

A Framework for the Formal Verification of Infinite Systems

Ludovic Apvrille, Sophie Coudert Institut TELECOM / TELECOM ParisTech

> Chan Leduc INRIALPES

06/03/2008

Outline

- Context and problematic
- LOTOS, DL
- LOTOS to DL translation
- Example
- Conclusion

Context and Problematic

The TURTLE Environment

Implemented in TTool, an open-source UML toolkit http://labsoc.comelec.enst.fr/turtle/ or simply type "UML TURTLE" under google

TELECON ParisTec

絮睛

LOTOS

- Formal Description Technique
- Based on process algebra
 - ⇒ Data part
 - → Process part
 - Variables, gates
 - |||, |[g0, .., gn]|, [], >>, [>
- Temporal extensions: RT-LOTOS
 - Delay, non deterministic delay, time-limited offer, time capture

Example TURTLE -> RT-LOTOS

RT-LOTOS

P[readPacket, forwardPacket](pdu) =

readPacket?pdu;

```
P[...] (pdu) ||| P1[...] (pdu)
```

endProc

P1[readPacket, forwardPacket](pdu) =

Delay(1,2) forwardPacket!pdu;
exit

endProc

Page 6 - 06/03/2008

(RT-)LOTOS: Formal Verification

Toolkits

- ⇒ For LOTOS: CADP (INRIA)
 - Based on Petri nets
 - Model-checking, reachability graph
- ⇒ For RT-LOTOS : *RTL* (LAAS-CNRS)
 - Construct a reachability graph
 - DTA (Dynamic Timed Automata)
- Current strong limitations
 - → Only "regular" LOTOS description
 - For example, no recursivity over parallel operator
 - Useful in many schemes: modeling a web server, etc.
 - ⇒ Time capture operator is not taken into account
 - Operator quite useful for modeling task schedulers
 - From TURTLE diagrams, very hard in code generators to avoid the two above mentioned schemes
 - ➡ Combinatory explosion

Page 7 - 06/03/2008

New Formal Verification Framework

- Idea: Rely on First Order Logics rather than on automata
 - Translate (RT-)LOTOS specifications into First Order Logic specifications
- And more precisely LOTOS to DL
 - ⇒ DL = Description Logic
 - ➡ Fragment of First Order Logic
 - ⇒ DL is decidable … but reduced expression power

LOTOS, DL

Main Principles

LOTOS: Current Hypothesis / Limitations

- Basic LOTOS
 - → No variable
 - ⇒ RT-LOTOS operators are not taken into account
- No infinite recursion over synchronization contexts
- Infinite generation of gates (infinite recursion with hide operator)
- Preemption is not taken into account

Page 11 - 06/03/2008

LOTOS

Gates

- Binary operator
 - |||, |[g0, .., gn]|, [], >>
- Termination processes

⇒ Stop, exit

Example

Producer / Consumer System (1)

 Note: this example cannot be formally verified using usual LOTOS-based verification schemes

• P [put, get] = put; ((get; stop) ||| P[put, get])

 We have proved that the number of put is greater or equal to the number of get

Producer / Consumer System (2)

Conclusions

Conclusions and Future Work

- New formal verification scheme
 - ⇒ Very promising
- Future work
 - Address limitations!
 - Some are weak (preemption)
 - Some are strong (variables, temporal operators)
 - Probably another more "powerful" FOL shall be used
 - But decidability issue
 - ⇒ Implementation of an inference engine

References

- C. Leduc and S. Coudert and L. Apvrille: Formal Verification of LOTOS Specifications Using Description Logics, Technical Report, Institut TELECOM / TELECOM ParisTech, number FR-0451
 - http://www.comelec.enst.fr/recherche/labsoc/projets/A MIGOS.en
- L. Apvrille, S. Coudert and C. Leduc , A Framework for the Formal Verification of infinite Systems, The 18th IEEE International Symposium on Software Reliability Engineering (ISSRE 2007), Trollhättan, Sweden, November 2007

