
1

Extending GCM and Fscript for the Distributed
Reconfiguration of Components

Boutheina Bennour, Ludovic Henrio, Marcela Rivera
INRIA – CNRS – Université de Nice Sophia-Antipolis

2004 Route de Lucioles 06902 Sophia Antipolis - France
{bbenour,lhenrio,mrivera}@sophia.inria.fr

I. I NTRODUCTION

A. Context

This work is placed in the context of distributed comput-
ing, and especially large-scale distribution. Componentshas
been considered over the recent years as a good abstraction
to program distributed systems, thanks to the encapsulation
they provide, their clearly defined interfaces The success of
component models also comes from the high-level view of a
component system (e.g. defined by an architecture description
language) is considered as the good level to design distribution
of applications.

Highly evolving distributed environments also require ap-
plications deployed on those environments to evolve. For this,
some component models propose reconfiguration capabilities:
the component composition can be reconfigured dynamically.
This allows applications to adapt to changes in their execution
environments, but also to changes in their functional and non-
functional requirements.

B. Objective and Contribution

The objective of this paper is to increase the support for
reconfiguration capacities in distributed component models.
More precisely, we aim at allowing distributed systems to be
reconfigured in a non-centralised manner. This article presents
a distributed reconfiguration mechanism based on a scripting
language.

To reach this goal, we suggest to extend existing component
frameworks with two features:

• A controller, i.e. a non-functional port, localised in sev-
eral (possibly all) components that is able to interpret
reconfiguration orders.

• An extension of an existing scripting language for re-
configuration, adding primitives for distributed interpre-
tation: remote execution of a reconfiguration script, and
evaluation of script expressions to improve the passing of
parameters between different execution contexts.

We show the adequacy of our contribution by providing
an implementation of those features in the context of the Grid
component model (GCM), and of its reference implementation
above the ProActive middleware. We adapted the FScript
reconfiguration language, that was designed for the Fractal
component model to distributed component systems.

The purpose of this work is to help the programmer write
reconfiguration procedures by providing him an adapted lan-
guage. The programmer of the adaptation code focuses on
the operations to be triggered thanks to the use of a scripting
language, he can design distributed procedures for adaptation
thanks to our extensions to the language and the component
model.

The approach is designed for the GCM distributed compo-
nent model because this is a distributed extension of Fractal.
The Fractal component model is particularly well suited for
component adaptability, because it comes with high reconfig-
uration capabilities, and a scripting language for reconfigura-
tion: Fscript.

However the approach presented here can be adapted to
other component models. It is not tight to the ProActive
middleware that has been used for prototyping and experimen-
tation. Roughly, the approach only relies on the possibility to
create a non-functional interface to the components that will
receive reconfiguration scripts, and the scripting language re-
lies on the possibility to introspect and modify the component
architecture.

II. A C ONTROLLER FORRECONFIGURATION

In order to trigger decentralized reconfigurations on dis-
tributed components, we suggest to incorporate a reconfigu-
ration script interpreter into the component. The interpreter
associated with a given component can operate a distributed
reconfiguration calling remote interpreters which belong to its
sub-components. Therefore, several (possibly all) components
are required to expose script interpretation capabilities. Exter-
nalizing such non-functional features is possible in the Fractal
model thanks to the component membrane which is made up of
controllers. Our goal is to add a controller for reconfiguration
in the component membrane. This controller will provide the
interface allowing the invocation of a script interpreter.In
fact, Fractal specification defines basic controllers ensuring
component reflective abilities (introspection and intercession).
However, the reconfiguration controller improves component
reconfigurability since it can interpret high level scripts. The
programmer of adaptivity procedure can thus focus on a high
level language than the straightforward invocation of basic
reconfiguration primitives.
The reconfiguration controller brings out through a program-
ming interface useful interpreter services to handle scripts for
reconfiguration.



2

Fig. 1. Distributed interpretation of the reconfiguration action action name

interface ReconfigurationController {
void setInterpreter(String interpreterClassName)
void loadScript(String scriptFileName)
void executeAction(String actionName,

Object... arguments)
}

The methodsetInterpreter assigns an interpreter to the
component. The method complies with the singleton pattern.
If it does not exist, an interpreter instance is created. Actually,
the interpreter is not instantiated when creating a component
for performance efficiency: only components involved in a
distributed reconfiguration process encapsulate interpreters.

Reconfiguration actions are defined in script files. The
reconfiguration controller provides a methodloadScript for
the interpreter to recognize actions by parsing the script file.

Once the script file is loaded, a reconfiguration action
can be triggered on the component by calling method
executeAction of the controller API. The action name and
arguments are passed as parameters to the method.

III. A N EXTENSION TO THEFSCRIPT LANGUAGE

A component, which has a reconfiguration controller, pro-
vides local control of reconfiguration since it is capable
of performing its own script interpretation. Also, with the
availability of a reconfiguration controller in its membrane, the
component exposes interpretation features to its neighborhood.
A script that reconfigures a composite component may be
interpreted in part by a subcomponent or even by any other
neighboring component. In order to delegate interpretation, we
define a new primitive:

remote_call(target_component,
action_name, arguments_list...)

The primitive remote_call triggers the execution of
the reconfiguration actionaction_name by the interpreter
associated with the componenttarget_component. The
first argument is an FPath expression that selects the node
corresponding to the target component in the directed graph
associated with the FScript interpreter. The second argument

is a string that matches the reconfiguration action name.
The argumentsarguments_list of the action to interpret
remotely are passed as parameters. The script programmer can
thus specify actions to be performed on a remote component.
Classically, arguments are evaluated locally, and then passed
over to the remote script interpreter.

From this point in time, the target component becomes in
charge of the interpretation of the reconfiguration. Unlessthe
action is a primitive, the reconfiguration should be defined in
the context of the target interpreter. To ensure the delegation
mechanism, two pre-conditions are required:

Precondition 1 (Reconfigurability):The target component
provides a controller for reconfiguration.

Precondition 2 (Global reconfiguration action):The target
interpreter defines the reconfiguration primitive as a global
action.

The remote call operation can only be applied to a compo-
nent architecture if it satisfies the preconditions.

Figure 1 illustrates the remote interpretation of the re-
configuration actionaction_name by a target component
which is here the subcomponent. Note that the components
are deployed on different hosts, and therefore distributed:
The composite component, respectively the subcomponent, is
deployed on the host K, respectively on the host L.

IV. CONCLUSION

The originality of our approach is that it requires minimal
extension to an existing component framework, and that it has
been designed to provide specifically the key operations for
the programmer of reconfiguration procedures.

We expect our work to impact the writing of adaptation
procedures, and especially in the context of autonomic adap-
tation. Indeed autonomic adaptation of distributed components
require components to self-adapt in a non-centralised manner.
Without contributing to the design of self-adaptation proce-
dures themselves, once these procedures will be designed,
we expect this work to allow their fast and straightforward
implementation.


