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Abstract—This extended abstract discusses our on-going work 
to build a design platform for embedded systems. To cover the 
whole design flow we start with a UML description annotated 
with MARTE. TimeSquare can edit, analyse and execute these 
UML models according to the operational semantics of CCSL. 
Then, when restricting to specific models of computations, we 
can use efficient static analysis techniques implemented in K-
Passa to optimize these models according to several criteria 
such as latency, throughput or interconnect buffer sizes. The 
analysis results are transformed back into the UML model. 
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I.  CONTEXT 

We are acknowledging the fact that, in the past, most 
modelling environments in the field of embedded and 
distributed systems have been based on a few conceptual 
diagrammatic representations. 
Dynamics/behavioural parts:  
 state-based formalisms are encompassed in Process 

Algebras (CSP, CCS, …), Statecharts and numerous 
variants, and many sorts of concurrent automata 
networks, with synchronization handshake mechanisms;  

 activity-based formalisms originate rather from Petri 
Nets and specific subclasses, leading to Data Flow 
Process Networks of various kinds (Kahn Process 
Networks  [1]are worth noticing as a data-flow/activity-
based modelling style with channel/place links, but also 
local control-flow state-based modelling). 

Structural parts: 
 component formalisms exposing ports for 

communication and construction of large systems by 
hierarchical combination of components, with 
required/offered interfaces and assume/guarantee 
properties. 

The role of true data values and true computations are 
usually downplayed in these modelling frameworks, and 
deported to an external host language (C/C++) for encoding. 
Only the trace of data operations that may impact the control 
branching structure is meant to be preserved, through crude 
abstraction into discrete domains usually. 

This is common ground, and despite many subtle 
differences in design expressivity, most embedded design 
and analysis formalisms are based, at least pictorially, on 

these types of modelling diagrams. Of course, more serious 
differences stem when dealing with precise operational 
semantics, the synchronous/asynchronous spectrum, and also 
timing/schedulability/performance analysis. Here we view 
two distinct trends: 

Some theories (and the related methodologies and 
environments) are adopting a view of logical functional time. 
Then, the main time unit is the transition/reaction step, 
global or local. Synchronization primitives are used in the 
design to introduce constraints between the local activation 
time(s) of distinct components. Any legible execution of the 
global system must obey these constraints, thereby 
scheduling and synchronizing the components and their 
interactions/communications. In the context of Process 
Network conflict-free models (such as Marked Graphs or 
Synchronous Data Flow  [2] models for instance), one can 
devise statically a regular global scheduling so that, in 
addition to their original asynchronous semantics, the very 
same models can be endowed with a fully synchronous 
semantics that optimize many parameters (throughput, 
channel buffer size…). In these lines of models one can also 
cite the synchronous reactive formalisms  [3] (Esterel, Lustre, 
Signal...), StateCharts, and HDLs (Hardware Description 
Languages) at RTL level based on a single clock pulse; 

Other theories are based on a more physical time, with 
extra functional interpretations that do not truly directly 
translate into syntactic instructions in the control flow, but 
rather as timeliness properties that should be reached at 
execution, usually on charge of implementation mechanisms 
and scheduling techniques that are beyond the scope of 
modelling representation, and can only be approximated or 
mimicked for early analysis at modelling stage. 

II. MARTE, ITS TIME MODEL AND CCSL 

We have been active participants and promoters of the 
recent official OMG UML profile for Modelling and 
Analysis of Real-Time Embedded systems (MARTE)  [4]. 
We concentrated in the definition of a Time Model 
subprofile  [5], which allows a rich-but-well-defined variety 
of time notions (logical/physical, discrete/dense…) to be 
applied as time bases and clocks onto the otherwise classical 
main UML diagram views. In a profile annex, we proposed a 
Language for expressing Clock Constraint Specifications 
(CCSL)  [6].  



With this consistent set of constraints one can state for 
instance that a clock is subsampling another one on a given 
regular pattern (see example Figure 1), that two clocks have 
bounded jitters, and so on. Most importantly, the constraints 
have precise formal semantics, so that the solution space of 
possible legible schedules can be searched algorithmically or 
interactively. 

The ultimate goal of CCSL is to provide a means to 
define formally timed Models of Computations and 
Communications (MoCCs), by providing a syntactic way to 
describe semantic relations between tied behaviours. This is 
in part inspired from the theory of tagged systems of  Lee 
and Sangiovanni-Vincentelli  [7], but also of previous works 
on Structural Operational Semantics (SOS) definition rules 
for (timed and untimed) Process Algebras where derived 
operators may be indexed on fancy synchronizers/schedulers, 
or also Ptolemy’s notion of directors. 

CCSL clocks bring some consistency between different 
UML views/diagrams, structural or behavioural. Clocks are 

typed structural elements and relations amongst them are 
expressed as CCSL constraints. These very same clocks are 
then applied to behavioural elements (via MARTE 
stereotypes) and define their activation and terminating 
conditions or any kind of time constraints. Instants of CCSL 
clocks represent an action starting or finishing, a message 
being sent or received, a behaviour being called or 
terminating, entering or exiting a state, … Instants, whether 
linked to physical time or not, also serve as references to 
apply duration or time constraints. Like synchronous 
languages, CCSL deals with multi-form time and these 
durations or dates are expressed in number of ticks of a given 
clock. 

 
We have conducted preliminary works in this direction 

on simple Process Network MoCCs (such as SDF for 
instance). 

 
 
 
 
 
 
 

III. TIMESQUARE AND K-PASSA 

TimeSquare  [8] is our software environment dedicated 
to the resolution of CCSL constraints and computation of 
partial solutions. TimeSquare has four main features: 1) 
definition/modelling of CCSL user-defined libraries that 
encapsulate the MoCCs, 2) specification/modelling of a 
CCSL model and its application to a specific UML-based or 
DSL model, 3) simulation of MoCCs and generation of a 
corresponding trace model, 4) based on a trace model, 
displaying and exploring the augmented timing diagram, 
animating UML-based model and storing the scheduling 
result inside the model and sequence diagrams. TimeSquare 
is provided as a set of Eclipse plug-ins. A detailed 
description of TimeSquare features, examples, and video 
demonstrations are available at its website. 

We have developed a second tool, named K-Passa  [9], 
which computes efficient static schedules in the case of 
specific Process Network MoCCs. It currently handles 
Marked Graphs, Synchronous Data Flow Process Networks, 
Latency-Insensitive Designs and K-Periodically Routed 
Graphs as input MoCCs. 

The efficient schedules are computed according to several 
criteria such as latency, throughput or interconnect buffer 
sizes considered for optimization. K-Passa also provides 
useful information computed on the models, such as 
correctness checks of safety and liveness for instance. The 
tool is available as both a standalone application and a 
library. The standalone application allows creating and 
editing diagrams using a full featured GUI, to conduct 
experiments to ensure correctness, to run optimizations and 

simulations. The library allows building co-simulation 
models for SystemC/C++ and Java. 

TimeSquare and K-Passa can be coupled in two ways: 
first the UML editing of MoCCs with adequate stereotype 
could allow to specify input models for K-Passa analysis in 
the TimeSquare environment (work-in-progress); second, the 
schedule solutions computed in K-Passa can (already) be re-
injected into CCSL format and used in TimeSquare 
(augmented timing diagrams, UML model animation, etc). 
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Figure 1: A CCSL subsampling specification on a specific pattern and its simulated timing diagram in TimeSquare 


