
Developping Real Time Embedded Applications Independently of an Execution
Platform

Julien DeAntoni
INRIA Sophia Antipolis - AOSTE project

2004 route des Lucioles
BP93, F-06902 Sophia Antipolis Cedex, France

julien.deantoni@sophia.inria.fr

1. introduction

To address the growing complexity of Real-Time and Em-
bedded (RTE) systems, a know strategy is to combine software
engineering principles and formal techniques. The software
engineering principles should allow reuse of software parts
whereas formal techniques should ensure the correctness of the
system. During last years, an emerging idea is to use, among
the various software engineering approaches, Model Driven
Engineering (MDE).

In order to guarantee the system correctness, the models as-
sociated with the existing tools [12, 9, 10] and paradigms take
into account the properties of: the application, the execution
platform and the environment. After simulation and/or formal
analysis, they are able to fine-tune the system parameters in
order to reach the desired characteristics. It results in a rigid
system that makes the reuse of system parts difficult (and some-
times impossible) [2].

On the other hand, CBSE (Component Based Software en-
gineering) proposes to decompose a system into various, pos-
sibly independently developed, components. The components
have well defined interfaces, which are connected to compose
the system. The composition correctness can be verified by
establishing contracts during the composition [4]. Few CBSE
approaches are dedicated to RTE systems. Moreover, these ap-
proaches either do not use QoS contracts on their interface or
only consider simple and directly composable properties [6]
such as the memory usage. Consequently, it is still difficult,
in a RTE context, to reuse some software parts safely, e.g. by
guaranteeing the use of a RTE application on a specific execu-
tion platform.

This paper briefly explores the notion of abstract platform
for RTE applications and illustrates it through SAIA (a CBSE
and MDE approach for the specification of control system in-
dependently of the environment communication platform).

2. Ongoing Research Approach

The general idea consists in using MDE to abstract real time
and embedded systems. In recent approach such as MARTE
[11], the abstraction separates the software part and the execu-
tion platform part.

Software and execution platform models conform to their
own metamodel but are issued from a same set of concepts,

mainly for the representation of the component model (see top
center of the figure 1). In these metamodels, the properties
which are important for analysis must be specified. This way, it
is possible to realize one or more intra model analysis in order
to evaluate software or execution platform independently (left
and right part of figure 1). One can notice that in order to real-
ize the analysis, a model transformation is needed between the
model to analyze and the formalism of the analysis language. A
requirement on these transformations is the respect of the op-
erational semantics of the input model. In additional to these
analysis that are realized on a single model, it must be possi-
ble to realize inter model analysis, i.e. in our case, analysis
that take as input a software model and an execution platform
model (see figure 1). These analysis may ensure, for example,
that the execution platform is compatible with the software and
conversely. Once again, a transformation must be realized be-
tween each model and the analysis language formalism. When
these steps result in correct models, each of the models must
be refined in order to incrementally produce the final realiza-
tion of the system. For each of the refinement steps, the intra
and inter model analysis must be realized in order to verify the
correctness of the refinement ([8]).

Figure 1. Global approach for real time embed-
ded system development

Even if this approach is still under study, some of the cur-
rent formalisms enable this kind of development [11, 13, 3].
Unfortunately, these approaches, where the software parts are



refined accordingly to the execution platform and reciprocally,
lead to a software model and an execution model that have been
fine tune and have became specific to each other. Once again,
reusing the software parts in a different execution context is dif-
ficult. Moreover, since these approaches do not specify clearly
what is non-functionally expected by one model from an other;
inter-model analysis must be realized for each refinement step.
These inter model analysis can quickly lead to combinatorial
explosion if the models are two detailled (details appear with
refinement). The next section highlights how the use of an ab-
stract platform addresses these issues.

3. Toward the use of an abstract platform

To simplify the reuse of software from an execution plat-
form to another one, we argue that the definition of an abstract
(sometimes called virtual) platform is crucial. An abstract plat-
form defines a set of acceptable platforms from an software
point of view. An abstract platform defines characteristics that
may be allocated onto a set of concrete platforms that are con-
sidered as potential targets in a development project [1]. In the
context of RTE systems, the abstract platform must also con-
tain the extra-functional properties for which the software is
correct. In other words, it must specify the minimal (and max-
imal) extra-functional properties that must be guaranteed by a
concrete execution platform to ensure the system correctness.
On the other hand, the actual extra-functional properties of a
concrete platform, that results from intra-model analysis, must
be given. Then, a notion of extra-functional contract must be
introduced to verify if the extra-functional properties specified
by an abstract platform are satisfied or not by a specific concrete
platform. In some extent, the abstract platform and the required
extra-functional properties can be seen as a way to define the
design space of the concrete execution platform. Rather than
ending with a specific platform like in classical design space
exploration, we define a set (hopefully not empty) of concrete
platforms suitable to our application. The abstract platform is
then a central point where functional and extra-functional infor-
mation needed for the software model and the execution plat-
form model to work each other are captured. To define an ab-
stract platform for RTE applications, we have to provide: (1)
a way to specify extra-functional constraints and (2) a way to
verify if a contract can be established or not, which depends on
the nature of the extra-functional properties.

This approach has been partially implemented in SAIA [7],
focusing on the part of the abstract platform relating to the com-
munication between the software and the environment.

4. SAIA

SAIA defines an abstract platform in terms of Inputs and
Outputs (I/O), which are a specification of the communica-
tion between the application and the environment. I/O repre-
sent physical values or actions in the environment but do not
give information on how their are produced or realized. For in-
stance, an Input of an exploration robot can be its Speed. On

the other hand, a concrete platform is a set of Sensors and Ac-
tuators (S/A) that specifies a specific way to access to physical
values or to realize actions in the environment. For instance,
a Sensor named WheelRotation can generate an event at each
wheel rotation.

Due to the difference between information in the abstract
platform and information in the concrete platform, some adap-
tations are mandatory. For instance, the Speed Input can be
computed from the WheelRotation information but an interpre-
tation must be done. These adaptations are realized by a com-
plex connector, i.e. a connector augmented with a behavior.

Since RTE system correctness depends on the timing prop-
erties of the data flows from and to the environment, the prop-
erties for which the system is correct are defined in the abstract
platform. On the other hand, the actual properties of a concrete
platform are also described, after analysis. Before any attempt
to establish a contract between the abstract and the concrete
platform, the temporal impact of the complex connector must
be evaluated. This evaluation results in a modification of the
previously defined properties that takes into account the com-
plex connector behavior. Then, an attempt to establish a con-
tract is made in order to check if the specific concrete platform
satisfies the abstract platform, and so, ensure the system cor-
rectness. It is important to notice that this latter check (the con-
tract establishment) is only based on the previously described
properties and no longer on any behavior.

To realize each of the previously presented points, SAIA en-
capsulates into models: (1) a formal language based on timed
automata for the behavior description1; (2) a formal specifica-
tion of the extra-functional properties based on real-time logic
formula and (3) a formal analysis for the specification of the
contract specification. The case studies addressed by SAIA
have shown the ability to reuse, without any change, the same
RTE application on different S/A platform as well as the ability
to predict correctness of the system thanks to contract estab-
lishment.

5. Conclusion

The use of an abstract platform conjointly with MDE tech-
niques seems promising to enable the development of RTE ap-
plication independently of a specific execution platform. SAIA
is a first attempt to specify and illustrate the different manda-
tory steps involved in the use of an abstract platform for RTE
systems. However, SAIA covers only the environment commu-
nication aspects of a RTE application. The work must be done
for execution as well as network aspects. We currently investi-
gate how precise time description formalisms like MARTE [11]
can give the basis for the construction of such aspects.

References

[1] J. Almeida, R. Dijkman, M. van Sinderen, and L. Pires. On the
notion of abstract platform in MDA development. Enterprise

1this language is a subset of the IF language, allowing the use of associated
tools [5] by model transformation

2



Distributed Object Computing Conference, 2004. EDOC 2004.
Proceedings. Eighth IEEE International, pages 253–263, 2004.

[2] ARTIST. Adaptive Real-Time Systems for Quality of Service
Management, pages part 1 – chapter 3. 2003.

[3] F. Balarin, Y. Watanabe, H. Hsieh, L. Lavagno, C. Passerone,
and A. Sangiovanni-Vincentelli. Metropolis: An Integrated
Electronic System Design Environment. COMPUTER, pages
45–52, 2003.

[4] A. Beugnard, J.-M. Jézéquel, N. Plouzeau, and D. Watkins.
Making component contract aware. IEEE computer, 32(7),
pages 38–45, 1999.

[5] M. Bozga, J. Fernandez, L. Ghirvu, S. Graf, J. Krimm, and
L. Mounier. IF: A Validation Environment for Timed Asyn-
chronous Systems. Proceedings of the 12th International Con-
ference on Computer Aided Verification, pages 543–547, 2000.

[6] I. Crnkovic, M. Larsson, and O. Preiss. Concerning Predictabil-
ity in Dependable Component-Based Systems: Classification of
Quality Attributes. lecture notes in computer science, 3549:257,
2005.

[7] J. DeAntoni. SAIA : un style architectural pour assurer
l’indépendance vis-à-vis d’entrées / sorties soumises des con-
traintes temporelles. PhD thesis, Institut National des Sciences
Appliquées de Lyon, Octobre 2007.

[8] D. Densmore. Formal refinement verification in metropolis.
Technical Report UCB/ERL M04/10, EECS Department, Uni-
versity of California, Berkeley, 2004.

[9] dSPACE. Powerful tools for controller de-
velopment. http://www.dspaceinc.com/ww/
en/inc/home/products.cfm?nv=n2, 2007.

[10] esterel technology. Scade suite (tm). http://www.esterel-
technologies.com/products/scade-suite/, 2007.

[11] F. Mallet and R. de Simone. Marte: A profile for rt/e systems
modeling, analysis (and simulation?). In SIMUTools’08, Mar-
seille, France, March 2008.

[12] Mathworks Inc. MATLAB.
http://www.mathworks.com/products/matlab/, 2005.

[13] J. Stankovic. VEST-A Toolset for Constructing and Analyzing
Component Based Embedded Systems. Proceedings of the First
International Workshop on Embedded Software, pages 390–402,
2001.

3


