of Pict is presented in [131] and is used to create more
complex objects able to encode classical features. For example, synchroniza-
tion, locks, choice, and a lot of other primitives can be derived from the core
calculus. Typing (sub-typing and type inference) of Pict and higher level
features (than π-calculus) are also presented in [132].

From a general point of view, Pict is designed to be used to experiment
with new designs of concurrent object structures (like, for example, the one
in [131]). Only a few primitives provide the possibility of writing simple objects
and their typing. No specific concurrency mechanism for objects has been
implemented inside Pict.
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V al ::= Id Variable
[ Label V al . . . Label V al ] Record
{ Type } V al Polymorphic package
( rec : T V al ) Rectype value
String String constant
Char Character constant
Bool Boolean constant

Label ::= 〈empty〉 Anonymous label
Id = Explicit label

Pat ::= Id : Type Variable pattern
: Type Wildcard pattern

Id : Type @ Pat Layered pattern
[ Label Pat . . . Label Pat ] Record pattern
{ Id < Type } Pat Package pattern
( rec : T Pat ) Rectype pattern

Abs ::= Pat = Proc Process abstraction

Proc ::= V al ! V al Output atom
V al ? Abs Input prefix
V al ? ∗ Abs Replicated input prefix
( Proc | Proc ) Parallel composition
(Dec Proc ) Local declaration
if V al then Proc else Proc Conditional

Table 2.13. A syntax for Pict [132]

Table 2.13 presents the syntax of the Pict language. The main con-
structors introduce communication (input and output), parallel composition,
records, and pattern matching. Note that name matching does not belong in
Pict, there is no choice operator, and that replicated processes are necessar-
ily guarded by an input. The presence of records and pattern matching may
allow some kind of subtyping and structured programming. Rectype is useful
to define and type recursive data structures; Package is used to implement
polymorphism.

In [130] the presented syntax is slightly different, mainly by the fact that
replicated input is removed and somehow replaced by a def primitive allowing
the introduction a declaration.

Figure 2.8 shows a simple Fibonacci example in Pict using some high-
level primitives. This example automatically forks one process for calculating
each fib(i) because def declaration creates a kind of replicated input process.

Figure 2.9 shows a factorial example written in the core Pict calculus;
it is much longer than the example in Fig. 2.8 because it does not use some
derived forms also presented in [130] that greatly simplify programming in
Pict.

Table 2.14 summarizes the fundamental characteristics of Pict.
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def fib[n:Int r:!Int] =

if (|| (== n 0) (== n 1)) then

r!1

else

r!(+ (fib (- n 1)) (fib (- n 2)))

run printi!(fib 7)

Fig. 2.8. A simple Fibonacci example in Pict [130]

run

(def fact [n:Int r:!Int]=

(new br:^Bool

( {- calculate n=0 -}
==![n0 (rchan br)]

| {- is n=0? -}
br?b =

if b then

{- yes: return 1 as result -}
r!1

else

{- no ... -}
(new nr:^Int

( {- subtract one from n -}
-![n 1 (rchan nr)]

| nr?nMinus1 =

{- make a recursive call to compute fact(n-1) -}
(new fr?f =

( fact!nMinus1 fr]

| fr?f =

{- multiply n by fact(n-1) and send the result

on the original result channel r -}
*![f n (rchan r)]

))))))

new r:^Int

( fact![5 r]

| r?f = printi!f )

Fig. 2.9. A factorial example in the core Pict language [130]
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Aspects Values:

Activity Expression evaluation
Sharing No

Communication Base Channel
Communication Passing Generalized reference
Communication Timing Asynchronous without guarantee
Synchronization Filtering patterns (pattern matching)

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.14. Aspects of Pict

2.2.3 Ambient Calculus

Ambient calculus [47] is a calculus describing the movement of processes
through the explicit notion of location: processes execute at an identified place
called location. Ambients are convenient for modeling movements through ad-
ministrative domains (e.g., through firewalls). Consequently ambients natu-
rally feature some kind of mobility as ambients can be moved from one location
(an ambient) to another.

An ambient is defined by the following characteristics.

� An ambient is a bounded place.
� Ambients can be nested and can be moved as a whole.
� Computation takes place inside ambients, and can control the ambient

itself (e.g., make it move).

The actions of ambients are also called capabilities. The capability in m
allows entry into the ambient m, the capability out m allows exit out of m,
and the capability open m allows the opening of m.

The syntax of ambient calculus is defined in Table 2.15 (n are names, P,Q
are processes, and M are capacities).

P, Q ::= (νn)P restriction
0 inactivity
P |Q composition
!P replication
n[P ] ambient
M.P action

M ::= in n can enter n
out n can exit n
open n can open n

Table 2.15. The syntax of Ambient calculus
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Some communication primitives can be added to ambients in a somewhat
orthogonal way (in a π-calculus style): (x).P performs an input action that can
interact with an asynchronous output action 〈M〉. Such interactions are only
local to an ambient. Indeed, long-range communications may need to cross
firewalls and should not happen automatically. According to Cardelli and
Gordon, long-range communications should be performed by the movement
of a “messenger” ambient. With such communication primitives, ambients can
encode the asynchronous π-calculus.

Operational semantics is based on the three following rules:

n[in m.P |Q]|m[R]→ m[n[P |Q]|r]

m[n[out m.P |Q]|r]→ n[P |Q]|m[R]

open n.P |n[Q]→ P |Q

and a local communication rule:

(x).P |〈M〉 → P{x←M}

Mobility in π-calculus is a mobility of names: names can be communicated
over channels whereas mobility in ambients consists in moving ambients them-
selves. Thus the notions of mobility in these two calculi are not incompatible;
in fact inside each ambient a mobility of names is possible, e.g., by using an
encoding of the asynchronous π-calculus.

A strong contribution of [47] concerns the expressiveness of Ambients. This
paper also contains many examples of ambients. As such, Fig. 2.10 shows an
example of theencoding of locks in ambients [47] and Fig. 2.11 illustrates an
encoding of named channels useful to encode the π-calculus in Ambients.

acquire n.P , open n.P

release n.P , n[ ]|P

Fig. 2.10. Locks in ambients [47]

buf n , n[!open io] a channel buffer

(ch n) , (νn) (buf n |P ) a new channel

n(x).P , (νp) (io[in n.(x).p[out n.P ]] | open p) channel input

n〈M〉 , io[in n.〈M〉] async channel output

Fig. 2.11. Channels in ambients [47]
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Note that a meaningless term of the form n.P can arise during reduction,
and a type system like the one described in [46] is necessary to avoid such an
anomaly.

Table 2.16 summarizes the fundamental characteristics of Ambients. Note
that references to ambients are generalized but can only be used locally: for
example, before entering an ambient m, another ambient n has first to move
in order to be at the same level as m.

Aspects Values:

Activity Expression evaluation
Sharing No

Communication Base Channel
Communication Passing Generalized reference, with local effect

Copy of ambient (mobility)
Communication Timing Synchronous
Synchronization Control

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.16. Aspects of Ambients

2.2.4 Join-calculus

The join-calculus [70, 68, 67] is an asynchronous calculus with mobility and
distribution. Synchronization in the join-calculus is based on filtering patterns
over channels. From the communication point of view, join-calculus can be
seen as an asynchronous π-calculus with powerful message receivers (called
triggers): a process can be triggered by the presence of several messages si-
multaneously.

The join-calculus syntax is composed of processes (P ), definitions (D),
and join patterns (J) as described in Table 2.17.

The join-calculus semantics is based on a reflexive chemical abstract ma-
chine (RCHAM) and can be summarized by the rules of Table 2.18. Each rule
(of the form J � P ) defines a reaction that can occur upon the simultaneous
presence of several messages specified by the join pattern J . If the messages
are simultaneously pending (Jσ on the right of `) then those messages are
consumed and become the term Pσ defined by the reaction rule. σ is a sub-
stitution of names that can be used to unify arguments of pending messages
with formal parameters defined in the reaction rule.

Figure 2.12 shows an example of a reference cell in join-calculus. It is
based on three channels. put and get are sent back on κ0 and will the become
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P ::= |x〈ỹ〉 message emission
|def D in P definition of ports
|P |P parallel composition
|0 null process

D ::= J � P rule matching join pattern J (trigger)
|D ∧D connection of rules
|T empty definition

J ::= x〈ỹ〉 message pattern
| J |J joined patterns

Table 2.17. The syntax of the join-calculus

` P |P ′↔` P, P ′

` 0↔`
T `↔`

` def D in P↔ Dσ ` Pσ σ creates fresh channels

J � P ` Jσ−→ J � P ` Pσ

Table 2.18. Main rules defining evaluation in the Join calculus

accessible in order to write or read values in the cell. s remains local and is
used to store the value contained by the cell.

def mkcell〈v0, κ0〉 ,





def get〈κ〉|s〈v〉� κ〈v〉|s〈v〉
∧ set〈u, κ〉|s〈v〉� κ〈〉|s〈u〉
in s〈v0〉|κ0〈get, set〉





Fig. 2.12. A cell in the join-calculus [68]

Table 2.19 summarizes the fundamental characteristics of the join-calculus.

2.2.5 Other Expressions of Concurrency

Several other concurrent languages exist, most of them being derived from
the basic formalisms. Some of them are object oriented, but in general no
unification of objects and activities is clearly identified.

CML

In [136], Reppy presents an extension of SML (Standard ML) called CML
(Concurrent ML) for concurrent programming in SML. CML is a threaded
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Aspects Values:

Activity Expression evaluation
Sharing No

Communication Base Channel
Communication Passing Generalized reference
Communication Timing Asynchronous without guarantee
Synchronization Filtering patterns (join)

Object RMI No
Object Activity No
Wait-by-necessity No

Table 2.19. Aspects of the Join-Calculus

language. The synchronization is performed by a sync operator which syn-
chronizes on an event. An event is either a basic event, i.e., a communication,
or an event built by combining several basic event. In the base language, the
communications are synchronous but a mailbox (request queue) mechanism
can be easily implemented with a buffered channel.

Kell-calculus

Stefani [152] has introduced a calculus that is able to model hierarchical com-
ponents, especially sub-components control. The kell-calculus is based directly
on the π-calculus with the possibility to have joins inside triggers (as in dis-
tributed join-calculus – DJoin [68]).

The M-calculus [145] is somehow a preliminary version of the kell-calculus.
The kell-calculus is also intended to overcome the limitations of the M-calculus
presented in [152].

Steele Shared Memory Non-interference

Steele [151] expressed a programming model ensuring the confluence of pro-
grams by analyzing (mainly dynamically) the shared memory accesses in order
to ensure non-interference. But it is based on a shared memory mechanism
with asynchronous threads and not on possibly distributed programs.

Montanari Tile-Based Semantics

Montanari et al. introduced tile-based semantics [43, 64] which is based on
rewrite rules in side effects. This theoretical framework (based on double cat-
egories) has been applied to give a semantics to located CCS in [64]. We think
such a framework could be used to provide a modular semantics for ASP.
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Functional Nets

Functional nets [127] is a language based on join patterns. It consists of two
kinds of functions: synchronous and asynchronous. Asynchronous functions
correspond to channels with an asynchronous communication timing as in
asynchronous π-calculus. Synchronous functions have a synchronous commu-
nication timing and thus a value can be returned by such function (the caller
awaits for the result before continuing execution). Only the leftmost operand
of a fork or a join operator can return a result. In other words, all operands
except the leftmost one must be asynchronous functions. Functional nets also
feature an object-oriented view with records.

2.3 Concurrent Object Calculi and Languages

2.3.1 ABCL

ABCL [161, 162] features active objects in an imperative object-oriented lan-
guage. Placing itself in a uniform model where all objects are viewed as active,
it does not have shared objects per se. The communication is RPC, and more
specifically based on remote method invocation (object RMI). The language
features both synchronous and asynchronous communications, and a select
construct for filtering and waiting for specific message patterns. Table 2.20
summarizes the fundamental aspects of ABCL.

Figure 2.13 (inspired from [161]) presents a simple bounded buffer in
ABCL. The script part defines the object behavior: what messages the ac-
tive object accepts and what actions it performs upon reception. Somehow
the script specifies the object activity, with the specificity that the object is
initially waiting for a message (it is “dormant”); the buffer initially waits for
a put or get message. The select construct allows one to suspend the activity
(turning to the “waiting” mode) in order to selectively wait for some message
pattern:

(select
(=> [:message-pattern ...] where constrains ... actions ...)

.

.

.

(=> [:message-pattern ...] where constrains ... actions ...)

)

The where part specifies conditions for the message to be treated. This se-
lective wait is close to the select statements found in languages such as CSP
[88] and later on in Ada [91]. In the buffer case, a single message is waited for
in each select instruction. On reception of an expected message, the object
returns to the “active” mode, treating the message.
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[object Buffet

(state declare-the-buffer-state )

(script

(=> [:put elt] ; Put an element in the buffer

(if full

then (select ; Waits for a [:get] message

(=>[:get] remove-from-storage-and-return )

)

)

store-elt
)

(=> [:get] ; Get an element from the buffer

(if empty

then (select ; Waits for a [:put ...] message

(=>[:put elt] send-elt-to-get-caller )

)

else remove-from-buffer-send-it-to-get-caller

)

)

)

]

Fig. 2.13. Bounded buffer in ABCL [161]

One must notice the quasi-parallel nature of ABCL activities: several
method activations can exist at the same time, but at most one of them
is executing at any given time. This has to be compared to languages with
parallel activities where several executions (threads) are actually going on si-
multaneously in the same code. Of course, the other end of the spectrum is
sequential activity as proposed in ASP: at any time a single method activation,
a single thread, a single stack, exist within the object.

The principle of this classification (sequential, quasi-parallel, parallel ac-
tivities) was initially proposed in [160].

Getting back to the code in Fig. 2.13, one can notice the monitor [87]
nature of this activity: at most one method of the object is executing, while
the other activations are suspended on some conditions, respecting a kind
of mutual exclusion. In the case of a monitor, condition variables authorize
the expression of wait conditions. For ABCL, the select construct permits to
wait for specific messages. ABCL seems to get away with the signaling of mon-
itors at the cost of some code duplication. Instead of signaling after a put that
a potentially blocked get can be resumed, the code for putting in an empty
buffer is given within the get method. Furthermore, such synchronization can
be classified as mainly centralized: the synchronization code and object ac-
tivity is somehow gathered in the script construct, but still mixed up with
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some functional aspects (code for put and get here). Finally, the mechanism
by which a request is treated can be classified as explicit message acceptance:
there is an instruction that can be placed in the control flow to wait for and
execute a request, e.g., the =>[:get] in the buffer code. This will be close
to the Serve primitive of ASP (Fig. 4.2, page 71). Another alternative, used
in other languages, is an implicit message acceptance where the programmer
expresses conditions for accepting a message, but no specific construct autho-
rizes triggering it at a given point in code. An implicit message acceptance
authorizes the programming of activity in a declarative style. However, as an
explicit message acceptance is rather a primitive construct, and as it also au-
thorizes the construction of declarative abstractions, we believe a concurrent
calculus or language should provide an explicit message acceptance primitive.

; Synchronous communication:
; send and wait for message execution

; Originally called: Now Type Message Passing
x := [T <== M]

; Current activity send a message M to T

; wait for message execution and return value,

; which is stored in x

; Asynchronous one-way communication:
; send and does not wait for

; message execution, no reply

; Originally called: Past Type Message Passing
[T <= M]

; Current activity send a message M to T

; no wait

; Asynchronous communication with explicit future:
; send and does not wait for message execution,

; reply to be sent later in x
; Originally called: Future Type Message Passing

[T <= M $ x]

; Current activity send a meessage M to T

; non-blocking, the result will be put

; asynchronously in x

...

(ready? x)

; Test if x is still awaited

Fig. 2.14. The three communication types in ABCL
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An important contribution of ABCL was the introduction of three differ-
ent communication semantics. The language specifies with dedicated syntax
three communication timings for an object to send a message to another.
From synchronous to asynchronous, ABCL features synchronous communica-
tion, asynchronous one-way communication, and asynchronous communica-
tion with explicit future. Figure 2.14 presents the corresponding syntax and
intuitive semantics. In the last communication type, an explicit future vari-
able can be specified for the reply to be stored. The ready? primitive permits
one to explicitly test the availability of a value in a future. A future object
in ABCL is in fact a queue. It is explicitly declared ( (Future ... x ...)),
and access to it has to be explicit ([:next-value], [:all-value]), which of
course can be blocking.

An interesting ABCL feature is the capacity to explicitly specify and ma-
nipulate the object address where to send a reply. The general syntax for
sending a message is in fact the following:

[T <= M @ dest ]

where the variable dest specifies where to send the result. For such a com-
munication with a reply, the caller is not interested in the result, but indeed
it has to be sent to the dest object. Of course, the communication remains
non-blocking. Furthermore, the general syntax for accepting a message and
returning a reply is:

(=> [:M ...] @ dest ... [ dest <= result ] )

An object receiving a message also receives explicitely the destination where
it is suppose to send back the result. Turning explicit the reply destination,
makes it possible to explicitly delegate calls to other objects. For instance, if
the message acceptation above is changed into:

(=> [:M ...] @dest ... [ T2 <= M @ dest ] )

the call is delegated to the object T2, specifying that the reply still has to
be sent to the same dest object. In that case the reply will be delivered
directly, without going through the middle object. Section 10.1 will discuss
the possibility to add explicit delegation to ASP and compare it to the implicit
delegation existing in ASP because of the first-class futures.

ABCL also features express mode message passing: if an object is active
and dealing with an ordinary message, an express message will suspend the on-
going activity in order for it to be treated right away. By default the suspended
treatment will be resumed at the end of the express message treatment. The
atomic primitive authorizes an object to protect itself against express mes-
sages for the execution of a set of instruction. Several versions of the ABCL
language were further developed, for instance ABCL/R [158] offers reflective
improvements.

The ABCL language is rather significant as one of the first imperative
object-oriented languages inspired by the Actors paradigm. Moreover it takes
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a different approach to the one proposed here (also in an imperative setting) in
considering that all objects are active (uniform model). In ABCL, parallelism
is induced by asynchronous communications; even if objects are systemati-
cally active, doing standard synchronous communication (now type message
passing) does not raise any parallelism in itself. While programming, one has
to decide for each call its synchronous or asynchronous nature. The control
of parallelism is at the fine granularity of each communication. By contrast,
ASP will adopt the control of parallelism at the global level of each object, in
a non-uniform active object model.

Table 2.20 summarizes the fundamental characteristics of ABCL.

Aspects Values:

Activity Active object
Sharing No

Communication Base RPC
Communication Passing Generalized reference
Communication Timing Synchronous, and

Asynchronous FIFO preserving
Synchronization Control

Filtering patterns (select)
Future

Object RMI Yes
Object Activity Yes, all objects (uniform)
Wait-by-necessity No

Table 2.20. Aspects of ABCL

2.3.2 Obliq and Øjeblik

Obliq [45] is a language based on the ς-calculus that expresses both parallelism
and mobility. Obliq is an object language based on threads communicating
with a shared memory (all references to objects are generalized). Thus accesses
to objects are strongly concurrent except for serialized objects which can only
be accessed by one thread. Figure 2.15 gves an example of a prime number
sieve in Obliq.

Øjeblik [123, 41, 114] is a sufficiently expressive subset of Obliq which
has a formal semantics. The main results on Øjeblik concern migration but
Øjeblik does not take distribution into account.

Øjeblik and Obliq semantics is based on threads (fork and join operators)
and all references are global when necessary: When an object reference is
passed through the network, a local reference becomes a global reference.
As a consequence these languages are based on a shared memory mechanism.
Calling a method on a remote object leads to a remote execution of the method
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let sieve =

{ m =>

meth(s, n)

print(n);

let s0 = clone(s);
s.m := meth(s1,n1)

if (n1 % n) is 0 then ok
else s0.m(n1)

end
end;

end};

print the primes <100
for i=2 to 100 do sieve.m(i) end;

Fig. 2.15. Prime number sieve in Obliq

but this execution is performed by the original thread (or more precisely the
original thread is blocked). Thus the parallelism is only based on threads, and
is independent of the location of the objects performing operations.

We present in Table 2.21 an untyped syntax of Øjeblik, see [123] for the
detailed semantics of Øjeblik.

a, b ∈ L ::= s, x, y variable

| [mj = ς(si, x̃j)ai]
i∈1..n object definition

| a.mi〈b̃〉 method invocation
| a.li↼↽ς(s, x̃)b method update
| a.clone superficial copy
| a.alias〈b〉 object aliasing
| a.surrogate object surrogation
| a.ping object identity
| let x = a in b let
| fork〈a〉 thread creation
| join〈a〉 thread destruction

Table 2.21. The syntax of Øjeblik

In Øjeblik the notion of argument of a method is introduced: a method
has two formal parameters, one is the object itself (self/this/...), the other
is a function parameter. Such an extra argument is only necessary in the
context of remote method calls. Indeed, in a local context, a method call
can return a function (e.g., a λ-term) that will be applied to the argument,
whereas in the case of remote method invocations, the execution of the method
is performed on the distant object. In Obliq and in most of the distributed



2.3 Concurrent Object Calculi and Languages 51

calculi the place where a method is executed has a strong influence on its
behavior. For example, in a concurrent object calculus like Obliq, it can be
useful to protect the state of the object from outside modifications (protected
keyword explained below). For such protected objects, returning a function
and performing operations “inside” the object2 are not equivalent because
only the later solution can modify the state of the invoked object (without
losing coherence of the objects or introducing locks). We will see in Part II
that in ASP, the argument of methods will also be used as it is deep copied
in order to preserve a given topology of links between objects.

In Obliq, the interferences between threads can be limited by serialized
objects: if an object is serialized, then, at any time, only one thread is inside
this object. In other words, a second thread entering an object is blocked until
the first one has finished. Serialization may be guaranteed with a mutex. An
operation is self-inflicted if it addresses the current self. Authorizing reentrant
mutexes allows self-inflicted operations to be performed for serialized objects.
This allows recursion but not mutual recursion (no call-back).

An Obliq object can be protected , as in [122, 123]: “based on self infliction,
objects are protected against external modification.” That means that for the
protected objects, only self-inflicted update cloning and aliasing are allowed.
In Øjeblik every object is protected and serialized.

Migration

In Obliq and Øjeblik migration is the composition of cloning and aliasing:

surrogate = ς(s)s.alias〈s.clone〉

This composition is deeply studied in Øjeblik, see for example [123].
In [123], Nestmann et al. present different semantics for forwarding and

updating. The effect of authorizing (or not) some operations to pass (or not)
through the forwarders is studied.

Table 2.22 summarizes the fundamental characteristics of Obliq and Øje-
blik. Note that synchronization comes from two aspects: thread destruction
and serialization.

The complexity of object interactions that occurs in Obliq and Øjeblik (se-
rialization, self-infliction, protection) is typical of a language without object
activity. The orthogonality of activities and objects lead to complex interac-
tions.

2.3.3 The πoβλ Language

Inspired by POOL [14, 15] Jones designed a concurrent object-oriented cal-
culus named πoβλ [95, 96, 94, 97]. πoβλ can be considered as a rather syn-
chronous language where communications are synchronous and asynchrony

2 Or more precisely, inside a thread belonging to the object invoked.
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Aspects Values:

Activity Process
Sharing Yes

Communication Base RPC
Communication Passing Generalized reference

Copy of activity (mobility) as cloning+aliasing
Communication Timing Synchronous
Synchronization Control

Object RMI Yes
Object Activity No
Wait-by-necessity No

Table 2.22. Aspects of Obliq and Øjeblik

only comes from the possibility to return a result before the end of execution
of a method, thus activating two objects at the same time. All references to ob-
jects are generalized but objects are protected against external modification;
consequently references are shared but not internal states.

The highly synchronous aspect of πoβλ can be summarized by the follow-
ing facts:

� Only one method of a given object can be active at any time. Using the
Obliq vocabulary, one could say that every object is serialized.

� As in Obliq, the calling method is blocked until a result is returned by the
called object.

In practice every object is active if it is evaluating a method, waiting if it is
waiting for the result of a method call, or quiescent if it has no method cur-
rently evaluated. An object only becomes active if it is quiescent and receives
a method call or if it is waiting and receives the result of the invoked method.

There is no direct notion of thread in πoβλ. Instead, parallelism comes
from two facts:

� A function can return a value before the end of its execution. In that
case, the calling method obtains the result and can continue its execution
while the called function terminates its computation (which will have no
consequence on the returned value).

� A function can delegate the task of returning a value to another object by
using the yield or commit or delegate3 primitive. In that case, this object
is no longer blocked and the result is directly returned from the last object
to the first caller.

These features will have to be compared with automatic and transparent
updates of futures in ASP.

Figure 2.16 shows an example of a πoβλ binary tree.

3 The yield primitive of [95, 96] is called commit in [110] and delegate in [97].
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class T0

var K:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))

if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))

else if X=K then V:=W

else if X<K then L!Insert(X,W)

else R!Insert(X,W);

return

method Search(X:NAT):ref(A)

if K=nil then return nil

else if X=K then return V

else if X<K then return L!Search(X)

else return R!Search(X)

Fig. 2.16. Binary tree in (a language inspired by) πoβλ [110]

A sufficient condition is given for increasing the concurrency of πoβλ pro-
grams without losing confluence, this condition is based on a program trans-
formation. The principle is that an operation can be safely exchanged with
a return statement, provided the operation does not interfere with the result
to be returned. The interference can concern both dataflow aspects – the op-
eration should not affect the result – and control flow ones – the operation
should terminate and cannot invoke methods on public objects (because such
calls could interfere with calls performed by the caller object which should
occur later).

Under this condition, one can return a result from a method before the end
of its execution; then the execution of the method continues in parallel with the
caller thread. This sufficient condition is expressed by an equivalence between
original and transformed program. πoβλ can be translated to (dialects of) the
π-calculus (e.g., [94]). From such a translation, Sangiorgi [142] and Liu and
Walker [110, 111] proved the correctness of transformations on πoβλ described
in [97].

An operational semantics of πoβλ is defined in [97]; this definition seems
to be the most adapted to the aspects considered in this book.

Figure 2.17 shows an example with the result of such a transformation
applied to the program of Fig. 2.16. Consequently, these two programs behave
identically.

There is an equivalent version of the calculus (defining, for example, the
sieve of Eratosthenes), with a very different syntax in [95].

Table 2.23 summarizes the fundamental characteristics of πoβλ. As for
ABCL, all objects are active (uniform), but synchronous communications cre-
ate awaiting activities, and necessitate a quiescent destination object. Conse-
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class T0

var K:NAT, V:ref(A), L:ref(T), R:ref(T)

method Insert(X:NAT, W:ref(A))

return ;

if K=nil then (K:=X ; V:=W ; L:=new(T) ; R:=new(T))

else if X=K then V:=W

else if X<K then L!Insert(X,W)

else R!Insert(X,W)

method Search(X:NAT):ref(A)

if K=nil then return nil

else if X=K then return V

else if X<K then commit L!Search(X)

else commit R!Search(X)

Fig. 2.17. πoβλ parallel binary tree, equivalent to Fig. 2.16 [110]

quently, πoβλ active objects are strongly synchronous. Communication tim-
ing is synchronous with early return which is in between “Synchronous” and
“Asynchronous FIFO preserving.”

Aspects Values:

Activity Active object
Sharing No

Communication Base RPC
Communication Passing Generalized reference
Communication Timing Synchronous with early return
Synchronization Control

Object RMI Yes
Object Activity Yes, all objects (uniform)
Wait-by-necessity No

Table 2.23. Aspects of πoβλ

Note that another view of πoβλ could consist in considering activities
based on threads which would change the above classification and make it
more similar to the one of Øjeblik. Such a classification would be closer to
the semantics of πoβλ based on translation into the π-calculus but does not
correspond to the original semantics given by Jones.

2.3.4 Gordon and Hankin Concurrent Calculus: concς-calculus

concς-calculus is an archetype of a model where threads are orthogonal to
objects. Threads are asynchronous between them, but method calls within
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a thread are synchronous. This is highlighted by the fact that threads and
objects coexist in every term of concς-calculus.

Results:
u, v ∈ L ::= x variable

| p name
Denotations:

d ::= [mj = ς(xi)ai]
i∈1..n object

Terms:
a, b ∈ L ::= u result

| p 7→ d denomination
|u.mi method invocation
|u.li↼↽ς(x)b method update
| clone(u) superficial copy
| let x = a in b let
| a � b parallel composition
| (νp)a restriction

Table 2.24. The syntax of concς-calculus [78]

Gordon and Hankin [78] proposed a concurrent object calculus: a parallel
composition � is added to the ς-calculus. Every object has a name: there is a
denomination operator. The syntax of concς-calculus is given in Table 2.24
In such a calculus, a method is executed by the thread that has invoked
it. Moreover, objects need to be declared as separate processes that do not
perform computation. As a consequence, the notions of object and of executing
threads are clearly separate (one could define objects and threads in different
spaces).

Moreover a type system is necessary to distinguish terms from expressions
as a denominated object can only be a process, but an expression can either
be a top-level process (thread) or be included inside another expression. In
other words, a denomination (p 7→ d) cannot be used as an expression, it
should only appear on the left side of a parallel composition (a � b).

Note that an additional synchronization mechanism has to be added to
the calculus (via mutexes).

Jeffrey [93] introduced a modified version of Gordon and Hankin’s concur-
rent object calculus, and added the notion of location in order to make this
calculus distributed.

Table 2.25 summarizes the fundamental characteristics of Gordon and
Hankin calculus.
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Aspects Values:

Activity Process
Sharing Yes

Communication Base RPC
Communication Passing Generalized reference
Communication Timing Synchronous
Synchronization Control

Object RMI Yes
Object Activity No
Wait-by-necessity No

Table 2.25. Aspects of concς-calculus

2.4 Synthesis and Classification

This chapter has reviewed some classical concurrent calculi and languages. We
tried to organize a rich set of intertwined languages into a few basic aspects.
Table 2.26 summarizes the main aspects of a few calculi and languages.

Among the languages discussed above, we identified three featuring mo-
bility: LHOπ, Ambients, Obliq, and Øjeblik. Note that Silvano Dal Zilio [163]
uses a notion of mobile processes different from ours. He classifies mobile
processes into those featuring a mobility of names which are called “labile
processes,” and processes with a notion of explicit movement and explicit
locations like Ambients calculus, called “motile processes.” Such a classifica-
tion explains why the standard π is often credited with capturing mobility,
which in fact is only the mobility of names (lability). From this point of view,
π-calculus is labile, while Ambients are motile.

The purpose of our study is to examine the impact of different models
on the programming paradigm, and especially the methodology to deal with
concurrency. From this point of view, Ambients calculus and π-calculus are
not very much apart; they both use expression evaluation and channels as
fundamental concepts. With respect to locations, we will first fully abstract
them away in the core calculus. Then, we will consider true mobility, “motile
processes,” using the following two-step approach. First, activity identities are
considered to be locations; this is consistent with the fact that an identity is
directly used to communicate, to find, another activity. Second, a mobility is
captured with the deep copy of an activity, and its incarnation with a new
identity. This view is rather in accordance with an effective implementation of
process mobility. Changing identity/location upon mobility allows us to take
into account another practical aspect of mobile processes: localization strategy.
Finally, that approach makes it possible to study the impact of mobility on
formal semantics, convergence, and determinism (see Chap. 12).

Determinism being an important focus, let us point out the few languages
with some convergence or deterministic properties: namely, π-calculus linear



2.4 Synthesis and Classification 57

channels, Process Networks. π-calculus is by essence non-determinate, but
some programs can be identified as deterministic based on the linear nature
of all their channels. On the contrary, Process Networks offer a framework
where the programming model enforces determinism; a Process Network pro-
gram cannot be non-deterministic. It is generally acknowledged that not all
concurrent applications must be deterministic; indeed there are some well-
known good non-deterministic ones. So the Process Networks approach is
probably too dogmatic to be practical. ASP, also featuring determinism, of-
fers a solution somehow in between π-calculus linear channels and Process
Networks. There is some part of the ASP programming model that guaran-
tees determinism (e.g., out of order future updates are still determinate), while
fully deterministic programs will require extra properties. A specific chapter
will identify “non confluent features” (Chap. 11, page 143).

In the following parts of this book, the ASP calculus will be presented,
both informally and formally. Chapter 21, page 245, will further compare a
posteriori most of the languages and calculi presented here with ASP.



Functional Channel Based Object

Languages ASP Actors MultiLisp π-calculus Process πoβλ Obliq
Aspects Networks Øjeblik

Activity Active object Actor Exp. Exp. Process Active object Process

Sharing No No Yes No No No Yes

Communication RPC Channel No com. Channel Channel RPC RPC
Base

Communication GR:activities+futures GR No com. GR GR only in GR GR
Passing Deep copy of objects reconfiguration Copy of Activity

Copy of activities Copy (mobility as
(mobility) cloning+aliasing)

Communication Asynchronous Asynchronous No com. Synchronous Asynchronous Synchronous Synchronous
Timing with rendezvous (fairness) FIFO preserving with early

return

Synchronization Blocking service Filtering Future Control Dataflow Control Control
Future Patterns Blocking service

Object RMI Yes No No No No Yes Yes
Object Activity Yes, non-uniform Yes, uniform No No No Yes, uniform No
Wait-by-necessity Yes No No No No No No

Exp.= Expression evaluation No com.= No communication GR = Generalized Reference

Table 2.26. Summary of a few calculi and languages


