
1

Multi-active Objects

Ludovic Henrio1, Fabrice Huet1, Zsolt István2, Gheorghe Sebestyén2

 1INRIA Sophia-Antipolis, CNRS, Univ Nice sophia Antipolis 2Technical University of Cluj-Napoca

SAFA
October 2011

2

Outline

1.  Active objects and their limitations

2.  Related Works

3.  Proposed solution

4.  Experiment

5.  Conclusion

6.  Current and future work

3

Active Objects

•  Asynchronous communication with futures

•  Location transparency

•  Composition:
•  An active object (1)
•  a request queue (2)
•  one service thread (3)
•  Some passive objects

(local state) (4)

1

2
 3

4

4

ASP /ProActive
Active objects, asynchronous communication
Asynchronous method calls with implicit

transparent futures
β α

WBN!!

foo = beta.bar(p) foo.getval() foo.getval() foo.getval()

A β = newActive (“A”, …)
V foo = β.bar(param)
…..
foo.getval()

Caromel, D., Henrio, L.: A Theory of Distributed Object. Springer-Verlag (2005)

5

First Class Futures

delta.snd(foo)

β
α

δ

6

Active Objects – Limitations

No data sharing
•  Parameters of method calls are passed by value
 No data race-condition

 simpler programming + easy distribution
 Slow local parallelism

 Less efficient

No re-entrant calls
•  Active object deadlocks by waiting on itself
 Modifications to the application logic

 difficult to program

AO1 AO2

7

Outline

1.  Active objects and their limitations

2.  Related Works

3.  Proposed solution

4.  Experiment

5.  Conclusion

6.  Current and future work

8

Related Work (I)

Creol an JCobox:
•  Active object

paradigm & futures

•  Cooperative multithreading
– All requests are served at the same time
– But only one thread active at a time
– Explicit release points in the code

  Less problem with re-entrance
  More difficult to program: less transparency

9

Related Work (II)

JAC:
•  Declarative parallelization in Java
•  Expressive but complex set of annotations
•  Scheduling logic dispersed among methods
•  “Reactive” objects

– Simulating active objects is possible but not trivial

10

Outline

1.  Active objects and their limitations

2.  Related Works

3.  Proposed solution

4.  Experiment

5.  Conclusion

6.  Current and future work

11

Proposal: Multi-active object

Starting from active objects à la ASP

Transparent multi-threading
•  Executing compatible requests in parallel

Safe parallel execution
•  A thread manager handles the queue

Thread
Manager

12

Two methods are compatible if either:
a)  They do not access the same resources
b)  The user “protects” the locations of possible data

races

How to express this information?
•  Annotate the code

Proposal – Compatibility

13

@Group
•  Group identifier
•  Self compatible = methods of the group can run in

parallel

Proposal – Annotations (I)

@DefineGroups(
 {
 @Group(name = "GroupFoo", selfCompatible = true),
 @Group(name = "GroupBar", selfCompatible = false)
 }
)

14

@Compatible
•  A list of mutually compatible groups

Proposal – Annotations (II)

@DefineRules(
 {
 @Compatible({"GroupFoo", "GroupBar"})
 }
)

15

@MemberOf
•  Refers to a group identifier
•  Each method belongs to a single group
•  Not annotated methods are incompatible with the others

Proposal – Annotations (III)

 @MemberOf("GroupFoo")
 public void foo(){
 }

 @MemberOf("GroupBar")
 public void bar(){
 }

16

Proposal – Annotation Example

Groups
(Collection of related
methods)
 

Rules
(Compatibility relationships
between groups)
 

Memberships
(To which group each
method belongs)

17

Scheduling
•  Default: FIFO + compatibility
•  Pluggable policies

A policy is a function:
•  Input: info from scheduler
•  Output: list of requests to be started

Scheduling Policy API provides:
•  Static compatibility information
•  Scheduler state (request queue, active requests)

Proposal – Thread Manager

18

Proposal – Main Elements

Annotated
Java Source

Annotation
Processor

Compatibility
information

Queue 

Thread
Manager

Multi‐Active Object 

Scheduling
Policy

19

Outline

1.  Active objects and their limitations

2.  Related Works

3.  Proposed solution

4.  Experiment

5.  Conclusion

6.  Current and future work

20

@DefineGroups(
 {
 @Group(name="ForwardMarking", selfCompatible=true),
 @Group(name="BackwardMarking", selfCompatible=true)
 }
)
@DefineRules(
 {
 @Compatible({“ForwardMarking", “BackwardMarking”})
 }
)
public class GraphWorker implements RunActive { … }

Experiment – SCC Search

Strongly connected component search in a
distributed graph
•  Divide-and-conquer
•  Local and distributed parallelism

21

Experiment – Results (I)

Local parallelism

22

Experiment – Results (II)

Performance

Graph Size (thousand ver4ces) 

23

Experiment – Results (III)

Multi-active objects are usable in large-scale
applications:
•  Easy distributed execution – 80 workers
•  Quite large graph sizes – 800,000 vertices

No changes have to be done to the application logic
•  Acceptable speedup even without explicit optimization

24

Outline

1.  Active objects and their limitations

2.  Related Works

3.  Proposed solution

4.  Experiment

5.  Conclusion

6.  Current and future work

25

Conclusion

Multi-active objects feature:
•  Active object model

– Easy to program
– Support for distribution

•  Efficient utilization of multi-cores
– Transparent multi-threading
– Safe parallel execution

•  Possibility to write re-entrant code
•  Simple annotations

26

Current and Future Work (I)

Compatibility
• Create dynamic rules – use parameters
• Common parameter for methods in a group
• Comparison of parameters at runtime

27

Current and Future Work

Threads
•  Too many threads can be harmful
•  Limitation of threads – without deadlocks

Formalisation of the multi-active object model

28

Questions?

More information:
Adapting Active Objects to Multicore Architectures

Ludovic Henrio, Fabrice Huet, Zsolt István, and Gheorghen Sebestyén
International Symposium on Parallel and Distributed Computing (ISPDC
2011) - IEEE

