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Active Objects 

•  Asynchronous communication with futures 

•  Location transparency 

•  Composition: 
•  An active object (1) 
•  a request queue (2) 
•  one service thread (3) 
•  Some passive objects 

(local state) (4) 
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ASP /ProActive 
Active objects, asynchronous communication   
Asynchronous method calls with implicit 

transparent futures 
β α 

WBN!! 

foo = beta.bar(p) foo.getval( ) foo.getval( ) foo.getval( ) 

A β = newActive (“A”, …) 
V foo = β.bar(param) 
….. 
foo.getval( ) 

Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag (2005) 
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First Class Futures 

delta.snd(foo) 

β 
α 

δ 
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Active Objects – Limitations 

No data sharing 
•  Parameters of method calls are passed by value 
 No data race-condition  

 simpler programming + easy distribution 
 Slow local parallelism 

 Less efficient 

No re-entrant calls 
•  Active object deadlocks by waiting on itself 
 Modifications to the application logic  

 difficult to program 
 

 

AO1 AO2 
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Related Work (I) 

Creol an JCobox: 
•  Active object 

paradigm & futures 

•  Cooperative multithreading 
– All requests are served at the same time 
– But only one thread active at a time 
– Explicit release points in the code 

  Less problem with re-entrance 
  More difficult to program: less transparency 
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Related Work (II) 

JAC: 
•  Declarative parallelization in Java 
•  Expressive but complex set of annotations  
•  Scheduling logic dispersed among methods 
•  “Reactive” objects 

– Simulating active objects is possible but not trivial 
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Proposal: Multi-active object 

Starting from active objects à la ASP 
 
Transparent multi-threading 
•  Executing compatible requests in parallel 

Safe parallel execution 
•  A thread manager handles the queue 

 

 

Thread 
Manager 
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Two methods are compatible if either: 
a)  They do not access the same resources 
b)  The user “protects” the locations of possible data 

races 

How to express this information? 
•  Annotate the code 

 

Proposal – Compatibility 
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@Group 
•  Group identifier 
•  Self compatible = methods of the group can run in 

parallel 

Proposal – Annotations (I) 

@DefineGroups( 
        { 
        @Group(name = "GroupFoo", selfCompatible = true), 
        @Group(name = "GroupBar", selfCompatible = false) 
        } 
) 
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@Compatible 
•  A list of mutually compatible groups 

Proposal – Annotations (II)  

@DefineRules( 
        { 
        @Compatible({"GroupFoo", "GroupBar"}) 
        } 
) 
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@MemberOf 
•  Refers to a group identifier 
•  Each method belongs to a single group 
•  Not annotated methods are incompatible with the others 
 

Proposal – Annotations (III)  

    @MemberOf("GroupFoo") 
    public void foo(){ 
    } 
     
    @MemberOf("GroupBar") 
    public void bar(){ 
    } 
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Proposal – Annotation Example 

Groups  
(Collection of related 
methods) 
 

Rules  
(Compatibility relationships 
between groups) 
 

Memberships 
(To which group each 
method belongs) 



17


Scheduling 
•  Default: FIFO + compatibility 
•  Pluggable policies 

A policy is a function: 
•  Input: info from scheduler  
•  Output: list of requests to be started  

Scheduling Policy API provides: 
•  Static compatibility information 
•  Scheduler state (request queue, active requests) 

Proposal – Thread Manager 
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Proposal – Main Elements 

Annotated 
Java Source 

Annotation 
Processor 

Compatibility 
information 

Queue 

Thread 
Manager 

Multi‐Active Object 

Scheduling 
Policy 
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@DefineGroups(  
        {  
        @Group(name="ForwardMarking", selfCompatible=true), 
        @Group(name="BackwardMarking", selfCompatible=true) 
        } 
) 
@DefineRules(  
        {  
        @Compatible({“ForwardMarking", “BackwardMarking”})  
        } 
) 
public class GraphWorker implements RunActive { … } 

Experiment – SCC Search 

Strongly connected component search in a 
distributed graph 
•  Divide-and-conquer  
•  Local and distributed parallelism 
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Experiment – Results (I) 

Local parallelism 
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Experiment – Results (II) 

Performance 

Graph Size (thousand ver4ces) 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Experiment – Results (III) 

Multi-active objects are usable in large-scale 
applications: 
•  Easy distributed execution – 80 workers 
•  Quite large graph sizes – 800,000 vertices 

No changes have to be done to the application logic 
•  Acceptable speedup even without explicit optimization 
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Conclusion 

Multi-active objects feature: 
•  Active object model 

– Easy to program 
– Support for distribution 

•  Efficient utilization of multi-cores 
– Transparent multi-threading  
– Safe parallel execution 

•  Possibility to write re-entrant code 
•  Simple annotations 
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Current and Future Work (I) 

Compatibility 
• Create dynamic rules – use parameters 
• Common parameter for methods in a group 
• Comparison of parameters at runtime 

 



27


Current and Future Work 

Threads 
•  Too many threads can be harmful 
•  Limitation of threads – without deadlocks 

Formalisation of the multi-active object model 
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Questions? 

More information: 
Adapting Active Objects to Multicore Architectures 

Ludovic Henrio, Fabrice Huet, Zsolt István, and Gheorghen Sebestyén 
International Symposium on Parallel and Distributed Computing (ISPDC 
2011) - IEEE 


