Extending GCM and Fscript for the Distributed
Reconfiguration of Components

Boutheina Bennour, Ludovic Henrio, Marcela Rivera
INRIA — CNRS - Université de Nice Sophia-Antipolis
2004 Route de Lucioles 06902 Sophia Antipolis - France
{bbenour,lhenrio,mriverp@sophia.inria.fr

. INTRODUCTION The purpose of this work is to help the programmer write
reconfiguration procedures by providing him an adapted lan-
guage. The programmer of the adaptation code focuses on

This work is placed in the context of distributed computthe operations to be triggered thanks to the use of a sagiptin
ing, and especially large-scale distribution. Componédras language, he can design distributed procedures for adaptat
been considered over the recent years as a good abstradiiemks to our extensions to the language and the component
to program distributed systems, thanks to the encapsaolatimodel.

they provide, their clearly defined interfaces The succdss o The approach is designed for the GCM distributed compo-

component models also comes from the high-level view ofrent model because this is a distributed extension of Hracta

component system (e.g. defined by an architecture deseriptThe Fractal component model is particularly well suited for
language) is considered as the good level to design dititibu component adaptability, because it comes with high recenfig
of applications. uration capabilities, and a scripting language for recamég

Highly evolving distributed environments also require aption: Fscript.

plications deployed on those environments to evolve. Fsy th However the approach presented here can be adapted to

some component models propose reconfiguration capaduilitiether component models. It is not tight to the ProActive

the component composition can be reconfigured dynamicalgiddleware that has been used for prototyping and experimen

This allows applications to adapt to changes in their exenut tation. Roughly, the approach only relies on the possybibt

environments, but also to changes in their functional antt nacreate a non-functional interface to the components thit wi

functional requirements. receive reconfiguration scripts, and the scripting languatg
lies on the possibility to introspect and modify the compune
architecture.

A. Context

B. Objective and Contribution

L . . . II. A CONTROLLER FORRECONFIGURATION
The objective of this paper is to increase the support for) i i , i
reconfiguration capacities in distributed component madel .In order to trigger decentralized r(_econflguratmns on d,'s'
More precisely, we aim at allowing distributed systems to 689““90' CF’mPO”emS' we suggest to Incorporate a reconfigu-
reconfigured in a non-centralised manner. This articleguss 20N SCript interpreter into the component. The intetgre

a distributed reconfiguration mechanism based on a sagiptfaSSociated with a given component can operate a distributed

language. reconfiguration calling remote interpreters yvhich belomig
To reach this goal, we suggest to extend existing CompongHP-comlponents. Therefor_e, s.everal (pqssmly aII).c_:oreptm
frameworks with two features: are r_equwed to expose _scrlpt mterpre@atlon cgpat_:nhEeGer—
)))) nalizing such non-functional features is possible in theckal
« A controller, i.e. a non-functional port, localised in sevinggde| thanks to the component membrane which is made up of
eral (possibly all) components that is able to interprelniroliers. Our goal is to add a controller for reconfigimat
reconfiguration orders. o in the component membrane. This controller will provide the
e An extension of an existing scripting anguag_e for repterface allowing the invocation of a script interpretér.
configuration, adding primitives for distributed interpreact Fractal specification defines basic controllers éngur
tation: remote execution of a reconfiguration script, anghmponent reflective abilities (introspection and intesien).
evaluation of script expressions to improve the passing Abwever, the reconfiguration controller improves companen
parameters between different execution contexts. reconfigurability since it can interpret high level scripthe
We show the adequacy of our contribution by providingrogrammer of adaptivity procedure can thus focus on a high
an implementation of those features in the context of thel Glievel language than the straightforward invocation of basi
component model (GCM), and of its reference implementatisaconfiguration primitives.
above the ProActive middleware. We adapted the FScriphe reconfiguration controller brings out through a program
reconfiguration language, that was designed for the Fraataing interface useful interpreter services to handle ssifipr
component model to distributed component systems. reconfiguration.

// Sub Component //
A JVMj (HostL) -7/
Fig. 1. Distributed interpretation of the reconfiguraticsctien action_name
interface ReconfigurationController { is a string that matches the reconfiguration action name.

void setinterpreter(String interpreterCassName) The argumentsr gunents_| i st of the action to interpret
void |l oadScript(String scriptFileNane) -

voi d execut eAction(String acti onNane, remotely are pa§sed as parameters. The script programmer ca
Object... argunents) thus specify actions to be performed on a remote component.
} Classically, arguments are evaluated locally, and thesquhs

The methodset | nt er pr et er assigns an interpreter to the®Ver to the remote script interpreter. _
component. The method complies with the singleton pattern.From this point in time, the target component becomes in
If it does not exist, an interpreter instance is createdualty, charge of the interpretation of the reconfiguration. Unlibes
the interpreter is not instantiated when creating a comppon&Ction Is a primitive, the r_econflgurat|on should be deflned i
for performance efficiency: only components involved in '€ context of the target interpreter. To ensure the degat
distributed reconfiguration process encapsulate intepre ~ Mechanism, two pre-conditions are required:

Reconfiguration actions are defined in script files. The Precondition 1 (Reconfigurability)The target component
reconfiguration controller provides a methoshdScr i pt for Provides a controller for reconfiguration.
the interpreter to recognize actions by parsing the sciigt fi Precondition 2 (Global reconfiguration action)the target

Once the script file is loaded, a reconfiguration actiolyterpreter defines the reconfiguration primitive as a dloba

can be triggered on the component by calling meth@ftion- _ _
execut eAct i on of the controller API. The action name and 1h€ remote call operation can only be applied to a compo-

arguments are passed as parameters to the method. nent architecture if it satisfies the preconditions.
Figure 1 illustrates the remote interpretation of the re-

configuration actioract i on_nane by a target component

which is here the subcomponent. Note that the components
A component, which has a reconfiguration controller, prege deployed on different hosts, and therefore distributed

vides local control of reconﬁguration since it is Capabl?he Composite Component’ respective'y the Subcompormnt'i

of performing its own script interpretation. Also, with thegeployed on the host K, respectively on the host L.
availability of a reconfiguration controller in its membeanhe

component exposes interpretation features to its neidiuoat. IV. CONCLUSION

A script that reconfigures a composite component may beryg griginality of our approach is that it requires minimal

interpreted in part by a subcomponent or even by any othgfiension to an existing component framework, and thatst ha
neighboring component. In order to delegate interpretatie been designed to provide specifically the key operations for

define a new primitive: the programmer of reconfiguration procedures.
renote_cal | (target_conponent, _ We expect our work to impact the writing of adaptation
action_nare, arguments_|ist...) procedures, and especially in the context of autonomic-adap

The primitive renot e_cal | triggers the execution of tation. Indeed autonomic adaptation of distributed conepts
the reconfiguration actioact i on_name by the interpreter require components to self-adapt in a non-centralised grann
associated with the Componehar get _Con'ponent . The Without Contributing to the dESign of Self-adaptation [@-0C
first argument is an FPath expression that selects the nélges themselves, once these procedures will be designed,
corresponding to the target component in the directed graR expect this work to allow their fast and straightforward
associated with the FScript interpreter. The second arguménplementation.

II1. AN EXTENSION TO THEFSCRIPT LANGUAGE

