
TimeSquare: a Multiform Time Simulation Environment

Charles André, Benoı̂t Ferrero, Frédéric Mallet
Aoste Project I3S-INRIA, Université de Nice-Sophia Antipolis

INRIA Sophia Antipolis Méditerranée, FRANCE
{candre,bferreo,fmallet}@sophia.inria.fr

Abstract

TIMESQUARE is a software environment for modeling
and analysis of timed systems. It supports an implementa-
tion of the Time Model introduced in the UML MARTE (Mod-
eling and Analysis of Real-Time Embedded systems) and
its companion Clock Constraint Specification Language
(CCSL). TIMESQUARE displays possible time evolutions—
solutions to the clock constraint specification—as wave-
forms generated in the standard VCD format.

In TIMESQUARE, time is usually multiform that is, re-
lying on several clocks either chronometric (classical time
modeling) or logical. The latter are useful at the design
level.

This paper briefly introduces the MARTE time model and
the clock constraints. Then, the formal foundations of this
model are given. The main TIMESQUARE functionalities
are presented and illustrated on an unusual example.

1 Time Model in MARTE

Time is almost absent in UML. The UML profile for
Modeling and Analysis of Real-Time Embedded systems
(MARTE) [1] addresses this issue and enriches UML with
time-related concepts such as instants, durations, timed
events, timed behavior. . . .

MARTE time model deals with both discrete and dense
time. A clock gives access to a time structure. A clock
can be either chronometric or logical. The former implic-
itly refers to “physical time”, whereas the latter does not.
Logical clocks, which focus on the ordering of instants,
may ignore the physical duration between instants, but this
does not preclude quantitative information attached to (log-
ical) clock instants. MARTE also allows multiform time
modeling. This concept is inherited from synchronous lan-
guages [2]: time observations (through clocks) can rely on
different referentials. Control systems often resort to mul-
tiform time, for instance in automotive applications, time
can be measured as an angular position of the crankshaft

in a 4-stroke engine [3]. The many clocks of a model are
a priori independent. MARTE introduces a stereotype of
UML Constraint that constrains clock instants of the model.
These constraints can be expressed with the non normative
Clock Constraint Specification Language (CCSL) annexed
to MARTE specification [1, Annex C]. The formal semantics
of this language, which is outside the OMG specification, is
briefly described below.

TIMESQUARE mainly supports logical time, so, the pre-
sentation lays stress on this form of time.

2 Formal Foundations of the Time Model

2.1 Clock and Time Structure

A Clock is a 5-tuple 〈I,≺,D, λ, u〉where I is a set of in-
stants, ≺ is a quasi-order relation on I, named strict prece-
dence,D is a set of labels, λ : I → D is a labeling function,
u is a symbol, standing for a unit. For logical clocks, u is
often called tick, it can be processorCycle (or a busCycle)
as well or any other logical activation of a behavior. The
ordered set 〈I,≺〉 is the temporal structure associated with
the clock. ≺ is a total, irreflexive, and transitive binary re-
lation on I.

A discrete-time clock c is a clock with a discrete set of
instants I. Since I is discrete, it can be indexed by natural
numbers in a fashion that respects the ordering on I. c[k]
denotes the kth instant. Moreover, in the discrete case, each
instant, but the first one, has a unique direct predecessor.

A set of clocks constrained by clock constraints defines
a Time Structure. More formally, a time structure is a pair
〈C,4〉 where C is a set of clocks, 4 is a binary relation on⋃

c∈C Ic, named precedence. 4 is reflexive and transitive.
From 4 we derive four new instant relations: Coincidence
(≡,4 ∩ <), Strict precedence (≺,4 \ ≡), Independence
(‖, 4 ∪ <), and Exclusion (# ,≺ ∪ �). The set of in-
stants, quotiented by ≡ is a poset

〈⋃
c∈C Ic/ ≡,4

〉
.

Instant relations are defined on pairs of instants. This
is obviously not suitable for time structure specification.
Instead we have defined constraints on clocks: a clock

constraint imposes many—usually infinitely many—instant
constraints.

2.2 Clock constraints

Clock constraints can be divided into four categories:
synchronous, asynchronous, mixed, and NFP chronometric
(NFP stands for Non Functional Properties).

Synchronous clock constraints rely on coincidence. Sub-
clocking is such a constraint: each instant of the subclock
must coincide with one instant of the superclock. Of course,
the mapping must be order-preserving.

Asynchronous clock constraints are based on prece-
dence. A (discrete) clock a is faster than clock b if for all
natural number k, the kth instant of a precedes the kth in-
stant of b (∀k ∈ N, a[k] ≺ b[k]).

Mixed clock constraints combine both coincidence and
precedence. For instance the sampling constraint: c =
a sampledOn b imposes c to tick synchronously with b
whenever a tick of a precedes a tick of b.

NFP chronometric constraints apply to chronometric
clocks. They specify temporal properties such as stability,
offset, jitter, etc. These constraints are used to characterize
imperfect chronometric clocks.

Semantics of clock constraints

A Time Structure is considered as a dynamic system and
its behavior is defined by an infinite sequence of steps. A
step consists of simultaneous clock ticks. When a (discrete)
clock ticks, its current instant changes for the next one (its
current index is incremented by 1). We call configuration
of a time structure 〈C,4〉 a mapping c : C → N. For each
discrete clock clk, c(clk) is the current index of clock clk.
This index denotes the current instant of clk.

For a set of clocks subject to a conjunction of clock con-
straints, the challenge is, “given a configuration, determine
a step that meets all the constraints”. There may be 0 (in-
consistent constraints), 1 (deterministic) or several satisfy-
ing steps (non deterministic).

To address this challenge, we have endowed CCSL with
a structural operational semantics. It is sufficient to define
SOS rules for a kernel CCSL (less than 20 rules). For illus-
tration purpose, consider the “faster than” relation c1 ≺ c2.

c1, c ` B1

c2, c ` B2

β1 , (c (c1) = c (c2))

β2 , (c (c1) > c (c2))
c1 ≺ c2, c ` B1 ∧B2 ∧ ite (β1,¬γ2, β2)

This rule reads that, for the given configuration c, con-
straint “c1 faster than c2” implies the Boolean expression

on the right-hand side. In this rule, γk is a Boolean vari-
able associated with clock ck. γk = true means that ck
can tick. The Boolean expression refers to Boolean expres-
sions (B1, B2) attached to the concerned clocks (c1, c2), and
imposes additional logical constraints, specific to the faster-
than relation: ite (β1,¬γ2, β2), where ite is the if–then–else
ternary operator. An equivalent, but more verbose expres-
sion, is ((β1 ∧ ¬γ2) ∨ (¬β1 ∧ β2)).

Thus, from a CCSL specification we derive a set of
Boolean expressions. Let B be the conjunction of all these
expressions. Starting with B, we determine the set of all
possible (logical) solutions. From this set we deduce the
set of Enabled Clocks (E). A subset F (Fired Clocks) of
E characterizes the new step. Not all subsets of E are cor-
rect solutions because a step must contain all or none of the
clocks that have coincident instants. To derive F from E,
the user may choose among different policies: minimal so-
lution, maximal solution, and user’s defined policies. The
default policy is a random selection of a minimal correct
solution.

Applying rewriting rules of the form c1
c1∈F−−−→ c′1 for all

fired clocks yields the new set of clock constraints.

3 TimeSquare Environment

3.1 Functionalities

TIMESQUARE has four main functionalities: 1) interac-
tive clock-related specifications, 2) clock constraint check-
ing, 3) generation of a solution, 4) displaying and exploring
waveforms.

Figure 1. Dialog box for clock constraints.

TIMESQUARE has been designed to be used with UML
tools applying the MARTE profile. In this profile, clocks and
clock constraints can be associated with many and various
model elements. A wizard is included in TIMESQUARE. It
facilitates clock definitions, clock constraint specifications,
model element browsing, and parameter setting. Figure 1

2

Figure 2. Waveforms for Easter.

shows an example of dialog box for specifying clock con-
straints.

The second functionality checks constraint sanity and is
called when the above mentioned wizard is not used.

The third functionality relies on a constraint solver that
yields a satisfying execution trace or issues an error mes-
sage in case of inconsistency. The traces are given as
waveforms written in VCD format. VCD (Value Change
Dump) [4] is an IEEE standard textual format for dumpfiles
used by EDA (Electronic Design Automation) logic simu-
lation tools. The solver intensively uses Binary Decision
Diagrams (BDD).

Waveforms can be displayed with any VCD viewer.
TIMESQUARE has its own viewer enriched with interac-
tive constraint highlighting and access facilities. For in-
stance, the screen copy in Figure 2 shows precedence re-
lations (white oblique dashed arrows) and coincidence rela-
tions (red vertical solid lines).

3.2 Implementation

TIMESQUARE is a plug-in developed with Ganymede
Eclipse Modeling Tools (Eclipse packaging including EMF,
GMF, MDT XSD/OCL/UML2, M2M, M2T, and EMFT).
ANTLR for constraint parsing, and JavaBDD for the solver
are also used. TIMESQUARE is integrated in the OpenEm-
beDD platform.

4 Example

To illustrate clock constraints we deliberately choose a
non technical system. The Easter Day is determined by a
canonical rule and depends on a complex conjunction of
vernal equinox, new moon, and Sundays. All these con-
straints are captured by CCSL. A full specification of this

system, along with a more detailed presentation of the clock
constraints are available in a research report [5].

Figure 2 shows the Time Structure for Easter 2008.

5 Perspectives

At present, TIMESQUARE simulates the behavior of a
Time Structure specified in CCSL. Instead of a simple trace
generation, we could analyze the set of reachable configura-
tions for a given policy. This work is in progress and should
be greatly facilitated by our underlying formal semantics.

References

[1] OMG. UML Profile for MARTE, beta 2. Object Man-
agement Group, June 2008. OMG document number:
ptc/08-06-08.

[2] A. Benveniste, P. Caspi, S. A. Edwards, N. Halbwachs,
P. Le Guernic, and R. de Simone. The synchronous
languages 12 years later. Proceedings of the IEEE,
91(1):64–83, 2003.

[3] C. André, F. Mallet, and M-A Peraldi-Frati. A multi-
form time approach to real-time system modeling; ap-
plication to an automotive system. In Industrial Embed-
ded Systems, 2007. SIES ’07, pages 234–241, Lisbon,
July 2007. IEEE.

[4] IEEE Standards Association. IEEE Standard for Ver-
ilog Hardware Description Language. Design Automa-
tion Standards Committee, 2005. IEEE Std 1364TM-
2005.

[5] C. André and F. Mallet. Clock constraints in UML
MARTE CCSL. Research Report 6540, INRIA, 05
2008.

3

