
MARTE/CCSL+TimeSquare+K-Passa:

A design platform using formal MoCCs for

embedded Model-based engineering

C. André, J. Boucaron, A. Coadou, J. DeAntoni, B. Ferrero, F. Mallet, R. de Simone
EPI Aoste

INRIA Méditerranée & UMR CNRS I3S & Université de Nice Sophia Antipolis
Sophia Antipolis, FRANCE

{firstname.surname}@sophia.inria.fr

Abstract—This extended abstract discusses our on-going work
to build a design platform for embedded systems. To cover the
whole design flow we start with a UML description annotated
with MARTE. TimeSquare can edit, analyse and execute these
UML models according to the operational semantics of CCSL.
Then, when restricting to specific models of computations, we
can use efficient static analysis techniques implemented in K-
Passa to optimize these models according to several criteria
such as latency, throughput or interconnect buffer sizes. The
analysis results are transformed back into the UML model.

Keywords-Formal MoCC; Process network; MARTE, MDE

I. CONTEXT

We are acknowledging the fact that, in the past, most
modelling environments in the field of embedded and
distributed systems have been based on a few conceptual
diagrammatic representations.
Dynamics/behavioural parts:
 state-based formalisms are encompassed in Process

Algebras (CSP, CCS, …), Statecharts and numerous
variants, and many sorts of concurrent automata
networks, with synchronization handshake mechanisms;

 activity-based formalisms originate rather from Petri
Nets and specific subclasses, leading to Data Flow
Process Networks of various kinds (Kahn Process
Networks [1]are worth noticing as a data-flow/activity-
based modelling style with channel/place links, but also
local control-flow state-based modelling).

Structural parts:
 component formalisms exposing ports for

communication and construction of large systems by
hierarchical combination of components, with
required/offered interfaces and assume/guarantee
properties.

The role of true data values and true computations are
usually downplayed in these modelling frameworks, and
deported to an external host language (C/C++) for encoding.
Only the trace of data operations that may impact the control
branching structure is meant to be preserved, through crude
abstraction into discrete domains usually.

This is common ground, and despite many subtle
differences in design expressivity, most embedded design
and analysis formalisms are based, at least pictorially, on

these types of modelling diagrams. Of course, more serious
differences stem when dealing with precise operational
semantics, the synchronous/asynchronous spectrum, and also
timing/schedulability/performance analysis. Here we view
two distinct trends:

Some theories (and the related methodologies and
environments) are adopting a view of logical functional time.
Then, the main time unit is the transition/reaction step,
global or local. Synchronization primitives are used in the
design to introduce constraints between the local activation
time(s) of distinct components. Any legible execution of the
global system must obey these constraints, thereby
scheduling and synchronizing the components and their
interactions/communications. In the context of Process
Network conflict-free models (such as Marked Graphs or
Synchronous Data Flow [2] models for instance), one can
devise statically a regular global scheduling so that, in
addition to their original asynchronous semantics, the very
same models can be endowed with a fully synchronous
semantics that optimize many parameters (throughput,
channel buffer size…). In these lines of models one can also
cite the synchronous reactive formalisms [3] (Esterel, Lustre,
Signal...), StateCharts, and HDLs (Hardware Description
Languages) at RTL level based on a single clock pulse;

Other theories are based on a more physical time, with
extra functional interpretations that do not truly directly
translate into syntactic instructions in the control flow, but
rather as timeliness properties that should be reached at
execution, usually on charge of implementation mechanisms
and scheduling techniques that are beyond the scope of
modelling representation, and can only be approximated or
mimicked for early analysis at modelling stage.

II. MARTE, ITS TIME MODEL AND CCSL

We have been active participants and promoters of the
recent official OMG UML profile for Modelling and
Analysis of Real-Time Embedded systems (MARTE) [4].
We concentrated in the definition of a Time Model
subprofile [5], which allows a rich-but-well-defined variety
of time notions (logical/physical, discrete/dense…) to be
applied as time bases and clocks onto the otherwise classical
main UML diagram views. In a profile annex, we proposed a
Language for expressing Clock Constraint Specifications
(CCSL) [6].

With this consistent set of constraints one can state for
instance that a clock is subsampling another one on a given
regular pattern (see example Figure 1), that two clocks have
bounded jitters, and so on. Most importantly, the constraints
have precise formal semantics, so that the solution space of
possible legible schedules can be searched algorithmically or
interactively.

The ultimate goal of CCSL is to provide a means to
define formally timed Models of Computations and
Communications (MoCCs), by providing a syntactic way to
describe semantic relations between tied behaviours. This is
in part inspired from the theory of tagged systems of Lee
and Sangiovanni-Vincentelli [7], but also of previous works
on Structural Operational Semantics (SOS) definition rules
for (timed and untimed) Process Algebras where derived
operators may be indexed on fancy synchronizers/schedulers,
or also Ptolemy’s notion of directors.

CCSL clocks bring some consistency between different
UML views/diagrams, structural or behavioural. Clocks are

typed structural elements and relations amongst them are
expressed as CCSL constraints. These very same clocks are
then applied to behavioural elements (via MARTE
stereotypes) and define their activation and terminating
conditions or any kind of time constraints. Instants of CCSL
clocks represent an action starting or finishing, a message
being sent or received, a behaviour being called or
terminating, entering or exiting a state, … Instants, whether
linked to physical time or not, also serve as references to
apply duration or time constraints. Like synchronous
languages, CCSL deals with multi-form time and these
durations or dates are expressed in number of ticks of a given
clock.

We have conducted preliminary works in this direction

on simple Process Network MoCCs (such as SDF for
instance).

III. TIMESQUARE AND K-PASSA

TimeSquare [8] is our software environment dedicated
to the resolution of CCSL constraints and computation of
partial solutions. TimeSquare has four main features: 1)
definition/modelling of CCSL user-defined libraries that
encapsulate the MoCCs, 2) specification/modelling of a
CCSL model and its application to a specific UML-based or
DSL model, 3) simulation of MoCCs and generation of a
corresponding trace model, 4) based on a trace model,
displaying and exploring the augmented timing diagram,
animating UML-based model and storing the scheduling
result inside the model and sequence diagrams. TimeSquare
is provided as a set of Eclipse plug-ins. A detailed
description of TimeSquare features, examples, and video
demonstrations are available at its website.

We have developed a second tool, named K-Passa [9],
which computes efficient static schedules in the case of
specific Process Network MoCCs. It currently handles
Marked Graphs, Synchronous Data Flow Process Networks,
Latency-Insensitive Designs and K-Periodically Routed
Graphs as input MoCCs.

The efficient schedules are computed according to several
criteria such as latency, throughput or interconnect buffer
sizes considered for optimization. K-Passa also provides
useful information computed on the models, such as
correctness checks of safety and liveness for instance. The
tool is available as both a standalone application and a
library. The standalone application allows creating and
editing diagrams using a full featured GUI, to conduct
experiments to ensure correctness, to run optimizations and

simulations. The library allows building co-simulation
models for SystemC/C++ and Java.

TimeSquare and K-Passa can be coupled in two ways:
first the UML editing of MoCCs with adequate stereotype
could allow to specify input models for K-Passa analysis in
the TimeSquare environment (work-in-progress); second, the
schedule solutions computed in K-Passa can (already) be re-
injected into CCSL format and used in TimeSquare
(augmented timing diagrams, UML model animation, etc).

[1] Gilles Kahn. “The semantics of a simple language for parallel
programming”. Information Processing, 471-475, 1974.

[2] E. A. Lee and D.G. Messerschmitt: Static scheduling of synchronous
data flow programs for digital signal processing. IEEE Trans.
Computers 36(1) 24–35, 1987.

[3] Albert Benveniste, Paul Caspi, Stephen A. Edwards, Nicolas
Halbwachs, Paul Le Guernic, Robert de Simone: “The synchronous
languages 12 years later”. Proc. of the IEEE 91(1): 64-83, 2003.

[4] The ProMARTE Consortium: “UML Profile for MARTE”, beta 2.
Object Management Group. number: ptc/08-06-08, 2008.

[5] Charles André, Frédéric Mallet and Robert de Simone: “Modeling
time(s)”. MoDELS. Volume 4735 of LNCS., Springer, 559–573,
2007.

[6] Frédéric Mallet, Charles André, Robert de Simone. “CCSL:
specifying clock constraints with UML/Marte”. ISSE, 4(3):309-314,
2008.

[7] E. A. Lee and A. L. Sangiovanni-Vincentelli. “A framework for
comparing models of computation”. IEEE Transactions on Computer-
Aided Design of Integrated Circuits and Systems, 17(12):1217–1229,
December 1998.

[8] Charles André, Benoît Ferrero, Frédéric Mallet, Robert de Simone.
“TimeSquare: a software environment for timed systems”. Date’09,
University Booth, April 2009.

[9] Julien Boucaron, Benoît Ferrero, Jean-Vivien Millo, Robert de
Simone. “Statically Scheduled Process networks”. INRIA RR-6289,
2007

Figure 1: A CCSL subsampling specification on a specific pattern and its simulated timing diagram in TimeSquare

