
A refinement approach to design and verification of
on-chip communication protocols

Hocine Mokrani, Rabéa Ameur-Boulifa
Institut Telecom, Telecom ParisTech, LTCI CNRS
Email: first name.last name@telecom-paristech.fr

I. INTRODUCTION

In this paper we focus on the exploration stage in the
design of embedded systems. In particular, we study the
circumstances under which communication refinement can be
performed efficiently to achieve a satisfactory design quality.
We present a new methodology for efficient system-level
design space exploration of system-on-chip. The methodology
provides an infrastructure to define a design at different levels
of abstraction, as well as mathematical relationship between
different system-levels.

Using the proposed methodology, the verification is driven
with the design process in a joint way. We start with an
abstract model for a basic protocol that can be formally
verified with reasonable effort; this is then enriched with
advanced features and details step-by-step to meet concrete
model. The correctness of the enriched design is obtained from
the correctness of its previous version and refinement relation
between two consecutive versions.

II. MODELING, MAPPING AND ANALYSIS

To begin with, the system model is given initially in an
informal manner. This informal description is translated later
into formal description which is amenable to analysis and ver-
ification. Usually, such a representation is based on states and
transitions, it models an abstraction of the system behavior.
The model should be free of any architectural constraints, and
it should capture the essential properties of the application
assuming an infinite resources.

Once the application is mapped onto an architecture, the
first plateform becomes available. Then, the analysis is used to
determine whether or not the chosen application-architecture
combination satisfies the required design constraints. If the
design constraints are not met, then the mapping process is
reiterated with a different set of parameters until the desired
results are obtained.

A. Application

The functional behavior of an application is described by
the TML (Task Modeling Language) language. Using tasks
and communication channels the TML model captures the
parallelism available at application-level assuming unbounded
physical resources. At this level of abstraction, there is no
differentiation between hardware tasks and software tasks
because no partitioning is defined yet. There is no data pro-
cessing details inside the tasks. The language modeling a task

consists of usual instructions (arithmetic/logic instructions,
variable settings, tests, loops, etc), communication instructions
(reading/writing abstract data samples in channels, sending/re-
ceiving events and requests) and computational instructions.
The instructions within a task are totally ordered.

B. Architecture

An architecture is a set of interconnected hardware com-
ponents. These components are the usual ones, they can be
Processing Elements such as processors (standard or specific),
hardware units, Communication Elements such as bus struc-
tures, Memory Elements such as RAM, ROM or buffer and
Interface Elements such as Bridge, Arbiter or controller of
interrupt.

C. Mapping

Once the application model is completed and an architecture
is selected, the designer maps the application onto the
architecture by applying rules. These rules can be provided
by the designer. Example of rules: - Each task is mapped
onto a process element. - If several tasks are mapped on a
processor, this one must be endowed with a scheduler. - Each
channel is mapped onto one-to-one communication elements.
It is also possible to map a channel onto a combination
of communication elements and memory elements, or by
including blocks, such as a bridge or a controller.

Once the obtained results of the analysis are satisfactory, we
proceed to the refinement step of communication units. So the
level of abstraction is lowered further down by considering a
more detailed instance for the communication protocol.

III. COMMUNICATION REFINEMENT

We illustrate the communication refinement by means of
the following example. Consider the Producer-Consumer ap-
plication of which the model TML is shown in Figure 1 (a).
TASK1 does some computation and writes data to its output
channel. TASK2 reads data from its input channel and does
some computation. The two tasks are connected by the channel
C1 of type NBR-NBW (Non-blocking Read - Non-Blocking
Write, i.e, a memory).

Suppose that this application is mapped onto an architecture
consisting of two processors CPU1 and CPU2 and a memory
MEM, as depicted in Figure 1 (b). The TASK1 is mapped onto
CPU1 and the TASK2 onto CPU2 and the channel is mapped



onto a bus with centralized arbitration. The bus arbitration
scheme used here is named daisy chain arbitration. The two
processors act as masters and the memory acts as slave.

The master or masters assert the signal REQUEST when they
request the bus. The bus arbiter returns the GRANT signal,
which passes through each of the masters which can have
access to the bus, as shown in Figure 1 (b). Here, the priority
of a master depends solely on its position in the daisy chain.
If two or more masters request the bus at the same time, the
highest priority master is granted the bus first, and then the
GRANT signal is passed further down the chain. The signal
RELEASE is used to indicate to the bus arbiter that the first
master has finished its use of the bus. Holding REQUEST
asserted indicates that another master wants to use the bus.

Fig. 1. (a) Producer-Consumer application, (b) replacing the channel with bus

Consider the application layer and the plateform layer two
consecutive levels of refinement. Converting a simple channel
to a concrete bus might increase the number of data-transfers
and synchronization events between components. Our goal is
to help the designers to check whether two systems given
at different levels of abstraction preserve the communication
semantics. That is to say no semantic inconsistencies is
introduced during the refinement process. In order to define
formally the notion of refinement wrt linear or tree semantics,
so it captures the concept of execution, like the concept of “less
non-deterministic”, we need to give behavioural semantics of
the related components and to formally characterize refinement
steps.

IV. SEMANTICS

A system is behaviorally modeled as a set of concurrent
state machines called labelled transitions systems one machine
per component (task or channel). Each task is characterized
by a set of states and a set of transitions between states. Each
transition is labeled by an action representing the instruction
executed by the component.

Definition 1: A labelled transition system (LTS) is a 4-tuple
〈S, s0, A,→〉 where : S is a non-empty set of states; s0 ∈ S
is the initial state; A is a set of labels; →⊆ S ×A∪ {τ} × S
with τ /∈ A, is the transition relation.�

Thereby, the alphabet A consists of communications primitives
(read and write) and computation function (exec).

The global behavior of the system is built by composition
of the LTSs of all the components building it up. As example,
the drawing depicted in Fig.2 is a part of the model of the
application.

!write(c1)

!write(c1) ?write(c1)

exec

?read(c1)

?write(c1)

Fig. 2. Models for Task1 (left) and channel C1 (right)

There are various relations of equivalence and preorders on
labelled transitions systems [1]. These semantics (linear time
semantics or branching time semantics) are defined in terms
of a function that associates to a process (an LTS) a set of
the possible observations one could make when executing the
process.

Let us consider here a semantics encoding the branching
structure of a process by representing the set of actions that
can be accepted after a trace is executed. Before giving
the definition of this semantics called Readiness, let us first
mention some definitions.

A function that returns an acceptance set : the set of possible
actions that can be accepted after state s is reached.

Definition 2: The function nextLTS(s) is defined by :
nextLTS(s)

def
= {e ∈ A | ∃s′ ∈ S.s

e−→ s
′}.�

An LTS might perform a trace σ and arrives in a state for
which X is the set of actions that are possible next. The set
of all such pairs (σ,X) defines the readiness of LTS.

Definition 3: The readiness of an LTS is defined by :
Readiness(LTS)

def
= {(σ,X) ∈ A∗ × P(A) | ∃s′ ∈

S, s0
σ−→ s

′ ∧X = nextLTS(s
′
)}. �

If LTS1 and LTS2 are LTSs, then we say that LTS2 is
readiness refinement of LTS1, written LTS1 v LTS2, if
every acceptance of LTS2 is also an acceptance of LTS1.

Definition 4: LTS1 v LTS2 if
Readiness(LTS1) ⊇ Readiness(LTS2). �

Building the models: We build the behavioural
model of the whole systems at each level : we obtain
a LTS (LTSApp) modeling the application and a LTS
(LTSPfm) modeling the plate-form. We compute their re-
spective readiness sets. We find out without any surprise
that Readiness(LTSApp) * Readiness(LTSPfm). In-
deed, we have (exec, {write}) ∈ Readiness(LTSPfm)
but (exec, {write}) /∈ Readiness(LTSApp). Therefore,
(LTSPfm 6v LTSApp). This is due among others to the
choice of bus arbitration that is not very fair: the second master
(the low-priority master) may be locked out indefinitely.



V. CONCLUSION AND FUTURE DIRECTIONS

In this paper, we present a design flow for architecture
exploration that supports formal refinement. Besides, of the
designing the proposed methodology offers guarantees as for
preservation of the properties along the flow. Compared with
existing works works [4], [3] and [2], our work contributes at
the level of correct-by-construction System-On-Chip.

As this work is in its initial stage, we need to examine more
semantics and investigate the various properties which will be
preserved by the different semantics.

In the future, we intend to fully automate the design of
systems by automatically generating models and checking
semantic consistencies between different levels.

REFERENCES

[1] R.J. van Glabbeek. The linear time – branching time spectrum I; the
semantics of concrete, sequential processes. In J.A. Bergstra, A. Ponse,
and S.A. Smolka, editors, Handbook of Process Algebra,Chapitre1, pages
3–99. Elsevier, 2001.

[2] Denis Hommais, Frederic Petrot, and Ivan Auge. A practical tool box for
system level communication synthesis. In CODES ’01: Proceedings of
the ninth international symposium on Hardware/software codesign, pages
48–53, 2001.

[3] Radu Marculescu, Ümit Y. Ogras, and Nicholas H. Zamora. Computation
and communication refinement for multiprocessor soc design: A system-
level perspective. volume 11, pages 564–592, 2006.

[4] Lieverse Paul, Wolf Pieter van der, and Deprettere Ed. A trace trans-
formation technique for communication refinement. In CODES ’01:
Proceedings of the ninth international symposium on Hardware/software
codesign, 2001.


