
Functional Validation of Hardware Components
Rabéa Ameur-Boulifa, Sophie Coudert, Renaud Pacalet

System-on-Chip laboratory (LabSoC), GET/Telecom-Paris
2229, routes des Crêtes

BP 193
F-06904 Sophia-antipolis Cedex

Email:first.last@telecom-paristech.fr

Abstract— Functional validation of digital hardware compo-
nents is an important problem. Actually detecting bugs early in
the design cycle is crucial for both economic and methodolog-
ical reasons. Even though formal methods have emerged as a
successful approach to ensure the correctness of hardware their
use is still quite limited due to scalability problems. This paper
discusses a partial verification technique based on computation
of data dependency.

I. INTRODUCTION

Nowadays data abstraction technique is widely used to man-
age the complexity of verification and improve the comprehen-
siveness of simulation. Abstraction of complex calculations
in data-path of hardware component should greatly simplify
the validation process. Moreover it can provide the means to
find suitable components satisfying given requirements and so
improving reuse of off-the-shelf components.

A digital hardware module has a set of input and output
signals. It receives data values via input signals and gives
out results via output signals. Some functional properties of
modules do not require data values to be verified, since they
deal with the intentional presence and absence of data at a
specified instant. A data is said intentional or on purpose
when its value is considered relevant to the computation. It
is then called significant. Otherwise, it is ignored and called
non-significant

Based on this abstract representation of data, we aim at
proposing a verification framework which would enable an
engineer to verify that the functionalities of a given module
correspond to its specifications (without considering actual
concrete value of data). In particular, we are interested in ver-
ifying properties of the hardware modules which state that the
desired outputs arrive well at the time when they are expected
to arrive. By means of an approximation based on significance
the verification of such properties comes down to showing that,
an output is significant iff all inputs on which it depends were
significant. The dependency relationship between significance
of an output and fraction of inputs corresponds to the data
dependency semantics. This notion will be discussed in section
IV. In this paper, we propose a framework which allows us
to demonstrate functional properties for a hardware module of
large size. This framework integrates automatic computation
and injection of significance and it provides a convenient way
for specifying properties by using observers as in [3] : the

assumptions adopted to produce inputs; and the oracle which
compares the outputs with expected ones.

II. FUNCTIONAL VERIFICATION

Functional verification of hardware module by formal
method attempts to prove mathematically that certain require-
ments are met, or that certain undesired behaviors cannot
occur. The requirement is a property which expresses a con-
dition on the hardware module that should always be true in
reachable states. For example we wish to show that : whatever
the values of input data of a given module, the corresponding
output data value must be correct. Correct means that, ”the
data-path does what is intended”. This property may be
specified formally by the formula :
G((input = v∧ validin)⇒ Xn(output = f(v)∧ validout))
where G and X represents the temporal operators (always
and next), input (and output) the input (and output) vector,
v an input value, validin (and validout) the control signal
indicating that the input (and output) data is valid, and f repre-
sents the function of data-path that the module performs. The
exponent n represents the time between the input sampling
date and the availability of the corresponding output date. For
example, in a module, a particular output will be available
after 8 clock cycles after sampling the inputs.

Verifying whether the function f performs really as intended
could require a lot of effort. In fact, exhaustive verifying and
developing tests for all possible values of input signals can be
prohibitively expensive not to say impossible in some cases.
Thus, abstracting away concrete value of data can be necessary
for such verification. By using the significance concept, it is
possible to produce an abstract version of the previous property
in such a way that it can be specified as :
G((input = sig∧validin)⇒ Xn(output = sig∧validout))
where sig denotes the significant value and, input = sig
and output = sig indicate that the input and the output are
assigned with significant value (without giving there concrete
values). Note that the function f is no longer mentioned in
the property. It is reduced to a data dependency computation,
and translated into a block of boolean equations.

III. VERIFICATION FRAMEWORK

The proposed framework is composed of 3 components:
the module given for verification Module Under Validation
(MUV), and two observers : Assume and Property. Each



component is provided in the form of a VHDL entity/architec-
ture with distinct control and data inputs. Actually, we apply
the significance issue only on the data-path. So have to identify
distinctly data inputs from control inputs. All components
are composed in parallel, in a top module called “validation
module” (see Fig. 1) also provided in VHDL form.

Control Inputs

Data Inputs

(Values)

Assume

 Generator
Verdict

Monitor

Property
Bundling

MUV

Fig. 1. Validation Framework

a) Module Under Validation (MUV): is a hardware mod-
ule given in VHDL form. For illustration purpose, let us
suppose that the module under validation is a multiplication
module SPM which multiplies two numbers provided simulta-
neously at the data inputs A and B and produces the result on
its output S, 8 cycles later (Fig. 2).

The above property applied to this module will give :

SPM

A
S 

B

load
reset

dso

Fig. 2. SPM Module

G((A=sig ∧B=sig ∧ load)⇒X8(S =sig ∧ dso) U reset)
In the formula U is a temporal operator (until). It specifies

that it is always the case that a significant input of A and B
will result in a significant output S unless the RESET signal
is activated. LOAD and DSO are control signals that indicate
when the input is loaded and the output is valid respectively.

b) Assume: is the input generator which feeds the SPM
module with a sequence of inputs satisfying the requirements
in this case by a flow of significant values on inputs A and B.

The following VHDL process is an example of an input
generator that produces significant inputs according to the
value of control
signal LOAD. An
implementation
that ensures that,
when LOAD is

process(load)
begin

A <= (others => to_sig(load,’0’));
B <= (others => to_sig(load,’0’));

end process;

active, only significant inputs are loaded to module ; the
function to sig(load,’0’) converts bit vectors A and B into
significant value when LOAD is high, into non-significant
value otherwise. Note that this function has two parameters
the second one corresponding to the input value. Since
the value inputs are ignored we assign them in this case
inconsequentially to the value 0.

Once the computation is completed. Since the property is
only concerned about the significance of the output S this
former is bundled to a single bit S SIG representing either
significant or non-significant result. With the aim of bundling
vectors we apply the rule that states: “if any bit in the bit vector

is non-significant the whole bit vector is non-significant”. This
operation contributes to the minimization of the module.

c) Property: is the monitor, the component which takes
as input all the outputs coming from the module under
verification and computes a single boolean output which is
true as long as the observed satisfy the property.

For instance, the following process encodes the observer
that checks at each clock cycle whether the output that

process(clk)
begin
if (clk’event and clk = ’1’) then
if ((dso = ’1’ and S_sig = ’0’) and reset = ’0’) then

d_error <= ’1’;
else

d_error <= ’0’;
end if;

end if;
end process;

observed conforms to expected one or not, i.e, “if the output
is significant when DSO is active while RESET is non-active”.

IV. DATA DEPENDENCY

This work is based on a formal characterization of data
dependency among data values. By dependence of an output
on an input, we mean that the value on this input has an
impact of the value of the output. In other words, this input is
determinant of the output (notion similar to prime implicants
of the Boolean functions [4]). The dependency is formulated
by the property on significance by : an output is significant
iff it is computed from significant inputs. Among different
dependencies we are interested in static data dependency and
dynamic data dependency. – The static semantic is conser-
vative, the significance of any input is propagated towards
the output no matter it is being used under the corresponding
context or not. For example, the output of an AND logical
function will be non-significant if at least one input is non-
significant even if the value of the other is 0. – Conversely
the dynamic semantic is contextual, the impact of an input
value on the result can depend on the values of other inputs.
The impact of an input on the result can depend on both the
significance and the value of other inputs.

Our implementation supports the different semantics and
provides an easy way to set up our verification framework
according to the constraints that we use for computation.

V. CONCLUSION

We build a framework for automating functional verification
of hardware modules. It provides the user with programmatic
way of the property setting. We have used Candence compiler
[2] for logic synthesis and VIS model checker [1] for our
experimentation.

REFERENCES

[1] The VIS Home Page : http://vlsi.colorado.edu/ vis/.
[2] Cadence Design Systems Inc., 2008. Encounter RTL Compiler Synthesis.
[3] Gordon Pace, Nicolas Halbwachs, and Pascal Raymond. Counter-example

generation in symbolic abstract model-checking. Int. J. Softw. Tools
Technol. Transf., 5(2):158–164, 2004.

[4] W. Quine. The problem of simplifying the truth functions.
Amer.Math.Monthly, 59:521 – 531, 1952.


