
Recent developments and
improvements of the CADP toolbox

Frédéric Lang

INRIA Rhône-Alpes / VASY

http://www.inrialpes.fr/vasy

VASY 2

Concurrent asynchronous systems

• several processes / tasks / activities / agents
• that execute in parallel
• at different speeds (no central clock)
• no need for a central, shared memory
• with unspecified communication delays / latencies

P1

P2

P3

P4 P5

VASY 3

Origins of CADP
• Work initiated in 1986

• Latest stable version: CADP 2006 "Edinburgh"

• Developed and maintained by the VASY team of
INRIA Grenoble

• Includes contributions from:

– Holger Hermanns (performance evaluation tools)

– INRIA Rennes ("tgv" tool)

– Verimag ("aldebaran.old" tool)

VASY 4

Key concepts behind CADP
•CADP takes roots in concurrency theory
•Process algebra

– Modular value-passing languages
– Equivalences (Bisimulation)
– Compositionality

• Explicit-state verification
– As opposed to symbolic methods (BDDs, etc.)
– Action-based models (Labelled Transition Systems)
– Mu-calculus, temporal logics
– Model checking

VASY 5

Main features of CADP
• Formal description using process algebras (LOTOS)
• C code generation, rapid prototyping
• Step by step simulation, random execution
• Enumerative ("explicit-state") verification:

– exhaustive
– partial
– on the fly
– compositional
– parallel/distributed using clusters

• Various verification techniques:
– visual checking (graph display)
– model checking (modal mu-calculus)
– equivalence checking (bisimulations)

• Performance evaluation
• Test generation

VASY 6

CADP acronym change

•Formerly (only 2 tools in 1989):

CAESAR/ALDEBARAN Development Package

• Now (42 tools, 17 software components):

Construction and Analysis of Distributed Processes

VASY 7

Main applications of CADP

• Industrial case-studies
– hardware, software, telecom, embeded systems…
– formal specification of critical systems and protocols
– simulation, rapid prototyping, verification, testing

• Research
– analysis of new systems/protocols
– experimentation of new verification/testing algorithms
– implementation of new modelling languages

• Education
– concurrency, process algebras, bisimulations, model

checking
– robust tools for lab exercises and student projects

General enhancements

VASY 9

Computing platforms
• Support of recent C compilers:

– Gcc 3.*, Gcc 4.*
– Sun Studio 11
– Intel ICC 9.*

• Support of recent Linux distributions:
– Suse
– Fedora Core

• Support of 64-bits processors (AMD, Intel Itanium,
Sparc)

• Better support of Windows (2000, XP, Vista)
• Support of Mac OS X (PowerPC since 10.2 and Intel

since 10.4)

VASY 10

Installation & support

• Enhanced installation tool (Installator)

• Enhanced self-checking tool (Tst)

• Enhanced licensing system:
– multiple license files are allowed
– automatic e-mails warnings before license expiration

Enhancements to LOTOS tools

VASY 12

The CAESAR.ADT tool
• One major improvement: data type iterators
• CAESAR.ADT 5.2 generates iterators for every

finite type, including union types

• Finiteness verification for types that need an
iterator

• Introduction of "new-style" iterators
• Backward compatibility with "old-style" iterators
• Support for hand-written iterators (old- and new-

style)

VASY 13

The CAESAR.BDD tool
•Reachability analysis for hierarchical Petri

nets

• Based on the BDD package CUDD (F. Somenzi)

• Currently, two uses:
– Improves efficiency of CAESAR's optimization E7

(elimination of dead transitions)
– Determines information about concurrent

processes required for static analysis

VASY 14

The CAESAR tool (1)
•Significant performance improvements:

– reduced memory usage
– maximal number of states increased from 2^24

to 2^32
– support for label strings of arbitrary length
– higher speed of the generated C code

•State space reduction using static analysis
– local and global data flow analysis
– resetting of locally dead variables
– gains: several orders of magnitude

VASY 15

The CAESAR tool (2)
• Extension of the EXEC/CAESAR framework that

connects LOTOS specifications to the "real-world"
• Feedback obtained after intensive use by Bull of

EXEC/CAESAR (connection between LOTOS and
CADENCE's Verilog simulator)

• Extended API:
– new primitives for restarting the system
– new primitives for coverage measurement
– new primitives for logging events

• Automatic generation of "gate functions"
(including overloaded gates)

Tools for on-the-fly verification

VASY 17

The OPEN/CAESAR libraries
• Two new libraries :

– CAESAR_AREA_1: handling of memory chunks
– CAESAR_MASK_1: hiding/renaming labels on-the-fly

• Improved hash functions in CAESAR_HASH library

• Many enhancements in CAESAR_TABLE_1
– extended storage capacity
– reduced memory usage
– improved statistics display

VASY 18

The CAESAR_SOLVE library

• A generic solver for Boolean Equation Systems
• Built on top of Open/Caesar
• Generic encoding for Boolean Equations Systems of

alternation 1, represented as boolean graphs
• Five algorithms for solving Boolean Equation Systems:

– a general DFS algorithm
– a general BFS algorithm
– two memory-efficient DFS algorithms optimized for acyclic and

conjunctive/disjunctive Boolean graphs
– an optimized BFS algorithm dedicated to confluence

• Linear complexity in the size of the boolean graph
• Automatic diagnostic generation (fragments of LTSs)

– Examples
– Counter-examples

VASY 19

The EVALUATOR 3.5 tool
• A model checker for alternation-free µ-calculus

extended with regular expressions over labels and
sequences of actions

• The model checking problem is translated into the
resolution of a Boolean Equation System (built on-
the-fly)

• Entirely rewritten to use CAESAR_SOLVE_1
• Replaces the former model checker EVALUATOR

3.0 (CADP 2001) and its dedicated solver algorithm
• 3-10 times better in time and memory than

Evaluator 3.0

VASY 20

The BISIMULATOR tool
• BISIMULATOR: A tool for checking equivalence on-

the-fly
• Inputs:

– an LTS S1 given implicitly (OPEN/CAESAR)
– an LTS S2 given explicitly (BCG)
– an equivalence relation chosen in a list of 7
– a comparison mode (equal, contains, subset)

• Outputs:
– a boolean verdict (true or false)
– a diagnostic (DAG)

• Bisimulator is built on top of CAESAR_SOLVE_1

VASY 21

The REDUCTOR 5.0 tool
• REDUCTOR 5.0: A tool for on-the-fly

minimization modulo various relations
• Inputs:

– an LTS given implicitly (OPEN/CAESAR)
– a relation chosen in a list of 9
– optional: a list of hiding/renaming clauses for

labels

• Outputs:
– an explicit LTS (BCG)
– optional: the set of equivalence classes

VASY 22

What happened to ALDEBARAN?

• Since 1998, the ALDEBARAN tool is no longer
maintained by Verimag (25 bugs identified)

• Almost every feature of ALDEBARAN is also
available in other recent CADP tools

• Since CADP 2006:
– ALDEBARAN is replaced by a shell-script that

invokes Bisimulator, Reductor, Bcg_Info, etc.
– The old ALDEBARAN binary is kept for backward

compatibility

Tools for compositional
verification

VASY 24

Motivation
• Compositional generation: "divide and conquer" to

fight state explosion
– Partition the system into subsystems
– Minimize each subsystem modulo a strong or weak

bisimulation preserving the properties to verify
– Recombine the subsystems to get a system equivalent

to the initial one

• Refined compositional verification:
– Tightly-coupled processes constrain each other
– Separating them -> explosion
– "Interfaces" used to model synchronization constraints

VASY 25

The EXP.OPEN 2.0 tool
• Complete rewrite of Exp.Open 1.0 (Mounier)

• Compositional verification of communicating LTSs connected
using the operators of various languages

– CCS, CSP, LOTOS, E-LOTOS, and mCRL parallel composition

– Generalized hiding, renaming, and cut

– Synchronization vectors (MEC, FC2)

• Several functionalities

– On-the-fly state space exploration (using OPEN/CAESAR API)

– Partial order reductions of the state space

– Generation of FC2 networks and PEP Petri nets

– Refined interface generation

VASY 26

The PROJECTOR 3.0 tool
• Follows PROJECTOR 1.0 (Krimm, 1997) and 2.0 (Pace, 2003)
• On-the-fly behavioural abstraction using interfaces
• Inputs:

– an LTS S given on the fly
– an interface I (LTS understood as a set of traces)

• Outputs:
– an abstracted LTS obtained by removing all states and

transitions of S that cannot be reached while following
the traces in I

– optionally: validity predicates to check interface
correctness (to be checked by EXP.OPEN during later
compositions)

• 3 times better in time and memory than PROJECTOR 2.0 on
average (up to 36 times better in time on some examples)

VASY 27

The BCG_GRAPH tool
• BCG_GRAPH generates particular forms of

graphs useful to compositional verification

1. Chaos automata over a set of labels L
2. FIFO buffers of length N over a set of

labels L
3. Bag automata of length N over a set a

labels L

VASY 28

The SVL tool
• SVL: script language for compositional verification
• Main enhancements since 2001:

– Support for the new on-the-fly tools (Bisimulator,
Reductor, etc.)

– Support for EXP.OPEN 2.0, Projector 3.0, Bcg_Graph
– Support of partial order reductions

• Other enhancements:
– Improved error and warning messages
– Improved management of intermediate files
– Support for script parameters, shell variables, lists of

labels

Tools for distributed verification

VASY 30

Motivation
• Verification on a single computer (PC or

workstation) suffers from limitations:
– memory size (3-4 Gbytes max. on 32-bits)
– CPU time

• Idea:
– using several machines (network of

workstations, clusters of PCs)
– distributed algorithms

• Tool support
– Distributor: distributed state space generator
– Bcg_Merge: merger of distributed state spaces

VASY 31

The DISTRIBUTOR tool
• distributed state space generation using a cluster or

a grid
• allows tau-compression and tau-confluence

reductions preserving branching bisimulation

program to
be verified

state space
generator

(on 1 machine)

labelled
transition

system

state space
generator

(on 1 machine)

state space
generator

(on 1 machine)

state
space

fragment

state
space

fragment

state
space

fragment

VASY 32

The BCG_MERGE tool
• merges a distributed state space produced by

DISTRIBUTOR into a labelled transition system

program to
be verified

state space
generator

(on 1 machine)

labelled
transition

system

state space
generator

(on 1 machine)

state space
generator

(on 1 machine)

state
space

fragment

state
space

fragment

state
space

fragment

Tools for performance evaluation

VASY 34

Motivation

• Using the same models for
– functional verification
– performance evaluation

• 4 tools dedicated to performance evaluation:
– Bcg_Min
– Bcg_Steady
– Bcg_Transient
– Determinator

VASY 35

The BCG_MIN tool

• In addition to standard LTSs, Bcg_Min can also
minimize Markov models:
– probabilistic LTSs "prob p" transitions
– stochastic LTSs "rate λ" transitions
– mixed models "label ; prob p" or

"label ; rate λ" transitions

• For such models, bisimulation is connected to
the concept of lumpability

VASY 36

The BCG_STEADY tool
• Numerical solver for Markov chains
• Steady state analysis (equilibrium)
• Input:

– Markov chain (BCG graph with "action; rate r" labels)
– no deadlock allowed

• Output:
– steady-state probabilities and throughputs on the long run
– numerical data usable by Excel, Gnuplot…

• Method:
– BCG graph converted into a sparse matrix
– computation of a probabilistic vector solution
– iterative algorithm using Gauss-Seidel [Stewart94]

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+−= ∑ ∑

< >

++

ij ij
ji

k
jji

k
j

ii

k
i aa

a ,
)(

,
)1(

,

)1(1 πππ

VASY 37

The BCG_TRANSIENT tool
• Numerical solver for Markov chains
• Transient analysis
• Inputs:

– BCG graph with "action; rate r" labels
– deadlocks permitted
– list of time instants

• Outputs:
– transient probabilities and throughputs at the time instants
– numerical data usable by Excel, Gnuplot…

• Method:
– BCG graph converted into a sparse matrix
– uniformisation method to compute Poisson probabilities
– Fox-Glynn algorithm [Stewart94]

t
ss

k

kn

k

n
etwithkntnntt

ss

ss
λλψπλψπλψπ

ε
−

+==

=⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
+= ∑∑)0;()(ˆ);()(ˆ);()(~

10 Ν∈
+

=+ n
n

tntntand ,
1

);()1;(λλψλψ

VASY 38

The DETERMINATOR tool

• Extracts a Markov chain from a stochastic LTS
• Checks a sufficient condition for determinism

("well-formed" Markov chain)
• Works on-the-fly (the stochastic LTS is given

implicitly)
• Speeds up performance computations
• Used in two case-studies:

– Life cycle analysis for the gyroscopes of Hubble space
telescope

– Performance evaluation for the SCSI-2 bus arbitration
protocol

Tools for testing

VASY 40

The SEQ.OPEN tool
• Trace-based verification of industrial systems

– Black-box assumption: only I/O events available
– View traces as implicit LTSs

• Generic encoding of execution traces
– Execution monitoring event traces (logs)
– Store trace files on disk
– Text files using the SEQUENCE format of CADP (one event per

line)
• Support for on-the-fly trace exploration

– SEQ.OPEN tool: connection from SEQUENCE to OPEN/CAESAR
API

– Memory reduction using disk cache techniques
• Applications : Bull's Multiprocessor Systems

– Random simulation large traces (1,000,000 events)
– Coverage analysis (traces w.r.t. specification)

Conclusion

VASY 42

Conclusion
• A verification toolbox for asynchronous systems
• A modular, extensible architecture (APIs)
• Eight platforms supported

– Five 32-bits platforms and three 64-bits platforms
• International dissemination

– license agreements signed with 407 organizations
– in 2008: licenses granted to 562 machines

• Many applications
– 104 case-studies accomplished using CADP
– 32 research tools connected to CADP
– 17 university lectures based on CADP

VASY 43

More information…

http://www.inrialpes.fr/vasy/cadp
and

http://cadp.forumotion.com

