
A Formal Connection between Security
Properties and JML Annotations

Marieke Huisman
INRIA Sophia Antipolis

Everest Project

joint work with
Alejandro Tamalet

Radboud University, Nijmegen, Netherlands

Goal of work

● Security of applications crucial for trusted
devices

● Possible solution: enforce property at run-time
– Monitoring executions
– But how to recover from security violation?

● Ultimate goal: static verification of security
properties
– Properties need to be expressed in suitable

format

This work

● Focus of work: Java (like) sequential programs
● Encode security property as JML annotations
● Use of JML provides means for

– Run-time checking (jmlc)
– Static verification (ESC/Java, Mobius tool set)

● Algorithm & formal correctness proof
● Restrictions on properties: only safety properties

Outline

● Specifying monitors
● Translation of monitor into JML annotations
● Formalisation and correctness proof
● An unexpected subtlety with try-catch-finally
● Conclusions, related and future work

Security properties as automata

● High level view of properties
● Intuitive specifications
● Automaton specifies property of monitored class

Example: applet protocol
expressed as automaton

init; (start; stop)+; destroy

init

start

stop

start

destroy

Example due to
Cheon and Permendla

Applet protocol specified in JML

package java.applet

public class Applet {
 /*@ public static final ghost int
 @ PRISTINE = 1,
 @ INIT = 2,
 @ START = 3,
 @ STOP = 4,
 @ DESTROY = 5;
 @*/

//@ public ghost int state = PRISTINE;

//@ requires state == PRISTINE;
//@ ensures state == INIT;
public void init() {
 //@ set state = INIT;
 ...
}

//@ requires state == INIT || state == STOP;
//@ ensures state == START;
public void start() {
 //@ set state = START;
 ...
}

//@ requires state == START;
//@ ensures state == STOP;
public void stop() {
 //@ set state = STOP;
 ...
}

//@ requires state == STOP;
//@ ensures state == DESTROY;
public void destroy() {
 //@ set state = DESTROY;
 ...
}

...}

Multi-Variable Automata (MVA)

● Many interesting properties cannot be captured
by regular automata

● For more expressivity: variables needed
● Inspection of program variables
● Updates of monitor-only variables

Transitions

● Transitions of MVA contain event, guard and
actions

● Events can be entry or exit of methods
Distinction between normal exit and exceptional
exit

● Guards and actions may use automata variables
and fields of monitored class

● Actions can only update automaton variables

Example: Embedded transactions

Q1

Q2

bt, t<N → skip

bt, t:=t+1

bt, skip

Q3

ct, t>0 →
skip

ct, t:=t-1

ct, skip

bt = beginTransaction()
ct = commitTransaction()
at = abortTransaction()
entry
exit normal
exit exceptional

Property: At most N embedded transactions

t:=0

Automaton:
Monitored class: Transaction.java
Q = {Q1, Q2, Q3}
Σ = {bt, bt, bt, ct, ct, ct, at}
varsA = {(t, int, 0)}
varsP = {}

at, t >0 →
t:=t-1

Typical example properties

● Enforce order in which methods are called: life
cycle or object protocol

● Restrict the occurrence of a particular method
call: m() can be called at most once

● Control-flow restrictions: method m1() can not
or can only be called inside/after/before method
m2()

Characteristics of MVA

● Automaton must be deterministic
● Transition relation completed by adding error

state halted
● Add transitions to ensure halted is trap state
● No accepting states, i.e., no termination

Example: Completion of MVA

Q1

Q2

bt, t<N → skip

bt, t:=t+1

bt, skip

Q3

ct, t>0 →
skip

ct, t:=t-1

ct, skip

t:=0

at, t >0 →
t:=t-1

Abstract correctness property

P = program (possibly annotated)

A = monitoring automaton

|| = monitoring composition

≈ = equivalence relation

Assumptions:

P and A well-formed

P and A match

``P does not (implicitly or explicitly) catch JML exceptions''

P || A ≈ ann_program(P, A)

Annotation generation algorithm

● Focus on correctness, rather than on
efficiency of implementation

● Two step translation
– Intermediate format, with set-statements in

method specification
– Transform method specifications into inline

annotations

 Code transformations

● Code transformations are needed in second step
to model
– monitoring of exceptions
– methods with multiple returns

● Body should be enclosed in try-catch-finally
block

● If code transformations are not allowed,
automaton can only monitor method entry

Step 1 – 1: Add ghost variables

● New ghost variables declared to encode
automaton
– Control points (including halted): integer

constants, initialised to unique value
– Current control point (cp): integer

initialised to initial control point
– Automaton variables: type and initial value

as specified for the automaton
● Note: program variables can be ignored

Step 1 – 1: Example

/*@ public static final ghost int
 @ HALTED = 0,
 @ Q1 = 1,
 @ Q2 = 2,
 @ Q3 = 3;
 @*/

//@ public ghost int cp = Q1;

//@ public ghost int t = 0;

Step 1 – 2: Strengthen invariant

● Invariant is strengthened to assert that
current control point has not reached the
error state

//@ public invariant cp != halted;

Step 1 – 3: Annotate methods

//@ requires pre;
//@ ensures post;
m() {
 pre_set {
 /*@ annotations concerning
 m's entry @*/
 } body {
 m's body
 } post_set {
 /*@ annotations concerning
 m's normal exit @*/
 } exc_set {
 /*@ annotations concerning
 m's exceptional exit @*/
 }
}

m()

assert inv & pre;
pre_set;
assert !(cp = halted)

body;

!ex →
post_set;
assert post &
 inv;

ex →
exc_set;
assert inv;

Step 1 – 4: Translate events

● Pre_set, post_set and exc_set encode actions
of automaton

● Before entering body, check whether pre_set
not reached trap state

● Multiple transitions can be associated to a
single event – choice based on guard

● Special conditional ghost variable update
construct to model this choice

Step 1 – 4: Example at

/*@ if (cp == Q1) {
 @ if (t > 0) {
 @ set t = t – 1;
 @ set cp = Q1;
 @ } else {
 @ set cp = HALTED;
 @ } else if (cp == Q2) {
 @ set cp = HALTED;
 @ } else if (cp == Q3) {
 @ set cp = HALTED;
 @ } else { // cp == HALTED
 @ set cp = HALTED;
 @ }
 @*/

/*@ if (cp == Q1 && t > 0) {
 @ set t = t – 1;
 @ set cp = Q1;
 @ } else {
 @ set cp = HALTED;
 @ }
 @*/

Step 2 – 1: Refine if - 1

● The conditional ghost variable updates are
translated into a sequence of set annotations
using conditional expressions

if (c) {
 set x := a;
 set y := b;
}

set x := c ? a : x;
set y := c ? b : y;

Step 2 – 1: Refine if - 2

● Auxiliary ghost variables are used to ensure that
earlier updates do not affect later assignments
if (cp == Q1) {
 if (x >= 5) {
 set x = x-1;
 set cp = Q2;
 } if (x < 0) {
 set x = x+1;
 set cp = Q1;
 } else {
 set cp = HALTED;
 }
}

set contr = cp == Q1;
set guard = x >= 5;
set x = contr && guard? x-1 : x;
set cp = contr && guard ? Q2 : cp;
set guard = !guard && x < 0;
set x = contr && guard ? x+1 : x;
set cp = contr && guard ? Q1 : y;
set guard = !guard;
set cp = contr && guard? HALTED : cp;

Step 2 – 2: Inline method set
statements

m() {

 //@ ghost boolean ex;

 //@ pre_set;

 //@ assert cp != halted;

 try {

 body

 }

 catch (Exception e) {

 //@ exc_set;

 //@ set ex = true;

 throw e;

 } finally {

 //@ if (!ex) { post_set; }

 }

}

Example: translation of the
embedded transactions

public void beginTransaction() {

 //@ ghost boolean ex;

 //@ set cp = (cp == Q1 && t < N) ? Q2 : HALTED;
 //@ assert cp != HALTED;
 try {
 body

 } catch (Exception e) {

 //@ set cp = (cp == Q2) ? Q1 : HALTED;
 //@ set ex = true;

 } finally {

 //@ set t = (!ex && cp == Q2) ? t+1 : t;
 //@ set cp = (!ex && cp == Q2) ? Q1 : HALTED;

 }
}

An aside: the problem with Try-
Catch-Finally

try{ //@ requires inRange(arg);
 r := randomInt(); decrypt(key, arg){
 decrypt(key, r); ...
} }
finally{
 throw NullPointerException()
}

● Run-time assertion checking will never return
a JML Exception, but static checking will find
this specification violation

Advantages of having a
formalisation - 1

● Although the ideas are simple we found many
subtleties:
– assert at the end of the pre_set
– formulation of new invariant
– try-catch-finally needs special restrictions,

to avoid that JMLExceptions are ignored
– precise formulation of related states

predicate: under which conditions does the
program reach an exceptional state, when
is correspondence maintained

Advantages of having a
formalisation - 2

Makes all requirements explicit:
– no overlap between variable names of

automaton and monitored class
– evaluation of expressions in guards or

actions cannot have side effects or throw
exceptions

– strictness of conjunction
– injective function needed to map control

points to int

Related work

● FSM to annotations [Hubbers, Oostdijk, Poll]
● Temporal logic to annotations [Groslambert et

al.]
● Midlet Navigation Graphs to JML, graph

refinement [de Jong, Ravelo, Poll] Converting
Midlet Navigation Graphs into JML

● Method call sequences as annotations [Cheon,
Perumendla]

● Propagation of annotations [Pavlova et al.]

Implementations, but no formal proof

Conclusions

● Translation from monitors to annotations
● Correctness of transformation proven with

help of theorem prover
● Modular semantics
● Formalisation helped to reveal unexpected

problems (notably try-catch-finally)

Future work

● Formally prove correctness of second step
● Allow method parameters in monitor
● Generate preconditions and postconditions

(now inline annotations generated)
● Towards static proving of security properties

– Extend propagation algorithm of Mariela
Pavlova

– Formalise propagation algorithm in PVS
● Wider class of properties possible?
● Use for multi-threaded programs (under

certain restrictions)

