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Abstract— This article presents an interactive simulation
environment for high level models intended for Design Space
Exploration of Systems-On-Chip. Our coarse grained sim-
ulation methodology which allows for efficient system level
performance estimations was detailed in the scope of our last
year’s submission [4]. Our new achievement comprises an
additional module which allows the designer to control the
simulation in real time by performing step wise execution,
saving and restoring simulation states as well as providing live
feedback to a graphical interface. Finally, this article gives an
idea of possible enhancements of the simulation environment
in order to automatically assess several possible executions of
tasks and thus enhance simulation coverage.

I. INTRODUCTION

The increasing complexity of today’s embedded systems
requires an evaluation of benchmark data as early as possible
in the design flow. At early design stages, low level models
of the Systems-On-Chip are not available yet. Design Space
Exploration aims at identifying the most suitable hardware
/ software platform complying to given constraints. This
stage is accomplished based on high level models of the
target system, on which fast simulations and static formal
analysis can be performed in order to verify the satisfiability
of both functional and non functional requirements.

In this context, we have previously introduced a UML-based
environment, named DIPLODOCUS ([3], [5]). The strength
of our approach relies on formal verification capabilities,
and fast simulation techniques. DIPLODOCUS design
approach is based on the following fundamental principles:

• Use of a high level language (UML).
• Clear separation between application and architectural

matters.
• Data abstraction.
• Use of fast simulation and static formal analysis tech-

niques, both at application and mapping levels.
Moreover, DIPLODOCUS includes the following 3-step
methodology:

1) Applications are first modeled using tasks with com-
munication capabilities.

2) Targeted hardware architectures are modeled indepen-
dently from applications. A set of usual hardware
components has been defined (e.g. CPUs, buses, etc.).

3) A mapping process defines how applications may be
mapped onto a given architecture.

An open source modeling and validation framework called
TTool ([1], [2]) is meant to guide the designer while per-
forming the aforementioned steps. After having conceived
application and architecture/mapping models, the designer
may launch formal verification (based on LOTOS/UPPAAL)
or simulation at the push of a button. Formal verifications
may be conducted in order to verify the absence of deadlock
situations and liveness properties. In order to obtain key fig-
ures characterizing the respective architecture, the graphical
model is automatically converted to a C++ representation.
The latter is compiled and run subsequently in the framework
of the provided simulation engine.

This paper focuses on the interactive simulation which
may be carried out after the designer has established an
association between entities of the application model (like
tasks and channels) and generic parametrizable hardware
components (like CPUs, buses, memories, etc.). A task is
described by means of usual commands (loops, tests, variable
settings, etc.), of communication commands (reading/writing
abstract data samples in channels, sending/receiving events
and requests), and of computational cost commands (EXECx
instructions). A mapping is described using a set of intercon-
nected hardware nodes on which tasks, channels, events and
requests are mapped.

In the scope of our last years’ contribution [4], we
proposed an efficient simulation environment implemented
in pure C++ which leverages the characteristics of our
high level application model. It renounces to a cycle-based
analysis of application tasks by processing bunches of
clock cycles (hereafter referred to as transactions) as
a whole. Thus, a transaction stands for a portion of a
command which belongs to a specific task of the application
model. Transactions are initially defined according to those
commands but inter task synchronization or component
parametrization might induce truncations of transactions.
Thus, modeling granularity as well as the amount of
inter task communications solely impact the simulation
performance regardless of the specific amount of clock
cycles to be simulated.

II. INTRODUCING INTERACTIVITY

The above mentioned simulation environment has been en-
hanced and it henceforth allows for an interactive exploration
of the application based on a particular architecture. A TCP



connection provides the simulator with commands intended
for directing the simulation. For example, the following
simulation commands have already been implemented:

• Different flavors of run commands: a given amount of
transactions, commands or time units is simulated...

• ...likewise simulation may be interrupted when a given
element processes a transaction (a CPU, a Bus, a
Memory, etc.).

• Reset the simulation.
• Save and restore the simulation state, especially useful

when several branches of control flow are to be looked
into.

• Simulation traces can be output in several formats (text,
VCD, HTML).

• Breakpoint related commands like setting and deleting
breakpoints.

• Commands to obtain information about the progress
of the simulation. These are used to animate UML
diagrams within TTool.

TTool encompasses a graphical interface to direct the
simulation (Figure 1) and thus unburdens the user from
familiarizing with a low-level simulation language. The
feedback from the simulation engine is exploited by
the graphical user interface and used to animate UML
application diagrams. For instance, the current command of
a task is highlighted for following simulation progress on
each task. As a simple example, let us consider an algorithm
having two main branches which significantly differ in
terms of execution time and resource usage in general.
For the performance evaluation of a specific architecture,
it would be crucial to try out both alternatives. Hence,
the coverage of the simulation should be enhanced. As
a first step, the designer could benefit from the various
conditional run commands so as to get a more intuitive
view of the behavior of the application and the interaction
of hardware components. The next step could be to reset the
simulation and to set a breakpoint on the branch command
which is crucial for the continuation of the simulation.
The simulation will stop at the previously defined choice
command therefore allowing the user to specify which
branch he means to explore. In combination with the
feature of capturing simulation states, complex scenarios
can be evaluated and meaningful traces be recorded. In
our example, the user would certainly save the simulation
state when reaching the choice command so that it can be
restored to study other alternative executions.

III. CONCLUSIONS AND FUTURE DIRECTIONS

In conclusion it can be said that the contribution of this
paper is on the one hand the extension of our simulation
environment with a module providing an interactive control
of the simulation procedure. On the other hand, the new sim-
ulation features have been tightly coupled to our integrated
development environment TTool so that simulation progress
is directly visualized within the UML diagrams representing
the application model. Thus, a powerful toolbox is provided

to the designer which is helpful when performing Design
Space Exploration. It may alleviate considerably the process
of

• Debugging applications
• Accessing intermediate simulation results
• Returning to previous system states
• Enhancing the coverage of the simulation by exploring

several control flow branches.
Hence an intuitive insight into complex interrelationships of
the system can be gained with ease.

Fig. 1. Screenshot of the Simulation Interface

In addition to technical improvements of the simulator,
future work will include the automatic exploration of several
alternative executions in order to enhance the simulation
coverage. Furthermore, advanced simulation capabilities will
be subject to further research activities. For example, one
could think of specifying functional requirements which
are checked during simulation (for example: if a client
requests the bus, access is always granted within 10ms).
The exploration of some branches could be privileged or
abandoned based on certain criteria (CPU usage, resource
contention, etc). When accounting for different executions,
recurring system states should be tracked so as to be able to
merge the control flow again.
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