
1

Multi-active Objects
Ludovic Henrio Fabrice Huet Zsolt István Gheorghe Sebestyén

INRIA – CNRS – I3S – Univ Nice Sophia Antipolis Technical University of Cluj-Napoca
{ludovic.henrio,fabrice.huet}@inria.fr zsolt.istvan@gmx.net, gheorghe.sebestyen@cs.utcluj.ro

I. BACKGROUND AND OBJECTIVES

Even though there are several frameworks that are widely
used to program distributed applications (OpenMP, RPC, Java
RMI), these deal only with communication transparency, and
do not hide all details of the distributed nature of the appli-
cation. As a result, programmers have to deal with several
low level aspects such as remote object registry setup and
communication channel management. This gave rise to a new
generation of frameworks that make all aspects of object
distribution transparent to the user. Such high-level program-
ming models with strong properties turned out to be crucial
for programming safe large-scale applications. Some of these
frameworks are based on the actor paradigm [1]. Actors are
entities defined by their behavior and communicating strictly
by message passing, therefore they are decoupled completely
from each other [2], [3]. Active objects are inspired by actors,
but they are closer to object oriented paradigms [4], [5], [6],
[7]. The main goal of active objects is to achieve global
concurrency with the help of asynchronous communication
and internal scheduling mechanisms for request handling.

All languages based on principles inspired from actors
suffer from the same limitation concerning local parallelism.
Actors are very efficient and very easy to program when
it comes to distribution: actors abstract away the notion of
distribution, remote communications occur in the form of
messages, which are enqueued and treated by the receiver.
This way different computing entities are strongly decoupled
and synchronization only concerns the reception of messages.
As a result, the programmer does not have to deal with
data race-conditions. Unfortunately, when it comes to local
parallelism, this programming model is far from being efficient
because it entails a lot of data copy between actors while
direct memory access would be faster. Some of the actor-like
paradigms can be tweaked such that local activities are multi-
threaded, but in that case, the programmer loses the benefits of
a well-designed programming model, and has to face complex
synchronizations and data race-conditions.

Taking into consideration the widespread popularity of
multi-core processors and the trend of increasing the num-
ber of cores, any framework that does not fully utilize the
multithreading capacities of multi-core architectures will seem
deprecated. On the other hand, it is rather hard to deal both
with the application logic and with the clearly orthogonal
task of concurrent synchronization at the same time. Even if
concurrent code is supposed to improve the performance of
an application, if it is unwisely written it can introduce race-
conditions, which make development and testing difficult.

Our approach extends the active object paradigm to support

multi-threading of active objects while decoupling the logic
flow from synchronization. We provide the user with a solution
in which parallelism is transparent, just as the distributed
nature of the application. One crucial requirement we impose
ourselves is to keep the programming language easy to use
for programmers who are not necessarily expert in concurrent
programming. We thus decided to allow the programmer to
annotate methods corresponding to entry points of the active
object with information regarding parallelism. We use this
information to run several methods in parallel. Annotations
should be simple enough so that the programmer gives only
high-level information, that we can use to “schedule” the
parallel execution of several threads. We present a set of
annotations to provide multi-threading for active objects, while
keeping backward compatibility with standard active objects
together with a way to use those annotations to synchronize
multi-threading inside active objects.

II. PROPOSAL

In order to create a multi-active object model, we decided
to reason in terms of request compatibility. Compatibility of
two requests means that running them in parallel either a)
does not result in any data concurrency, or b) is expected
by the programmer (i.e. he/she manages his/herself the data
concurrency). In the second case it is supposed that the data
in question will be protected in the code (with locks, mutual
exclusion blocks, etc.). Since static analysis is out of the
scope of this paper, we trust the programmer to define the
compatibility rules among methods correctly. These rules can
be thought of as contracts between the programmer and the
runtime environment, in which the programmer allows the
framework to run several methods in parallel. Whenever the
programmer specifies that parallelism is harmful, he/she can
rely on the runtime environment for assuring the safety of
execution. The runtime will provide as much parallelism as
possible, unless the programmer has stated otherwise.

A. Annotations

Method compatibility could be expressed in many different
ways. We chose an approach where the programmer explicitly
states the compatibility between methods, and the mutual
exclusion is then deduced. Although being somehow similar
to the use of the synchronized keyword in Java, it has more
semantic flexibility. While the synchronized keyword is used
to restrict parallelism between several methods, our approach
allows for both a restrictive and permissive reasoning.

Obviously, pairwise compatibility relations for a high num-
ber of methods could easily become too complex to declare

2

@DefineGroups({
@Group(name="GroupF", selfCompatible=true),
@Group(name="GroupB", selfCompatible=false)

})
@DefineRules({

@Compatible({ "GroupF", "GroupB" })
})

Fig. 1. Annotations for Groups and rules

@MemberOf("GroupF")
public int foo_1() {...}

@MemberOf("GroupF")
public int foo_2() {...}

@MemberOf("GroupB")
public int bar() {...}

Fig. 2. Annotations for membership

and to maintain. Therefore, we introduce the notion of groups
to express compatibility relations on sets of methods rather
than on individual methods. A group gathers methods that
perform a similar task, thus manipulate the same data. Unless
specified otherwise, methods inside a group are mutually
incompatible. These groups not only have the goal of reducing
the amount of added meta-data, but also help in the logical
structuring of an application, since methods working on the
same data set can be most probably collected into the same
group. To specify which groups can run concurrently, a set of
compatibility rules is given by the programmer.

To create groups and to specify rules, the programmer will
use source code annotations placed at the beginning of classes.
A group is defined by its name, that acts as an identifier used in
compatibility rules. If the methods contained in the group can
be executed in parallel, its optional selfCompatible property
can be set to true. Rules define sets of groups that are all
compatible with each other. In the example shown in Figure 1
we create two groups and define their relationship as follows:

• Methods which are members of GroupF can run concur-
rently because they are self compatible.

• Methods in GroupB are mutually exclusive.
• Any method from GroupF can run concurrently with a

method from GroupB.
The membership to a group is specified using an annotation

written directly before a method (Figure 2). A method can only
belong to one group because it is simpler to create a new group
than to deal with compatibility issues when a method belongs
to two groups.

One classical issue of usual active objects is that re-entrant
requests systematically lead to deadlocks: if a request sent to
an active object require the result of a request to the same
active object, then a deadlock occurs. This is particularly
unavoidable if the request must go through a second active
object. Compatibility annotations allow two requests of the
same objects to be run concurrently and thus remove some
of the deadlocks due to re-entrance. In particular, if a group
is self-compatible then its methods can be re-entrant: they
can use the result of a call on the same method to terminate.

method runActivity() {
while (true) {

serve(requestQueue.removeFirst());
}

}

Fig. 3. Pseudo-code of service loops (FIFO)

method runActivity() {
while (true) {
if (compatible(requestQueue.peekFirst(),

activeRequests)) {
parallelServe(requestQueue.removeFirst());

} } }

Fig. 4. Pseudo-code of service loops (Multi-active)

This was typically impossible with the classical active object
paradigm.

An advantage of using these annotations is that the amount
of work needed to define rules does not depend on the size of
a class, but only on the number of groups. If the complexity
of performing this operation would grow exponentially with
the number of exposed methods, this approach would not
be practical in real-world applications. A potential drawback
of the annotation-based approach is that, since meta-data is
contained inside the Java classes, once they are compiled it
can not be changed, and it is not possible to modify the
compatibility of methods at runtime. This limitation can be
addressed using scheduling policies presented in II-B.

Safely executing a multi-threaded active object then consist
in serving a request in parallel with the others if no incompat-
ible request is currently being served, to avoid running two
incompatible methods in parallel.

B. Multi-active scheduling

In the previous section we introduced the idea of com-
patibility annotations for active objects. We will proceed by
presenting how this information can be used in the context
of the ProActive framework to enable multi-threaded local
execution.

In the ProActive framework each active object has to
implement a method called runActivity that constitutes
its life-thread. Most of the time this method is provided by the
ProActive framework, and does not have to be implemented
by the programmer. Since active objects can execute only a
single request at a time, the default policy is to handle requests
in a first-in-first-out manner.

Figure 3 shows the runActivity method provided by
ProActive by default. The serve method takes a request
as parameter and executes it in the context of the caller’s
thread. As a result, the service loop will return only when the
request is served. This way (assuming that removeFirst()
blocks if the queue is empty), there is no need for more
logic inside the loop. To be able to serve several requests
in parallel, a mechanism is needed to move their execution to
secondary threads, started from the main loop. We introduce
parallelServe, a non blocking method which will execute

3

a request using a different thread. Figure 4 shows a new ver-
sion of the runActivity method which executes requests
concurrently if they are compatible. A list of currently execut-
ing requests is maintained (activeRequests) and the first
request in the request queue is checked for compatibility, and
served, if possible.

In the actual implementation this loop is hidden from the
user inside the scheduling class. Note that the term “schedul-
ing/scheduler” is used in this paper to mean: “definition of
a multi-threading service policy” and is not related to the
design of efficient schedulers for distributed computing. The
scheduler is a policy based one and it provides two predefined
policies (or strategies): multi-active and FIFO. The first aims
at starting as many requests in parallel as possible, while
maintaining the relative order of their arrival at serving time.
The second strategy exists for compatibility purposes, and can
be used to reproduce the classic single-active behavior. Besides
these two predefined policies we also expose a complete API
which the programmers can use to write customized policies,
e.g. one which limits the maximum number of parallel threads
inside an active object.

The Scheduling API can be split into two parts. One that
deals with method compatibility and one that exposes the
internal state of the scheduler. The first contains methods
for verifying the compatibility of two (or more) requests or
method names. The second gives access to the request queue
and the set of already executing requests inside the active
object. To simplify the policy-writing, a policy is defined as
a function, which takes as input the compatibility information
and the scheduler state, and produces as an answer the list of
requests that can be started right away. The internal state of
the scheduler is guaranteed not to change while executing a
policy, so the code of the policy does not have to deal with
synchronization.

III. CONCLUSION

We have presented an extension of active objects to support
local parallelism and reentrant calls. Based on the use of anno-

tations to indicate the possibility of methods to run in parallel,
our approach reduces the need for explicit locking. It brings a
high degree of parallelism, is extensible, and compatible with
legacy active objects. On the programmer side, the complexity
is minimal: only some simple compatibility annotations have
to be added inside the code. We have also proposed an API
which can be used to implement custom scheduling policies
to improve the performance of an application.

We implemented our proposal as an extension of the ProAc-
tive library and conducted experiments that revealed promis-
ing: we could run up to 41 simultaneously served requests and
obtained a reasonable speedup on a graph traversal application.
The reader may refer to [8] for a longer version of this paper
including experiments and exhaustive related works.

REFERENCES

[1] G. Agha, “An overview of actor languages,” in Proceedings of the 1986
SIGPLAN workshop on Object-oriented programming. ACM, 1986, pp.
58–67.

[2] P. Haller and M. Odersky, “Scala actors: Unifying thread-based and event-
based programming,” Theoretical Computer Science, vol. 410, no. 2-3,
pp. 202–220, 2009.

[3] J. Armstrong, “Erlang-A survey of the language and its industrial appli-
cations,” in In Proceedings of the symposium on industrial applications
of Prolog (INAP96). 16–18. Citeseer, 1996.

[4] K. Taura, S. Matsuoka, and A. Yonezawa, “ABCL/f: A future-based
polymorphic typed concurrent object-oriented language-its design and im-
plementation,” in Proceedings of the DIMACS workshop on Specification
of Parallel Algorithms. Citeseer, 1994.

[5] E. B. Johnsen, O. Owe, and I. C. Yu, “Creol: A type-safe object-oriented
model for distributed concurrent systems,” Theoretical Computer Science,
vol. 365, no. 1–2, pp. 23–66, Nov. 2006.

[6] D. Caromel, W. Klauser, and J. Vayssiere, “Towards seamless computing
and metacomputing in Java,” Concurrency: practice and experience,
vol. 10, no. 11-13, pp. 1043–1061, 1998.

[7] D. Caromel, L. Henrio, and B. Serpette, “Asynchronous and deterministic
objects,” in Proceedings of the 31st ACM SIGPLAN-SIGACT symposium
on Principles of programming languages. ACM, 2004, pp. 123–134.

[8] L. Henrio, F. Huet, Z. István, and G. Sebestyé, “Adapting active objects
to multicore architectures,” in International Symposium on Parallel and
Distributed Computing (ISPDC 2011). IEEE Computer Society, 2011.

