
Fast Simulation Techniques for Design Space Exploration

Daniel Knorreck, Ludovic Apvrille, Renaud Pacalet
System-on-Chip Laboratory (LabSoC), Institut TELECOM, TELECOM ParisTech, LTCI CNRS

2229, Routes des Crêtes BP 193 F-06904 Sophia Antipolis, France
Email: daniel.knorreck@eurecom.fr, ludovic.apvrille@telecom-paristech.fr, renaud.pacalet@telecom-paristech.fr

Abstract— In this paper, we present our current work on a
UML based environment providing efficient means for system
level design space exploration. First of all, a brief introduction
to the concepts of DIPLODOCUS gives a general overview
of our methodology. A cycle-based simulation strategy for the
application modeled in terms of abstract tasks was introduced
previously. This paper emphasizes a new approach which is
currently subject of our research activity. A more coarse
grained simulation of the modeled application can significantly
reduce the simulation time. The basic idea is to merge several
clock cycles and to process them as a whole whenever possible.
Finally, this article gives an idea of possible enhancements of
the simulation environment and longer term objectives.

I. EXTENDED ABSTRACT

System level design space exploration in a System-on-
chip (SoC) design cycle is an issue of great concern in
today’s rapidly growing and heavily constrained design
process. The increasing complexity of SoC requires a
complete re-examination of design and validation methods
prior to final implementation. We believe that the solution
to this problem lies in developing an abstract model of
the system intended for design, on which fast simulations
and static formal analysis could be performed in order to
test the satisfiability of both functional and non functional
requirements.

In this context, we have previously introduced a UML-based
environment, named DIPLODOCUS. The strength of our
approach relies on formal verification capabilities, and fast
simulation techniques. DIPLODOCUS design approach is
based on the following fundamental principles:

• Use of a high level language (UML)
• Clear separation between application and architectural

matters.
• Data abstraction.
• Use of fast simulation and static formal analysis tech-

niques, both at application and mapping levels.
Moreover, DIPLODOCUS includes the following 3-step
methodology:

1) Applications are first modeled using tasks with com-
munication capabilities.

2) Targeted hardware architectures are modeled indepen-
dently from applications. A set of usual hardware
components has been defined (e.g. CPUs, buses, etc.).

3) A mapping process defines how applications may be
mapped onto a given architecture.

This paper focuses on the post-mapping simulation of
tasks mapped onto a given hardware architecture. A task is
described by means of usual operators (loops, tests, variable
settings, etc.), of communication operators (reading/writing
abstract data samples in channels, sending/receiving events
and requests), and of computational cost operators (EXECx
instructions). A mapping is described using a set of
interconnected hardware nodes (CPUs, buses, hardware
accelerators, etc.) on which tasks, channels, events and
requests are mapped.

An important issue to solve, at post-mapping simulation
step, is the scheduling of operations performed on hardware
nodes, and more particularly on CPUs and on buses.
A first simulation environment, based on SystemC, was
developed previously and is detailed in [BHA07I]. In
that simulator, a SystemC process is assigned to each
hardware node, and a cycle-based simulation approach
is used. Unfortunately, scheduling of those processes
(process switching time, cycle-based approach) implies low
performance, even if tasks are described with high-level
instructions. A second approach described in that paper is
a transaction-based simulator, using only one main process.
Transactions are defined according to tasks’ commands
(i.e. tasks instructions). Those transactions are meant to
last several cycles, but in case they last only one cycle,
then, the simulator automatically falls back to a cycle-based
behavior. Thus, the modeling granularity directly impacts
the simulation performance.

More precisely, a transaction refers to a portion of a
command. Thus, the READ task command allows for
an inter task communication by reading a given number
of samples from an abstract channel. For example let us
consider the expression READ 3. This command could be
broken down into two transactions, the first one reading
one sample and the second one reading the two remaining
samples. The basic idea is to try at first to schedule
a transaction having the same length as the command
(3 in our example). If the attempt fails, the transaction is
subsequently split into smaller parts which can be scheduled.
We first suppose that the command can be executed as a
whole. Then, that command is cut into sub-transactions
if some other transactions interfere with the first one.
That way the simulation overhead decreases if the amount
of inter task dependency is low. The worst case of that



speculative approach is when scheduling policies of CPUs
and buses are based on a strict alternation between tasks: in
that case, the simulation environment gets back to a cycle
based simulation because every transaction is automatically
reduced to the length of 1. This scenario could be avoided
with the aid of bus scheduling policies relying on atomic
burst transfers which cannot be interrupted. As an example,
let us consider the scenario depicted below: there are two
CPUs, referred to as CPU1 and CPU2. A CPU merges both
an abstract hardware component and an abstract real time
operating system.
On figure 1, both CPUs (CPU1 and CPU2) have already
executed a transaction of a task T11 and T21 respectively.
The transaction on CPU1 finished at tSI , the one on CPU2
finished at tSII . The schedulers of both CPUs subsequently
propose the next transaction to execute. The simulation
algorithm selects the transaction which will terminate first
because its execution could have an impact on other tasks
(making them runnable for instance). This decision is in
line with traditional mechanisms used for discrete event
simulation. As we have to be sure that during the execution
of the selected transaction no events will occur, special care
has to be taken when considering communication-related
commands (read to channel, write to channel, wait on
event, notify event, ...). The length of these transactions
are therefore calculated based on the number of samples
to read, the number of samples to write, the content and
the size of the channel as well as the size of atomic burst
transfers on the bus.
After T12 has been scheduled, tSI is set to the end time of
T12, referred to as tSInew. If the completed transaction T12
causes a task to become runnable on CPU2, T22 is truncated
at tSInew and the remaining transaction is scheduled on
CPU2. As a channel always links only two tasks, revealing
dependencies becomes trivial. If a portion of T22 has
been added to the schedule, tSII is changed accordingly
(tSII = tSInew). After this, all schedulers of CPUs which have
executed a transaction are invoked. The algorithm has now
reached its initial state where all schedulers have selected
a potential next transaction. Again, the transaction which
finishes first is scheduled...

The main components which are involved in a scheduling
round are the following: tasks, CPUs buses and the
main scheduler. The sequence of the entities of the
aforementioned list also reflects their hierarchy during
the scheduling process: tasks are settled at the top layer
and the main scheduler constitutes the lowermost layer.
Based on the knowledge of their internal behavior, tasks
are able to determine the next transaction which has to be
executed within their scope. This proposal is forwarded
to the scheduler of the respective CPU on which the task
was mapped. The latter scheduler in turn selects one task
proposal and transfers it to the dedicated bus in case
the current transaction demands bus access. During this
stage, delays due to bus contention are taken into account.
As several CPUs may be connected to the same bus, a

scheduling decision has to be taken once again. Finally, the
main scheduler is in charge of assuring the causality of the
simulation which is achieved as stated previously.

In conclusion it can be said that the two main contributions
of this paper are on the one hand the extension of the
traditional discrete event simulation with a hierarchical
scheduling procedure comprising execution nodes and
communication nodes. On the other hand, simulation
granularity is automatically adapted to the requirements of
the application thanks to the transaction based approach.
When experimenting with a model of an MPEG decoder,
we experienced performance gains in terms of execution
time up to factor 30 as compared to a cycle based SystemC
simulator. It should be reemphasized that the gain depends
on the application model.

Fig. 1. Scheduling scenario

The status quo of the simulator leaves room for improve-
ments. The bus model for example could be enhanced in
a future version of the simulator. For the time being, the
bus determines the length of transactions it has to deal with
(READ and WRITE transactions). The underlying assump-
tion is that for fast CPUs, the bus represents the bottleneck
and the CPU is slowed down due to I/O operations. However
for CPUs working at a low frequency as compared to the
bus, the latter assumption does not hold. In this case, the
CPU is not able to keep the bus busy and thus represents the
bottleneck.

In addition technical improvements of the simulator, ad-
vanced simulation capabilities could be integrated in the
future. For example, one could think of specifying func-
tional requirements which are checked during simulation
(for example: if a client requests the bus, access is granted
within 10ms). In this case, it would also be very interesting
to explore several branches of control flow in order to
enhance the coverage of a simulation. Several tasks could
examine different branches or a single task could process
them consecutively. In the latter case, a mechanism has to
be conceived which allows to return to a system state in
the past. To achieve this, it would be sufficient to store
member variables of classes which characterize the system
state: filling level of channels, end time of the last scheduled
transaction on CPUs, progress and current transactions of



commands,... The object oriented model could be based on
the memento pattern.

REFERENCES

[HUS07] Sorin A. Huss, Advances in Design and Specification Languages
for Embedded Systems, Springer, 2007

[APV06] Ludovic Apvrille, Renaud Pacalet, Axelle Apvrille, Pierre de
Saqui-Sannes, Un environnement de conception de systèmes distribués
basé sur UML System-On-Chip laboratory, GET/ENST, 2006

[MUH] Waseem Muhammad, Ludovic Apvrille, Rabéa Ameur-Boulifa,
Sophie Coudert, Renaud Pacalet, Abstract Application Modeling
for System Design Space Exploration System-On-Chip laboratory,
GET/ENST

[MUH06] Waseem Muhammad, Ludovic Apvrille, Rabéa Ameur-Boulifa,
Sophie Coudert,Renaud Pacalet, A UML-based Environment for System
Design Space Exploration
System-On-Chip laboratory, GET/ENST, 2006

[BHA07I] Muhammad Khurram Bhatti, Ludovic Apvrille, Modeling and
Simulation of SoC Hardware Architecture for Design Space Exploration
System-On-Chip laboratory, GET/ENST, 2007

[BHA07II] Muhammad Khurram Bhatti, Ludovic Apvrille, Renaud Pacalet,
Designing SoC with data abstraction in mind System-On-Chip labora-
tory, GET/ENST, 2007

[BLA04] David C. Black, SystemC: From the ground up Kluwer Academic
Publishers, 2004

[GROT02] Thorsten Grotker, Stan Liao,Grant Martin, System Design with
SystemC Kluwer Academic Publishers, 2002

[GHE05] Frank Ghenassia, Transaction Level Modeling with SystemC
Springer, 2005


