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MARTE motivationMARTE motivation

• In the real world, SW and RTE designers
– Use UML to draw graphs, vertices and edges, with fancy 

adornments
– Perform model transformations to their proprietary language that 

makes its own assumptions and give its own semantics
� Models are not merged but only stored in the same bundle

• MARTE defines a common ground (and semantics?) for 
building RTE models with UML
– The MARTE Time model relies on CCSL to define interactions 

among clocks (processes, actors, …)
– MARTE should be extended for domain-specific purposes

Where to put the semantics itself ? In the OMG specification ?
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Time model Time model -- ClocksClocks

• Any event (start/end of actions; send/receive of 
messages; transition being fired; …) is a Clock
– When the distance between two successive occurrences of the event is 

meaningful (like in Physical time) => Chronometric clocks
– Otherwise => Logical clocks => Multiform time

• More formally, a clock is a five-tuple 〈I, ≺, D, λ, u〉
– I is a set of instants (possibly infinite);
– ≺ is a strict quasi-order relation on I;
– D is as set of labels;
– λ : I→D is a labeling function ;

– u is the unit.

• Clocks can be 
– discrete (I is a discrete set) - idx : I→ℕ*, idx is order-preserving

– or dense.
Today, focus on discrete logical clocks
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Time model Time model –– Time structureTime structure

• Several interdependent clocks are gathered within a 
time structure

• A time structure is a pair 〈C, �〉
– C is a finite set of clocks;
– � is a partial order relation on Uc∈C Ic

• From � we derive four instant relations:
– Coincidence: ≡ ≜ � ∩ �
– Strict precedence: ≺ ≜ � \ ≡
– Independence: ‖ ≜ � ∪ �
– Exclusion: # ≜ ≺ ∪ ≻



December 3rd, 2008 SAFA 6

Time model Time model –– Clock relationsClock relations

• Clock relations define (infinitely) many instant relations

• Four categories of clock relations
– Coincidence-based (synchronous)

• isSubClock, discretizedBy, isPeriodicOn , filteredBy …

– Precedence-based (asynchronous)
• isFasterThan (precedes), alternatesWith …

– Mixed (asynchronous => synchronous)
• sampledOn , delayedFor, timer, inf, sup …

– Quantitative (related to chronometric clocks)
• hasStability, hasOffset, hasJitter, hasDrift …

• Clock Constraint Specification Language = concrete syntax
– Non-normative annex of MARTE
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TimeSquareTimeSquare purposepurpose

• Modeling and Analysis of timed systems

• Fully supports MARTE Time model 
– UML Profile for Modeling and Analysis of RTE systems
– Logical and multiform time

• Clock Constraint Specification Language
– Formal Timed extension to OCL

• Detects requirement inconsistencies
• Exhibits one valid behavior (simulation)
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TimeSquareTimeSquare functionalityfunctionality

1. Interactive clock-related specifications
2. Clock constraint checking
3. Generation of sequences of steps
4. Displaying & exploring waveforms

 

VCD-compliant 
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From constraints to behavior (1/2)From constraints to behavior (1/2)

• At each simulation step, three phases:
1. For each constraint determine the set of implied 

“Boolean equations”

2. When all constraints are analyzed, determine the 
set of enabled clocks (E)

3. Select the set of clocks to fire (F)

Phase 3 is not necessarily deterministic 
=> simulation policy (random, min, max/asap, …)

C
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From constraints to behavior (2/2)From constraints to behavior (2/2)
C S

Solver: Determine Enabled clocks

E

Select TBs to fire

F

Policy

declarative

Automated 

transformation

configuration

:c →C N

behavior

SObjective: build sequences of steps that respect 

Solution: SOS for a Kernel of CCSL.

User’s viewpoint: standard CCSL library provided

+ facility for user’s defined constraints + stochastic parameters

', , 'Fc c→S S
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CCSL kernel (1/2)CCSL kernel (1/2)

0
// forcing

// inhibition

// waiting next nth 

// (strict) sampling

// non-strict sampling

//  upto 
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CCSL kernel (2/2)CCSL kernel (2/2)

( )1
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// basic constraints on clocks, cnt-dependent

// basic constraints on instants

    

 

:: | |

|  #| | | |

t tρ

ι ι

= =

≡

p

p

�

�⊸

Definition CRel

Basic CExpr, c-independent

Clock Constraint

//  clock standard definition

//  clock recursive definition

                      

                |  

:

 

:d t

t t t

ρ τ
•

= �

≗

Basic CExpr, c-dependent

1 2

// constraint conjunction

//  simple relation

//  conditional relation

                        

              

                    

|

if   

::

| | |

|

d

b

γ γ γ
ρ ρ ρ
ρ

=

Clock & Instant Relations



December 3rd, 2008 SAFA 13

Example of semantics ruleExample of semantics rule
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ImplementationImplementation

• Plug-in developed with Ganymede Eclipse 
Modeling Tools

• CCSL parser: ANTLR 2.7

• Solver: JavaBDD
• Waveforms: VCD compliant (IEEE Std1364)

• Available at: 
http://www-sop.inria.fr/aoste/dev/time_square/
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Example 1: Example 1: EasterEaster
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Example 2: Example 2: AADLAADL

t1 t2 t3

50 Hz 25 Hz

c_100 = IdealClk discretizedBy 0.01

Visual representation ?

50 Hz 25 Hz
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Example 3: ABS and Example 3: ABS and EastEast--ADL2ADL2

Clocks associated with ports

Stochastic durations for 
communications and 
executions



December 3rd, 2008 SAFA 18

Example 3: ABS and Example 3: ABS and EastEast--ADL2ADL2

• Gives a formal semantics to East-ADL2 
timing requirements
– Make the requirements executable
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Example 4: Example 4: Digital FilterDigital Filter (1/2)(1/2)
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Example 4: Example 4: Digital FilterDigital Filter (2/2)(2/2)
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sustain upto

FirstInstant EndOfWordReady

SReady Re
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ady InWord
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WaitForWord

Splitter

WaitForWord

# / SReady

/ InPixel(bin2u(?InWord.b1))

/ InPixel(bin2u(?InWord.b3)), 

EndOfWord,Ready

/ InPixel(bin2u(?InWord.b2))

WORDS_PER_LINE 

EndOfWord /

/ Pad(0)

LATENCY tick / 

EndOfLine

Feeder

 EndOfWord

InPixel

Pad

syncChart =

« timedBehavior » Feeder { on = sclk }

InWord /

InPixel(bin2u(?InWord.b0))

sustain {

   ?Pixel <= ?InPixel if InPixel,

   ?Pixel <= ?Pad if Pad and not InPixel

}

/ Ready

Glitch detected


