
December 3rd, 2008 SAFA

TimeSquareTimeSquare ::
A A multiformmultiform time simulation time simulation environmentenvironment

C. André, B. Ferrero, F. Mallet
AOSTE - I3S/Inria

Université de Nice Sophia Antipolis
INRIA Sophia Antipolis Méditerranée

December 3rd, 2008 SAFA 2

OutlineOutline

• MARTE Time model
• CCSL
• TimeSquare
• Examples

December 3rd, 2008 SAFA 3

MARTE motivationMARTE motivation

• In the real world, SW and RTE designers
– Use UML to draw graphs, vertices and edges, with fancy

adornments
– Perform model transformations to their proprietary language that

makes its own assumptions and give its own semantics
� Models are not merged but only stored in the same bundle

• MARTE defines a common ground (and semantics?) for
building RTE models with UML
– The MARTE Time model relies on CCSL to define interactions

among clocks (processes, actors, …)
– MARTE should be extended for domain-specific purposes

Where to put the semantics itself ? In the OMG specification ?

December 3rd, 2008 SAFA 4

Time model Time model -- ClocksClocks

• Any event (start/end of actions; send/receive of
messages; transition being fired; …) is a Clock
– When the distance between two successive occurrences of the event is

meaningful (like in Physical time) => Chronometric clocks
– Otherwise => Logical clocks => Multiform time

• More formally, a clock is a five-tuple 〈I, ≺, D, λ, u〉
– I is a set of instants (possibly infinite);
– ≺ is a strict quasi-order relation on I;
– D is as set of labels;
– λ : I→D is a labeling function ;

– u is the unit.

• Clocks can be
– discrete (I is a discrete set) - idx : I→ℕ*, idx is order-preserving

– or dense.
Today, focus on discrete logical clocks

December 3rd, 2008 SAFA 5

Time model Time model –– Time structureTime structure

• Several interdependent clocks are gathered within a
time structure

• A time structure is a pair 〈C, �〉
– C is a finite set of clocks;
– � is a partial order relation on Uc∈C Ic

• From � we derive four instant relations:
– Coincidence: ≡ ≜ � ∩ �
– Strict precedence: ≺ ≜ � \ ≡
– Independence: ‖ ≜ � ∪ �
– Exclusion: # ≜ ≺ ∪ ≻

December 3rd, 2008 SAFA 6

Time model Time model –– Clock relationsClock relations

• Clock relations define (infinitely) many instant relations

• Four categories of clock relations
– Coincidence-based (synchronous)

• isSubClock, discretizedBy, isPeriodicOn , filteredBy …

– Precedence-based (asynchronous)
• isFasterThan (precedes), alternatesWith …

– Mixed (asynchronous => synchronous)
• sampledOn , delayedFor, timer, inf, sup …

– Quantitative (related to chronometric clocks)
• hasStability, hasOffset, hasJitter, hasDrift …

• Clock Constraint Specification Language = concrete syntax
– Non-normative annex of MARTE

December 3rd, 2008 SAFA 7

TimeSquareTimeSquare purposepurpose

• Modeling and Analysis of timed systems

• Fully supports MARTE Time model
– UML Profile for Modeling and Analysis of RTE systems
– Logical and multiform time

• Clock Constraint Specification Language
– Formal Timed extension to OCL

• Detects requirement inconsistencies
• Exhibits one valid behavior (simulation)

December 3rd, 2008 SAFA 8

TimeSquareTimeSquare functionalityfunctionality

1. Interactive clock-related specifications
2. Clock constraint checking
3. Generation of sequences of steps
4. Displaying & exploring waveforms

VCD-compliant

December 3rd, 2008 SAFA 9

From constraints to behavior (1/2)From constraints to behavior (1/2)

• At each simulation step, three phases:
1. For each constraint determine the set of implied

“Boolean equations”

2. When all constraints are analyzed, determine the
set of enabled clocks (E)

3. Select the set of clocks to fire (F)

Phase 3 is not necessarily deterministic
=> simulation policy (random, min, max/asap, …)

C

December 3rd, 2008 SAFA 10

From constraints to behavior (2/2)From constraints to behavior (2/2)
C S

Solver: Determine Enabled clocks

E

Select TBs to fire

F

Policy

declarative

Automated

transformation

configuration

:c →C N

behavior

SObjective: build sequences of steps that respect

Solution: SOS for a Kernel of CCSL.

User’s viewpoint: standard CCSL library provided

+ facility for user’s defined constraints + stochastic parameters

', , 'Fc c→S S

December 3rd, 2008 SAFA 11

CCSL kernel (1/2)CCSL kernel (1/2)

0
// forcing

// inhibition

// waiting next nth

// (strict) sampling

// non-strict sampling

// upto

:: !

!

^

1

| 0

|

|

|

 |

t

t t

t n

t t

t t

t t

τ

•

=

o

�

�

�

()

1
// simple time base reference

// concatenation

// union = coarsest finer Sup

// intersection

// d

*

:

|

:

|

|

| ,

t

t t

t t

t t

t t

τ

σ

⊆

•
+

=

⇝ efer

()
()

2
// sup = fastest slower Sup

// inf = slowest faster Inf

::

|

t t

t t

τ
∧

= ∨ �

�

Clock & Instant Expressions

th
// instant of

// last instant of a finite time base

::

| @ end

@ n tt n

t

ι =

0 1 2
// simple clock expressions

// conditional clock expressionif then el

 se

:: | |

| b

τ τ τ τ
τ τ

=

Terminating CExpr Non-terminating CExpr, c-independent

Non-terminating CExpr, c-dependent IExpr

CExpr

December 3rd, 2008 SAFA 12

CCSL kernel (2/2)CCSL kernel (2/2)

()1
// basic constraints on clocks, cnt-independent:: | | # t tρ = ⊂ ⊸

()
()

2
// basic constraints on clocks, cnt-dependent

// basic constraints on instants

:: | |

| #| | | |

t tρ

ι ι

= =

≡

p

p

�

�⊸

Definition CRel

Basic CExpr, c-independent

Clock Constraint

// clock standard definition

// clock recursive definition

 |

:

:d t

t t t

ρ τ
•

= �

≗

Basic CExpr, c-dependent

1 2

// constraint conjunction

// simple relation

// conditional relation

|

if

::

| | |

|

d

b

γ γ γ
ρ ρ ρ
ρ

=

Clock & Instant Relations

December 3rd, 2008 SAFA 13

Example of semantics ruleExample of semantics rule

()
()1

1

1

(next)

, ,

1

 , ite , ,^ ,

t c b a

n

c bt t n t t t a

β
β

=
∧ =≅ ¬
�

⊢

⊢

Boolean equations
implied by t1 under c

Boolean equations
implied by t under c

behaves like

Structure →
Boolean Eqn System
⇒ E

1

1 (RWnext 1) 0 ^1
t F

t t t
∈ ≅→≅

()
1

1

1 2

1 2
(RWnext 2)

^ 1

1

^

t F

t F
t t

n

n t n

t

t

t
∈

∈≅ ≅ −
> →
→ Conditional

rewriting rules

F ⇒ Rewritten Structure

1

December 3rd, 2008 SAFA 14

ImplementationImplementation

• Plug-in developed with Ganymede Eclipse
Modeling Tools

• CCSL parser: ANTLR 2.7

• Solver: JavaBDD
• Waveforms: VCD compliant (IEEE Std1364)

• Available at:
http://www-sop.inria.fr/aoste/dev/time_square/

December 3rd, 2008 SAFA 15

Example 1: Example 1: EasterEaster

December 3rd, 2008 SAFA 16

Example 2: Example 2: AADLAADL

t1 t2 t3

50 Hz 25 Hz

c_100 = IdealClk discretizedBy 0.01

Visual representation ?

50 Hz 25 Hz

December 3rd, 2008 SAFA 17

Example 3: ABS and Example 3: ABS and EastEast--ADL2ADL2

Clocks associated with ports

Stochastic durations for
communications and
executions

December 3rd, 2008 SAFA 18

Example 3: ABS and Example 3: ABS and EastEast--ADL2ADL2

• Gives a formal semantics to East-ADL2
timing requirements
– Make the requirements executable

December 3rd, 2008 SAFA 19

Example 4: Example 4: Digital FilterDigital Filter (1/2)(1/2)

()_ 10 .1

/ _ _

/ _ _ / _

LINE LENGTH

Ready InWord

EndOfLine OutPixel

InWord OutPixe PIXELS PER WORD

WORDS PE

l

InWord OutPixelR LINE LINE LENGTH

ω−

≡

=

�

p

><

▼

December 3rd, 2008 SAFA 20

Example 4: Example 4: Digital FilterDigital Filter (2/2)(2/2)

{

()
()

()
()

()

3

3

8 2

8 2

9

Clock , , , ,

1

1.0

0 .1

1 .0

0 .1

0 .1

delayedFor 2 on

InPixel Pad EndOfWord FirstInstant

FirstInstant

InPixel

EndOfWord InPixe

Pixel

Pixel

Pixel

Pixe

sclk

InWord

EndOfLine

Ou

l

InPixel

Pad

InPi

l

PitPixel xel x

ω

ω

ω

ω

ω

=

=

=

=

=

=

=

▼

▼

▼

▼

▼

▼

}
sustain upto

FirstInstant EndOfWordReady

SReady Re

el

ady InWord

= +
=

WaitForWord

Splitter

WaitForWord

/ SReady

/ InPixel(bin2u(?InWord.b1))

/ InPixel(bin2u(?InWord.b3)),

EndOfWord,Ready

/ InPixel(bin2u(?InWord.b2))

WORDS_PER_LINE

EndOfWord /

/ Pad(0)

LATENCY tick /

EndOfLine

Feeder

 EndOfWord

InPixel

Pad

syncChart =

« timedBehavior » Feeder { on = sclk }

InWord /

InPixel(bin2u(?InWord.b0))

sustain {

 ?Pixel <= ?InPixel if InPixel,

 ?Pixel <= ?Pad if Pad and not InPixel

}

/ Ready

Glitch detected

