

Semantic Multi-View Model For Low-Power

Carlos Gómez, Julien DeAntoni, Frédéric Mallet Université Nice-Sophia Antipolis AOSTE Project I3S-CNRS INRIA

Overview

- Multi-View Concept
- Multi-View System Design
- Multi-View Control Specification
- Multi-View Power Analysis
- Conclusions and Future Work

Multi-View Concept

- Split the system design in various concerns according to the domain:
 - Helps domain expert to focus on its own problematic, in its usual language.
 - Helps identifying the configuration possibility of each view.
 - Helps identifying the impact of each view on system requirements.

12/10/2011

9

Application View

HW Architectural View

29/09/2011

29/09/2011

Clock Constraint Specification Language (CCSL)

- Formal language to specify the relationship among events (clocks) presented in a system
- Introduced in MARTE (UML Profile)
- *TimeSquare:* CCSL simulation environment
- Multi-View Control Specification:
 - Ports events \rightarrow Clocks on CCSL
 - Guarantee functional and extra-functional requirements

Control Specification Example

• "VGA card should be powered on for at least 30 sec. when the CPU requests to print"

Control Specification Example

• "VGA card should be powered on for at least 30 sec. when the CPU requests to print"

29/09/2011

Scheduling Analysis

Scheduling Analysis

Scheduling Analysis

Scheduling Analysis

Power Analysis

29/09/2011

System Design Analysis

Power Analysis

HELP

29/09/2011

System Design Analysis

Power Analysis

HELP

Power Analysis

Conclusions and Future Work

- We use MARTE/SysML to model systems using multi-views.
- Our model follows a modeling standard and it is independent of the analysis tools.
- We create a transformation engine to analyze Power consumption using Aceplorer tool.
- We use CCSL to specify the control behavior of the Control View.

Merci!!!

