
Automating Language-Based Cryptographic Proofs

Santiago Zanella Béguelin Benjamin Grégoire Sylvain Heraud

INRIA Sophia Antipolis - Méditerranée

{Santiago.Zanella,Benjamin.Gregoire,Sylvain.Heraud}@inria.fr

Gilles Barthe Federico Olmedo

IMDEA Software

{Gilles.Barthe,Federico.Olmedo}@imdea.org

Abstract—CertiCrypt is an automated framework to construct
and verify security proofs of cryptographic systems in the
computational model. We overview the main characteristics of
CertiCrypt, the tools it provides to ease the construction of
proofs, the degree of automation it achieves, and the case studies
where it has been applied so far.

I. INTRODUCTION

In cryptography, provable security advocates a mathematical

approach where the goals and requirements of cryptographic

systems are specified precisely, and where the security proof

is carried out rigorously and makes explicit the assumptions it

relies upon. Security objectives are expressed in complexity-

theoretical terms and refer to the probability of an efficient ad-

versary to thwart a security objective, whereas security proofs

have the form of reductionist arguments. A typical reductionist

proof assumes the existence of an adversary A that breaks the

security of the system with a certain probability ǫ and within a

certain amount of time t, and exhibits another adversary B that

uses A to solve an instance of a computational hard problem

with probability ǫ −∆ǫ within time t + ∆t. The smaller ∆ǫ

and ∆t are, the tighter the proof, and the closer the problem

of breaking the security of the system is to the computational

hard problem under consideration. The tightness of a reduction

is of paramount practical importance, it allows to improve the

efficiency of a cryptographic system while maintaining strong

security guarantees.

The game-playing technique is a general method to structure

and unify reductionist proofs that has been widely applied in

the literature. In essence, the game-playing technique suggests

to view the interaction between adversaryA and the cryptosys-

tem as a probabilistic game. The winning probability of the

adversary corresponds to the probability of breaking security.

In the same way, the probability of adversary B in solving

a computational hard problem is specified as the probability

of an event in another game. Relating the two probabilities

directly can be a complex, error-prone task that involves nested

case analysis and reasoning about conditional probabilities.

Instead, the proof is broke down into simpler steps of man-

ageable complexity, using a sequence of intermediate games

(Fig. 1). Most of the time these steps fall into recurring patterns

that can be stated as general lemmas and proven correct once

and for all.

Although the adoption of provable security and the game-

playing technique has significantly enhanced confidence in

Game G0 :
. . .

· · · ← A(· · ·)
. . .

Game G1 :
. . .

. . .

. . .

. . .

Game Gn :
. . .

· · · ← B(· · ·)
. . .

ǫ = PrG0
[A0] ≤ PrG1

[A1] ≤ · · · ≤ ǫ + ∆ǫ

Fig. 1. Typical structure of a game-based reductionist argument

cryptographic systems, the community is increasingly wary

about security proofs. This is partly due to the fact that proofs

are rather involved and rely on different kinds of mathematical

reasoning including complexity theory, probability theory and

group theory. However, the main reason is to be found in the

difficulty in pinpointing hypotheses in proofs and in isolating

the creative and original parts from the uninteresting steps

occurring in every other proof.

Bellare and Rogaway [1], and Halevi [2] propose the game-

playing technique as a natural solution for taming the com-

plexity of proofs but recognize the need for a fully-specified

programming language to represent games. Inspired by these

ideas, we took a language-based approach and developed

CertiCrypt [3]–[5], a framework built on top of the Coq proof

assistant to construct and verify game-based security proofs

of cryptographic systems. We put particular emphasis on the

following three principles:

• Generality: the tool should be sufficiently general not to

limit the conduct of cryptographic proofs: its underlying

language should be sufficiently expressive to capture all

notions and assumptions used by cryptographers, and its

underlying logic should be sufficiently powerful so that

all forms of mathematical judgments can be formalized

and checked;

• High assurance: the tool should produce proof objects

that are verifiable independently by small and trustworthy

proof checkers. In particular, the proof objects should

justify all steps in the proof, and should guarantee that

side conditions which arise in the application of game

transformations are verified;

• Automation: the tool should assist the user in proving

transitions between games, or even to find the sequence of

games. Ideally the tool should provide sufficient support

to handle automatically all routine steps so that users can

focus on the creative part of the proof.

II. AN AUTOMATED FRAMEWORK

To describe games we use a typed probabilistic WHILE

language with procedure calls:

C ::= skip nop

| C; C sequence

| V ← E assignment

| V $← D random sampling

| if E then C else C conditional

| while E do C while loop

| V ← P(E , . . . , E) procedure call

We formalized a deep embedding of this language into Coq,

which allows us to mechanize program transformation by

purely syntactical manipulation. The language of expressions

(E) and distribution expressions (D) admits user-defined exten-

sions. It is worth noting that, in contrast to other approaches,

our formalization does not impose any restriction in the

form of adversaries. Adversaries are simply represented as

uninterpreted procedures, which gives them the full expressive

power of the language.

Building upon previous work on the bisimulation of proba-

bilistic automata, we formalized a notion of program equiva-

lence. Intuitively, we say that two games G1 and G2 are obser-

vational equivalent with respect to an input set of variables I

and an output set of variables O, and we note it |= G1 ≃
I
O G2,

when starting from initial memories that coincide on I , the

projection on O of the distributions resulting from the execu-

tion of each of the games coincide. The following rule allows

then to relate observational equivalence to probability:

m1 =I m2 |= G1 ≃
I
O G2 fv(A) ⊆ O

PrG1,m1
[A] = PrG2,m2

[A]

This notion can be naturally generalized to arbitrary pre and

postconditions, which leads to a Probabilistic Relational Hoare

Logic. Using these tools we mechanized in one hand most

common program transformations as reflection-based Coq

tactics, including dead code elimination, constant folding and

propagation, procedure call inlining and code movement. The

tactics work in a goal oriented manner; for each transformation

T , we proved a soundness rule of the form

T (G1, G2, I, O) = (G1
′, G2

′, I ′, O′) |= G1
′ ≃I′

O′ G2
′

|= G1 ≃
I
O G2

On the other hand, to automate proofs of equivalence with

arbitrary pre and postconditions we implemented a relational

weakest precondition calculus for probabilistic programs.

Other recurring patterns in game-based proof have been

automated to a great extent. Notably, this includes the lazy

sampling technique that allows one to defer random choices

in games until they are actually needed, or conversely, to make

random choices as early as possible, and a syntactic criterion

to apply the Fundamental Lemma of Game-Playing that allows

one to bound the difference in the probability of some event in

two games whose behavior differs only after some particular

event happens.

III. CASE STUDIES

The CertiCrypt framework has been put into practice in sev-

eral case studies. Namely, we have proven the pseudorandom

function/pseudroandom permutation switching lemma [1], [3],

the semantic security of the ElGamal and Hashed ElGa-

mal encryption schemes in the standard and random oracle

models [3], [5], [6], the existential unforgeability of Full-

Domain Hash signatures [4], [7], and an improved bound on

the exact semantic security of the widely-deployed OAEP

scheme [3], [8]. Regarding protocols, we have proven correct-

ness, completeness, and the Honest-Verifier Zero-Knowledge

property of several Zero-Knowledge protocols, as well as

general theorems allowing to AND/OR compose arbitrary

Zero-Knowledge proofs.

IV. CONCLUSION

By building the framework on top of the Coq proof assistant,

we excel in generality and high-assurance. Any conceivable

argument could be used in a proof and every hypothesis and

side condition has to be made explicit. Furthermore, a proof

in CertiCrypt produces a certificate that can be independently

and automatically verified using just the highly trustworthy

Coq kernel. To ease the construction of proofs, we have

mechanized most of the techniques commonly used in game-

based reductionist arguments. Still, constructing a proof in

CertiCrypt is a time-consuming task that requires a high level

of familiarity not only with the tools the framework provides,

but with the Coq proof assistant in general as well. We believe

this burden could be alleviated by providing a user interface to

describe the general structure of a game-based proof, leaving

the more involved proof arguments as lemmas to be proven

later interactively.

REFERENCES

[1] M. Bellare and P. Rogaway, “The security of triple encryption and a
framework for code-based game-playing proofs,” in Advances in Cryp-

tology – EUROCRYPT’06, ser. Lecture Notes in Computer Science, vol.
4004. Springer-Verlag, 2006, pp. 409–426.

[2] S. Halevi, “A plausible approach to computer-aided cryptographic proofs,”
Cryptology ePrint Archive, Report 2005/181, 2005.

[3] G. Barthe, B. Grégoire, and S. Zanella Béguelin, “Formal certification
of code-based cryptographic proofs,” in Proceedings of the 36th ACM

Symposium on Principles of Programming Languages. ACM Press, 2009,
pp. 90–101.

[4] S. Zanella Béguelin, B. Grégoire, G. Barthe, and F. Olmedo, “Formally
certifying the security of digital signature schemes,” in 30th IEEE

Symposium on Security and Privacy, S&P 2009, 2009.
[5] G. Barthe, B. Grégoire, S. Heraud, and S. Zanella Béguelin, “Formal

certification of ElGamal encryption. A gentle introduction to CertiCrypt,”
in 5th International Workshop on Formal Aspects in Security and Trust,

FAST 2008, ser. Lecture Notes in Computer Science. Springer-Verlag,
2008.

[6] V. Shoup, “Sequences of games: a tool for taming complexity in security
proofs,” Cryptology ePrint Archive, Report 2004/332, 2004.

[7] J.-S. Coron, “On the exact security of Full Domain Hash,” in Advances in

Cryptology, ser. Lecture Notes in Computer Science, vol. 1880. Springer-
Verlag, 2000, pp. 229–235.

[8] V. Shoup, “OAEP reconsidered,” in Proceedings of the 21st Annual

International Cryptology Conference, ser. Lecture Notes in Computer
Science, vol. 2139. Springer-Verlag, 2001, pp. 239–259.

