
1

Update Strategies for First-class Futures
Ludovic Henrio Muhammad Khan

INRIA, Univ. Nice Sophia Antipolis, CNRS
{lhenrio,mkhan}@sophia.inria.fr

I. INTRODUCTION

In the context of distributed programming, several
different notions have been defined to make parallel
or concurrent programming more efficient and more
intuitive. Futures represent an example of such notions to
improve concurrency in a natural and transparent way. A
future is a temporary object that is used as a place holder
for a result of a concurrent computation [5], [7]. Once
the computation is complete and a value for the result
(called future value) is available, the future is updated
with the computed value. Access to an unresolved future
is a blocking operation. As results are only awaited when
they are really needed, computation is parallelised in
a somehow optimal way. The future creation can be
transparent or explicit. With explicit futures, specific
language constructs are necessary to create the futures
and to convert them into normal objects (fetching the
future value). Transparent futures, on the other hand, are
managed by the underlying middleware and the program
syntax remains unchanged, since futures have the same
type as the actual result. Some frameworks allow futures
to be passed to other (remote) processes. Such futures
are called First class futures [2]. In this case additional
mechanisms to update futures are required not only on
the creating node, but also on all nodes that receive
a future. First class futures offer greater flexibility in
application design and can significantly improve concur-
rency both in object-oriented and procedural paradigms
like workflows. They are particularly useful in some
design patterns for concurrency, such as master-worker
and pipeline.

II. CONTRIBUTION

Our work analyses several strategies that may be used
to update first class futures; it can be considered as an
extension of the works presented in [2] and [6] through a
language-independent approach that makes it applicable
to various existing frameworks that support first class
futures.

Semi-formal event-like notation We use a general
(language independent) notation for modelling future

update strategies. Consequently, other frameworks in-
volving first class futures can directly benefit from our
work.

Cost analysis of the strategies. For better understand-
ing of the strategies and the relative costs (in terms of
number of messages and time) involved, we developed
a simplified cost analysis of the protocols. This helps
in understanding which strategy is more suitable for a
given application.

Experimental results. We implemented the different
strategies in the ProActive middleware and experimen-
tally verified the results of our analysis.

Impact and Related Works This work, is a study of
future update strategies. We present the strategies in
greater detail compared to previous work [2], and analyse
the costs associated with each strategy. We present our
work in a language independent manner and as such
it can be applied to various existing frameworks that
support first class futures, like [3], [4]. This cost analysis
is evaluated by experiments using the ProActive library
[1].

III. FUTURE UPDATE STRATEGIES

Future updates strategies can be classified as either
Eager or Lazy. Strategies are called eager when all the
references to a future are updated as soon as the future
value is calculated. They are called lazy if futures are
only updated upon need, which minimises communi-
cations but might increase the time spent waiting for
the future value. Two eager and one lazy strategies
are presented here: eager forward-based (following the
future flow), eager message-based (using a registration
mechanism, also called home-based in [6]), and lazy
message based. One could also consider a lazy forward-
based strategy, but as it is extremely inefficient, we do
not discuss it here.

Eager Forward-based Strategy. In this strategy, each
process remembers only the nodes to which it has sent
the future, and forward them the value when available.
Therefore, the flow of future updates follow the same
path as the futures themselves. The updates, are therefore
performed in a distributed manner.

Eager Message-based Strategy.Future values are sent
to all future recipients as soon as future is computed. Op-
posed to forward-based strategy where futures updates
are performed in a distributed manner, future updates in
message-based strategy are centralised. All updates are
performed by the process responsible for computing the
future value.

Lazy-Message-based Strategy.The lazy strategy differs
from the eager strategies in the sense that future values
are only transmitted when absolutely required. When
a process accesses a future the synchronisation on the
future access triggers the future update. This strategy is
somewhat similar to message-based strategy except the
fact that futures are updated only when and if necessary.

IV. COMPARISON OF DIFFERENT STRATEGIES

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 1 2 3 4 5 6 7

T
im

e
(M

s)

Height

Tree Height = 1-7
 Future = 20MB, Nodes = 31

Eager-Forward Eager-Message Lazy-Message

Fig. 1. Comparison of strategies for a tree configuration

The graph in Figure 1 compares the time needed to
update futures for the evaluated strategies. Experiments
are realized over trees of varying heights. As can be seen
from Fig 1 Lazy strategy takes less time to update the
futures since much less updates have to be made than
for the two eager strategies. The experience shows that
update time required for lazy and eager message-based
strategies is roughly independent of the height of the
tree. Eager-forward based strategy can take advantage of
concurrent updates. On the other hand, it also gets more
time to reach the bottom of high trees as shown by the
shape of the graph. As the height of the tree increases,
overheads increases due to time spent at intermediate
nodes. As a result, at height 7, the time needed for
updates is much higher. Note that for height 1, both eager
strategies perform in a similar way because in that case
both algorithms are roughly identical.

We try here to answer the non-trivial question: “Which
is the best future update strategy”? There is no single

best strategy, rather the strategy should be adopted based
on the application requirements, to summarise:

• Eager forward-based strategy is more suitable for
scenarios where the number of intermediate nodes
is relatively small and the future value is not too
big. Also, the distributed nature of future updates
results in less overloading at any specific node.

• Eager message-based strategy is more adapted for
process chains since it ensures that all updates
are made in relatively constant time. Due to its
centralised nature, it may require more bandwidth
and resources at the process that computes the
future.

• Lazy strategy is better suited for applications where
the number of processes that require future value
is significantly less than total number of pro-
cesses. Considerable savings in network load can
be achieved but this has to be balanced against
the additional delay inherent in the design of lazy
approach.

REFERENCES

[1] D. Caromel, C. Delbé, A. di Costanzo, and M. Leyton. ProActive:
an integrated platform for programming and running applications
on grids and P2P systems. Computational Methods in Science and
Technology, 12(1):69–77, 2006.

[2] Denis Caromel and Ludovic Henrio. A Theory of Distributed
Object. Springer-Verlag, 2005.

[3] Frank S. de Boer, Dave Clarke, and Einar Broch Johnsen. A
complete guide to the future. In ESOP, pages 316–330, 2007.

[4] Jessie Dedecker, Tom Van Cutsem, Stijn Mostinckx, Theo
D’Hondt, and Wolfgang De Meuter. Ambient-oriented program-
ming in ambienttalk. In Dave Thomas, editor, ECOOP, volume
4067 of Lecture Notes in Computer Science, pages 230–254.
Springer, 2006.

[5] Robert H. Halstead, Jr. Multilisp: A language for concurrent sym-
bolic computation. ACM Transactions on Programming Languages
and Systems (TOPLAS), 7(4):501–538, 1985.

[6] Nadia Ranaldo and Eugenio Zimeo. Analysis of different future
objects update strategies in proactive. In IPDPS 2007: Parallel
and Distributed Processing Symposium, IEEE International, pages
23–66, 2007.

[7] Akinori Yonezawa, Etsuya Shibayama, Toshihiro Takada, and
Yasuaki Honda. Modelling and programming in an object-oriented
concurrent language ABCL/1. In A. Yonezawa and M. Tokoro,
editors, Object-Oriented Concurrent Programming. MIT Press,
1987.

2

