A Formal Connection between Security
Properties and JML Annotations

Marieke Huisman
INRIA Sophia Antipolis
Everest Project

joint work with
Alejandro Tamalet
Radboud University, Nijmegen, Netherlands

(® Mobius Z INRIA

IIIIIIIIIIIIIII

I Goal of work

* Security of applications crucial for trusted
I devices
* Possible solution: enforce property at run-time
— Monitoring executions
- But how to recover from security violation?
 Ultimate goal: static verification of security
properties
- Properties need to be expressed in suitable
format

This work

Focus of work: Java (like) sequential programs
Encode security property as

Use of JML provides means for

- Run-time checking (jmlc)

— Static verification (ESC/Java, Mobius tool set)
Algorithm & formal correctness proof
Restrictions on properties: only

Outline

Specifying monitors

Translation of monitor into JML annotations
Formalisation and correctness proof

An unexpected subtlety with try-catch-finally
Conclusions, related and future work

I Security properties as automata

* High level view of properties
* Intuitive specifications
* Automaton specifies property of monitored class

Example: applet protocol
expressed as automaton

O

init; (start; stop)+; destroy

Example due to
Cheon and Permendla

Applet protocol specified in JML

package java.applet / /@ requires state == INIT || state == STOP;
/ /@ ensures state == START;
public class Applet { public void start() {
/*@ public static final ghost int / /@ set state = START;
@ PRISTINE = 1,
@ INIT = 2, }
@ START = 3,
@ STOP =4, / /@ requires state == START;
@ DESTROY = 5; //@ ensures state == STOP;
@*/ public void stop() {
/ /@ set state = STOP;
/ /@ public ghost int state = PRISTINE;
}
/ /@ requires state == PRISTINE;
/ /@ ensures state == INIT; / /@ requires state == STOP;
public void init() { / /@ ensures state == DESTROY;
/ /@ set state = INIT; public void destroy() {
/ /@ set state = DESTROY;
}
}

Multi-Variable Automata (MVA)

Many interesting properties cannot be captured
oy regular automata

-Or more expressivity: variables needed
nspection of program variables

Updates of monitor-only variables

Transitions

Transitions of MVA contain event, guard and
actions

Events can be entry or exit of methods
Distinction between normal exit and exceptional
exit

Guards and actions may use automata variables
and fields of monitored class

Actions can only update automaton variables

Example: Embedded transactions

Property: At most N embedded transactions

_ bt = beginTransaction()
bt, t<N — skip ct = commitTransaction()
at = abortTransaction()
entry
exit normal
exit exceptional

Automaton:

Monitored class: Transaction.java
Q ={Q1, Q2, Q3}

2 = {bt, bt, bt, ct, ct, ct, at}

vars, = {(t, int, 0)}

varsp = {}

* Enforce order in which methods are called: life
I cycle or object protocol
* Restrict the occurrence of a particular method
call: m() can be called at most once
* Control-flow restrictions: method m1() can not
or can only be called inside/after/before method

m2()

Typical example properties

Characteristics of MVA

Automaton must be deterministic

Transition relation completed by adding error
state halted

Add transitions to ensure halted is trap state
No accepting states, I.e., no termination

Example: Completion of MVA

bt, t<N — skip

Abstract correctness property

P = program (possibly annotated)
A = monitoring automaton
|| = monitoring composition
~ = equivalence relation
Assumptions:

P and A well-formed

P and A match

P does not (implicitly or explicitly) catch JML exceptions"

P || A= ann_program(P, A)

I Annotation generation algorithm

* Focus on correctness, rather than on
I efficiency of implementation
* Two step translation
- Intermediate format, with set-statements in
method specification
- Transform method specifications into inline
annotations

I to model
— monitoring of exceptions
- methods with multiple returns

* Body should be enclosed in try-catch-finally
block

* |f code transformations are not allowed,
automaton can only monitor method entry

Code transformations

are needed in second step

I * New ghost variables declared to encode

Step 1 - 1: Add ghost variables

automaton

- Control points (including halted): integer
constants, initialised to unique value

- Current control point (cp): integer
initialised to initial control point

- Automaton variables: type and initial value
as specified for the automaton

* Note: program variables can be ignored

I /*@ public static final ghost int

Step 1 - 1: Example

@ HALTED = 0,
@ Ql =1,

@ Q2 =2,

@ Q3 = 3;

@/

//@ public ghost int cp = Q1;

/ /@ public ghost int t = O;

I * Invariant is strengthened to assert that
current control point has not reached the
error state

Step 1 - 2: Strengthen invariant

/ /@ public invariant cp != halted;

I Step 1 - 3: Ahnotate methods

/ /@ requires pre; %
I / /@ ensures post; assert inv & pre;
m() { pre_set;
pre_set { iassert I(cp = halted)
/*@ annotations concerning
m's entry @*/
} body {
m's body
} post_set {
/*@ annotations concerning
m's normal exit @*/
} exc_set {
/*@ annotations concerning
m's exceptional exit @*/

lex —

post_set;

assert post &
inv;

Step 1 - 4: Translate events

Pre_set, post_set and exc_set encode actions
of automaton

Before entering body, check whether pre_set
not reached trap state

Multiple transitions can be associated to a
single event - choice based on guard

Special conditional ghost variable update
construct to model this choice

I Step 1 - 4: Example at

/*@ if (cp == Q1) { . [*@ if (cp == Q1 && t > 0) {
@ if (t> 0){ @ sett=1t-1,
@ sett=t-1; @ setcp = Ql,;
@ setcp=Ql; @ } else {
@ } else { @ set cp = HALTED,
@ setcp = HALTED; @}
@ } else if (cp == Q2) { @/

@ set cp = HALTED;

@ } else if (cp == Q3) {

@ set cp = HALTED;

@ }else{ // cp == HALTED
@ set cp = HALTED;

@ }

@*/

I Step 2 - 1: Refine if - 1

* The conditional ghost variable updates are
I translated into a sequence of set annotations
using conditional expressions

if (¢ { setx:=c?a:Xx;

SIEE o= E sety:=c?b:y;
sety := b;

I Step 2 - 1: Refine if - 2

* Auxiliary ghost variables are used to ensure that
I earlier updates do not affect later assignments

if (cp == Q1) { set contr = cp == Q1;
if (x >=5){ set guard = x >= 5;
set x = x-1; set x = contr & guard? x-1 : x;
set cp = Q2; sl set cp = contr && guard ? Q2 : cp;
Fif (x < 0){ set guard = !guard && x < O;
set x = x+1; set x = contr && guard ? x+1 : x;
set cp = QI, set cp = contr && guard ? Q1 : y;
} else { set guard = Iguard;

: set cp = HALTED; set cp = contr && guard? HALTED : cp;

}

I Step 2 - 2: Inline method set

I statements
m() { catch (Exception e) {
I / /@ ghost boolean ex; /] @ exc_set;
/| @ pre_set; / /@ set ex = true;
//@ assert cp != halted: throw e;
try { } finally {

body / /@ if (lex) { post_set; }
} }

I Example: translation of the
I embedded transactions

public void beginTransaction() {

I //@ ghost boolean ex;

//@ setcp =(cp==Q1 && t < N)?Q2: HALTED;
//@ assert cp != HALTED,;

try {
body

} catch (Exception e) {

//@ set cp = (cp == Q2) ? Q1 : HALTED;
/ /@ set ex = true;

} finally {

//@ sett=(lex && cp == Q2) ? t+1 : t;
//@ set cp = (lex && cp == Q2) ? Q1 : HALTED;

}

An aside: the problem with Try-
Catch-Finally

tryf / /@ requires inRange(arg);
r .= randomint(); decrypt(key, arg){
decrypt(key, r);

} }

finally{
throw NullPointerException()

}

* Run-time assertion checking will never return
a JML Exception, but static checking will find
this specification violation

I Advantages of having a
I formalisation - 1

I * Although the ideas are simple we found many

— at the end of the pre_set

- formulation of new invariant

— needs special restrictions,
to avoid that JMLExceptions are ignored

- precise formulation of related states

oredicate: under which conditions does the

orogram reach an exceptional state, when

is correspondence maintained

I Advantages of having a
I formalisation - 2

Makes all requirements explicit:
I - no overlap between variable names of

automaton and monitored class

- evaluation of expressions in guards or
actions cannot have side effects or throw
exceptions

- strictness of conjunction

- injective function needed to map control
points to int

Related work

* FSM to annotations [Hubbers, Oostdijk, Poll]

* Temporal logic to annotations [Groslambert et
al.]

* Midlet Navigation Graphs to JML, graph
refinement [de Jong, Ravelo, Poll] Converting
Midlet Navigation Graphs into JML

* Method call sequences as annotations [Cheon,
Perumend|a]

* Propagation of annotations [Pavlova et al.]

Implementations, but no formal proof

Conclusions

Translation from monitors to annotations
Correctness of transformation proven with
help of theorem prover

Modular semantics

Formalisation helped to reveal unexpected
problems (notably try-catch-finally)

Future work

Formally prove correctness of

Allow In monitor

Generate and

(now inline annotations generated)

Towards static proving of security properties

- Extend of Mariela
Pavlova

- Formalise propagation algorithm in PVS

Wider class of properties possible?

Use for multi-threaded programs (under

certain restrictions)

