
1

A Logic Based Approach to the Static Analysis of
Production Systems

Jos de Bruijn and Martı́n Rezk

{debruijn,rezk}@inf.unibz.it

Free University of Bozen-Bolzano

I. I NTRODUCTION

Production systems (PS) are one of the oldest knowledge
representation paradigms in artificial intelligence, and are still
widely used today,1 for example to preserve consistency in
databases, AI planning, etc. Such a system consists of a set
of rulesr of the form “if conditionr thenactionr”, a working
memory, which contains the current state of knowledge, and a
rule interpreter, which executes the rules and makes changes in
the working memory, based on the actions in the rules.

In general rule-based systems are administered and executed
in a distributed environment where the rules are interchanged
using standardized rule languages, e.g. RIF, RuleML, SWRL.
The new system obtained from adding (or removing) the inter-
changed rules need to be consistent, and some properties be pre-
served, e.g. termination. In this work we address the staticanal-
ysis of such production systems, which means deciding prop-
erties like termination and confluence (all runs of the systems
terminate with the same working memory) . We propose using
logics and their reasoning techniques from the area of software
specification and verification, in particularµ-calculus [1] and
fixed-point logic (FPL) [2].

Given a working memory (a set of facts, i.e., ground atomic
formulas), the rule interpreter applies rules in three steps: (1)
pattern matching, (2)conflict resolution, and (3)rule execution.
In the first step, the interpreter decides – nowadays typically us-
ing the RETE algorithm [3] – for each ruleri and for each vari-
able substitutionσj whetherri can be applied in the working
memory usingσj , i.e., whether the working memory satisfies
σj(conditionri

). This step returns all pairs(ri,σj) such thatri
can be applied usingσj ; this set is called the conflict resolution
set. In step (2), the interpreter chooses zero or one pair from
the conflict resolution set; in case the set is empty or no pair
is chosen, the system terminates. In the last step, the working
memory is updated following the additions and removals in the
action part of the selected rule. The interpreter then starts again
with step (1).

The operational semantics of production systems makes it
difficult to analyze their behavior. Therefore, it is desirable to
use a formalism with a declarative semantics for static analysis.
We use two well-known logics that are frequently used in the
area of software verification. For the analysis of propositional
systems we useµ-calculus, which is a modal logic extended
with the least and greatest fixpoint operators, and for which
common reasoning tasks, such as entailment, are decidable in

1 http : / /www .jessrules.com/
http : / /clipsrules.sourceforge. net/
http : / /www .ilog. com/ products/ jrules/

exponential time. For the first-order systems we use fixed-point
logic (FPL), an extension of FOL with least and greatest fixpoint
operators. Even though reasoning with FPL is not decidable in
the general case, there are decidable subsets [4].

Our main contributions with this paper are as follows. We
present an embedding of propositional production systems into
µ-calculus and show how this embedding can be used for the
static analysis of production systems. We then present an em-
bedding of first-order production systems in fixed-point logic,
show how the embedding can be used for reasoning over the
production system, and discuss two decidable cases.

We use properties of these logics to derive (un)decidability
and complexity results for deciding properties such as termi-
nation and confluence of production systems. The embedding
of first-order production systems into FPL serves as a starting
point for investigating further decidable subsets (e.g., based on
the guarded fragment [4]), in particular when considering fur-
ther strategies that limit the choice in the conflict resolution step
(2) of the rule application – for example, such strategies may
guarantee termination, and thus finite models of the embedding.

II. PROPOSITIONAL PRODUCTION SYSTEMS

In this section we present formal definitions of propositional
production systems, and then the axiomatization needed to
check properties on PS.

Definition 1: A Generic Production System(GPS) is a tuple
PS = (Prop,L,R), whereProp is a finite set of propositions,
representing the set of potential facts,L is a set of rule labels,
andR is a set ofrules, which are statements of the form

r : if φr thenψr

wherer ∈ L, φr is a propositional formula, andψr = a1∧ ·· · ∧
ak ∧¬b1∧·· ·∧¬bl, with ai 6= bj (ai, bj ∈ Prop) signifying the
propositions added, respectively removed by the rule
In the following, letPS = (Prop,L,R) be a production sys-
tem. A Working MemoryWM ⊆ Prop for PS is a set of
propositions.

A rule r is fireablein a working memoryWM if WM |= φr

andWM ′ =WM ∪ψadd
r \ψremove

r 6=WM .
A concrete production system(CPS) is a pair(PS,WM0),

whereWM0 is a working memory.
Definition 2: A computation treeCTPS

WM0
for a CPS

(PS,WM0) is a (Prop∪L)-labeled tree(T,V ) such that the
root ofT is 0, V (0) =WM0, and each branch represents a run
of the system.

A. Axiomatization

The existence of a formal description of any language is a
prerequisite to any rigorous method of proof, validation, or ver-

http://www.jessrules.com/
http://clipsrules.sourceforge.net/
http://www.ilog.com/products/jrules/


2

ification. Here we present (due to lack of space) the general
idea of the axiomatization of production systems inµ-calculus.
In the following subsections we will show how this axiomatiza-
tion can be used for reasoning about production systems.

We first define the necessary components of the formula com-
prising the axiomatization. These components (nine axioms)
encode the constrains and requirements in the relation between
one state and its successors depending if it is an intermediate
state in the execution of the PS, or a state representing the end
of a run. We also provide an axiom to solve the frame problem
for this case. A greatest fix point composed of these compo-
nents restricts the models to the ones which are bisimilar toa
computation tree (CT). The states in the models of the axioma-
tization can be seen as nodes in the computation tree. Abstractly
theµ-calculus formula that captures the production systemPS

looks like:

ΦPS = [(RootAlone)∨ (ExistsApplicableRules∧

�(ν.X.(intermediate∨ end)∧�X)))]

Where the greatest fix point requires every successor of the
root to be an intermediate node in the run (satisfying a set the
axioms, for example, a rule was applied, it has a predecessor
in which a precondition of the rule holds) or the last node of a
terminating run (satisfying other set of axioms encoding that it
has no successor, no rule can be applied, etc).

We now proceed to prove bisimilarity between the models
of ΦPS and the computation trees ofPS. We will exploit this
result later for reasoning aboutPS.

Theorem 1:Given a Production systemPS = (Prop,L,R),
a starting working memoryWM0, and the formulaΦPS , a
Kripke structureK = (S,R,V ) is a model ofΦPS iff there is a
working memoryWM for PS such that there is ans ∈ S and
(K,s) is bisimilar to(CTPS

WM ,0)

An analogous theorem state the bisimilarity relation between
CPS and an specificCTPS

WM0
.

B. Deciding Properties of Production Systems

Typical properties of production systems one would like to
check are termination and confluence of the system. However,
one could imagine many additional properties of interest, e.g.,
redundancy of rules (useful in the design of the system). Here,
due to lack of space, we will discuss just about termination and
confluence. Termination can be encoded inµ-Calculus as:

(µ.X.�X)

and Confluence
∧

qi∈Prop(µ.X.(� ⊥ ∧qi)∨♦X) → (ν.X.(� ⊥→ qi)∧�X)

Properties termination and confluence hold for a
generic/concrete production systemPS iff ΦPS entails
theµ-calculus formula encoding them. From the fact thatΦPS

is polynomial in the size ofPS and the fact thatµ-calculus
entailment can be decided in exponential time, we conclude
that these properties can be decided in exponential time, both
on generic and concrete production systems.

III. F IRST ORDER PRODUCTION SYSTEMS

We now consider the case of production systems with vari-
ables. In the first order case Interpretations in FPL are first-
order structures; therefore, we capture the structure of the com-
putation tree using the binary predicateR, and we divide the
domain into two parts: the nodes of the tree, i.e., the states(A),
and the objects in the working memories (U ). The arity of the
predicates inP ∪L is increased by one, and the first argument of
each predicates will signify the state;p(y,x1, . . . ,xn) intuitively
means thatp(x1, . . . ,xn) holds in statey.

Analogous to the propositional case, we defined a formula
that captures the behavior ofPS. The most notable differences
with the propositional axiomatization is that in the first order
case we have a set of “foundational” axioms to describe the do-
main, and that in the propositional case, we could require that a
fireable rule is applied at least once, but it could be appliedsev-
eral times. In the first-order case, we can require a fireable rule
to be applied exactly once. We can therefore obtain a stronger
correspondence (compared with the one in Theorem 1) between
computation trees and Kripke models: they are essentially iso-
morphic.

FPL is undecidable, but under certain constrains we can still
reduce the problem to a decidable logic.

Proposition 2: LetPS be an FO production system such that
rules are quantifier-free and the set of constants are finite,and let
WM be a working memory. Then, the properties termination
and confluence can be decided in double exponential time, on
bothPS and(PS,WM).

IV. CONCLUSIONS ANDFUTURE WORK

In this paper we presented an embedding of propositional
production systems intoµ-calculus, and first-order production
systems into fixed-point logic. We exploited the fixpoint opera-
tor in both logics to encode properties of the system over time.
One of the advantages of our encodings is the strong correspon-
dence between the structure of the models and the runs of the
production systems, which enables straightforward modeling of
properties of the system in the logic. We plan to extend the work
presented in this paper in a number of directions. We plan to ex-
tend both the propositional and first-order case with additional
conflict resolution strategies, e.g., based on rule priorities. We
plan to extend the first-order case with object invention, i.e., the
rules may assert information about new (anonymous) objects;
this is strongly related to existential quantification in logic. An-
other topic we plan to address are new decidable fragments of
our first-order encoding, in particular restricting the conditions
and possibly the working memory, and conflict resolution strate-
gies in order to exploit the guarded fragment of FPL [4], as well
as translations to monadic second-order logic over trees; both
fragments are known to be decidable.

REFERENCES

[1] Kozen, D.: Results on the propositionalµ-calculus. In: Proceedings of the
9th Colloquium on Automata, Languages and Programming, London, UK,
Springer-Verlag (1982) 348–359

[2] Gurevich, Y., Shelah, S.: Fixed-point extensions of first-order logic. Sym-
posium on Foundations of Computer Science0 (1985) 346–353

[3] Forgy, C.: Rete: A fast algorithm for the many patterns/many objects match
problem. Artif. Intell.19(1) (1982) 17–37

[4] Grädel, E.: Guarded fixed point logics and the monadic theory of countable
trees. Theor. Comput. Sci.288(1) (2002) 129–152


	Introduction
	Propositional Production Systems
	Axiomatization
	Deciding Properties of Production Systems

	First Order Production Systems

	Conclusions and Future Work

