
1

On Secure Information Flow in Reactive
Programming Paradigm (extended abstract)

Zhengqin Luo

INRIA Sophia-Antipolis

Zhengqin.Luo@sophia.inria.fr

I. Introduction

The language-based information flow security is a well
established theory [Sabelfeld and Myers(2003)]. Usually
inputs and outputs of programs are classified as either
public (low) or private (high). The aim is to ensure that
programs are non-interferent, which means any public in-
puts will produce exactly the same public outputs, regard-
less of what private inputs are. There have been various
static and dynamic analysis techniques to ensure this non-
interference property for different sequential languages.

However, the results are not very satisfactory for multi-
threaded language setting. Consider following three
threads in a ML-like while-language, where r and s are
ff initially, h is a private input and l is a public output:

t1 : if !h then r := tt else s := tt
t2 : (while ¬!r do l := ff ); s := tt
t3 : (while ¬!s do l := tt); r := tt

Usual type systems for non-interference will take each
thread as typable program, but the value stored in h is
assigned to l by standard interleaving semantics, violat-
ing the security property. Some type systems for multi-
threaded programs are proposed [Smith(2001)], [Boudol
and Castellani(2002)], [Sabelfeld(2001)], but they are too
conservative by rejecting following programs:

p1 : (if !h then () else ()); l := 1
p2 : (while !h do ()); l := 1

Those type systems forbid any testing of confidential vari-
ables followed by assignment of public variables, since im-
plicit synchronizations between threads (by testing shared
variables) are usually difficult to track.

The reactive programming paradigm (a.k.a. syn-
chronous programming [Boussinot and de Simone(1996)]),
on the other hand, provides another solution for multi-
threaded programming. Threads are synchronized by ex-
plicitly using broadcasting signals, suspension construct,
and preemption construct. Unsimilar to the standard inter-
leaving semantics, each thread will not yield the scheduler
until it suspends or terminates.

In this paper, we investigate how information is flowed
among threads in reactive programs. We show that there
are new ways of leaking information in this programming
paradigm. We also show how to define run-time security
errors in this particularly setting, to prevent insecure in-
formation flow. We implement the semantics as a moni-
toring abstract machine, which dynamically tracks infor-
mation flow during execution. We propose a fine-grained

termination-insensitive definition of non-interference, par-
ticularly for this reactive setting. We also present a type
and effect system, which accepts more programs then usual
type systems for multi-threaded programs, to guarantee a
safety property (no run-time error occurs).

II. Reactive programming paradigm and
information flow

We consider here a core language which is a subset of
ULM language [Boudol(2004)]. Our language extends the
imperative ML-like language with reactive primitive for
broadcasting signal (emit), suspension (when) and preemp-
tion (watch), together with a cooperative scheduling policy
over threads.

A reactive machine M = [µ, ξ, t, T ] contains a running
thread t and a queue of waiting threads denoted by T . All
these threads are ordered by the creation time, and they
share the same store µ and signal environment ξ. µ maps
variables to values, and ξ is the set of currently present sig-
nals. Informally, (emit s) adds signal s to ξ. (when s do M)
first tests whether signal s is present; if s is present, then
M is evaluated; otherwise the thread will suspend itself.
(watch s do M) gives up the evaluation of M when s is
present at a special moment (explained later).

This reactive machine runs as follows: all threads are
cooperatively scheduled, which means the currently run-
ning thread t will keep running until it suspends or ter-
minates. When scheduling is needed, the immediate suc-
cessor (by the order of creating time) of current thread is
scheduled to run. Computations are divided by instants,
in which threads execute until all of them are suspended
or terminated. At the end of each instant, preemptions
(watch s do M) will take place, and then the signal en-
vironment ξ is reset to empty. At the beginning of a new
instant, the oldest thread is set to be the currently running
thread.

Since threads are synchronized by signals, then emiting
and testing signals may leak some information. For in-
stance, the following three threads will again assign h to
l.

r1 : if !h then (emit r) else (emit s)
r2 : (when r do l := ff ); emit s
r3 : (when s do l := tt); emit r

We classify signals as either public or private, because
it can convey information by being emitted and tested.
Similar to the case of variables, we can consider emitting
a signal as storing something in a variable, testing a signal



2

as reading from a variable.

III. A monitoring semantics

It has been argued in [Boudol(2008)] that, from a pro-
grammer’s point view, insecure information flow should be
seen as a programming error. A security-minded seman-
tics is given to a sequential language under consideration,
marking any attempt to assign values that elaborated us-
ing confidential information to public locations as run-time
error. In this section we extend the monitoring semantics
to the reactive programming paradigm. This semantics
dynamically tracks information flow during the execution
of the reactive machine.

We assume a security lattice (L,�) for confidentiality
levels. Variables and signals are labeled with these levels.
L � H means that xL is less confidential then yH .

The operational semantics is defined by means of an ab-
stract machine for each independent thread. It augments
the standard machines by separately building a reading
level and a reactive level during the execution. The read-
ing level records the confidential level of the information
obtained by reading variables. The reactive level records
the level of information obtained by testing signals through
reactive construct (suspension, preemption). A running
thread is organized as t = (pc, cur, S,M), where pc is read-
ing level, cur is reactive level, S is the stack, and M is
the code to evaluate. For space reason, detailed rules of
semantics are not given.

When creating a reference (variable), or doing an assign-
ment, or emitting a signal, we check whether the level of
target location is not less than the current reading level
and reactive level, to prevent one from storing high level
information in low level locations:

pc � l and cur � l

If the checks are failed, the reactive machine will raise a
run-time error.

[µ, ξ, t, T ]→ err

IV. A fine-grained termination-insensitive
definition of security

The standard non-interference property does not work
quite well with reactive programs, since it only con-
sider terminated programs, while most reactive programs
are designed to be running forever. On the other
hand, most properties based on bisimulation can deal
with non-terminating programs. But they are by na-
ture termination-sensitive or suspension-sensitive, giving
the adversary unrealistic power to observe termination or
suspension.

We propose another fine-grained termination-insensitive
definition of security, where the adversary cannot observe
termination or suspension, but it can observe the pub-
lic part of the memory and the signal environment. In-
formally, if the adversary can not distinguish two con-
figurations of machine c1 = (µ1, ξ1, t1, T1) and c2 =

(µ2, ξ2, t2, T2), then 1 c1 ≈L c2 and one of the following
holds.

1. c1 → c′1, and c2 →∗ c′2, where c′1 is indistinguishable
with c′2;

2. c1 → c′1, and for any configuration c′2 that is reachable
from c2: c2 →∗ c′2, c2 ≈L c′2;

3. Vice versa for c2.
The intuition for this definition is that if two machines

are indistinguishable, then either each step made by one
machine can always be matched by the other one, or the
other machine can not do anything that is observable by
the adversary.

We show that, if a reactive program does not run into se-
curity error, then it is secure according to our find-grained
definition of security.

V. Type and effect system

We have designed a standard type system which entails
the safety property. The design of the type system fol-
lows the line of “state-oriented” approach [Boudol(2005)],
[Matos and Boudol(2005)]. Furthermore, we take the cur-
rent reading level pc and reactive level cur into the typing
judgment, in order to type the running thread. The judge-
ments of the type and effect system have the form:

pc; cur; Γ `M : e, τ

where Γ is a typing context that maps variable to its type,
e is a security effect and τ is a type. We overload Γ ` µ to
type memory store µ, which means each value in the store
is typable.

Our type system is flexible in a way that we do not
restrict assignments of low level variables following after
testing of high level varibales. We have the type safety
result saying that if a program is typable, then no run-
time check is required. Informally, we say M is secure
when M does not run into security error.

Theorem 1 (Type Safety) If M is typable in typing con-
text Γ for initial levels (⊥,⊥), that is, ⊥,⊥,Γ ` M : e, τ
for some e and τ , and memory µ is typable, that is Γ ` µ,
then M is secure with µ.

VI. Conclusion

In this paper we investigate the information flow prob-
lem in a reactive programming setting, which augments
the multi-threaded functional language with reactive con-
structs to achieve cooperative synchronization between
threads. We investigate how information can be flowed
in this setting, and propose a fine-grained definition of se-
curity. Furthermore, we define the security property as a
safety property by means of dynamically checking infor-
mation flow during evaluation. Finally, we show a type
system to ensure that typable programs do not need these
dynamic checks during the execution.

1 For ease of presentation, we informally use ≈L to denote that
memories and signal environments coincide on the public part.



ON SECURE INFORMATION FLOW IN REACTIVE PROGRAMMING PARADIGM (EXTENDED ABSTRACT) 3

References

[Boudol(2004)] Gérard Boudol. ULM: A core programming model
for global computing: (extended abstract). In ESOP, pages 234–
248, 2004.

[Boudol(2005)] Gérard Boudol. On typing information flow. In
Dang Van Hung and Martin Wirsing, editors, ICTAC, volume
3722 of Lecture Notes in Computer Science, pages 366–380.
Springer, 2005. ISBN 3-540-29107-5.

[Boudol(2008)] Gérard Boudol. Secure information flow as a safety
property. In Pierpaolo Degano, Joshua D. Guttman, and Fabio
Martinelli, editors, Formal Aspects in Security and Trust, vol-
ume 5491 of Lecture Notes in Computer Science, pages 20–34.
Springer, 2008.

[Boudol and Castellani(2002)] Gérard Boudol and Ilaria Castellani.
Noninterference for concurrent programs and thread systems.
Theor. Comput. Sci., 281(1-2):109–130, 2002.

[Boussinot and de Simone(1996)] Frédéric Boussinot and Robert
de Simone. The sl synchronous language. IEEE Trans. Software
Eng., 22(4):256–266, 1996.

[Matos and Boudol(2005)] Ana Almeida Matos and Gérard Boudol.
On declassification and the non-disclosure policy. In CSFW,
pages 226–240. IEEE Computer Society, 2005. ISBN 0-7695-2340-
4.

[Sabelfeld(2001)] Andrei Sabelfeld. The impact of synchronisation
on secure information flow in concurrent programs. In Dines
Bjørner, Manfred Broy, and Alexandre V. Zamulin, editors, Er-
shov Memorial Conference, volume 2244 of Lecture Notes in
Computer Science, pages 225–239. Springer, 2001. ISBN 3-540-
43075-X.

[Sabelfeld and Myers(2003)] Andrei Sabelfeld and Andrew C. My-
ers. Language-based information-flow security. IEEE Journal on
Selected Areas in Communications, 21:2003, 2003.

[Smith(2001)] Geoffrey Smith. A new type system for secure infor-
mation flow. In CSFW, pages 115–125. IEEE Computer Society,
2001. ISBN 0-7695-1146-5.


