Mechanical Support for Efficient Dissemination on the CAN Overlay Network

Francesco Bongiovanni, Ludovic Henrio
INRIA Sophia Antipolis Méditérranée — CNRS — I3S — Université de Nice Sophia-Antipolis,
2004 Route des Lucioles - BP 93,
06902 Sophia Antipolis, France
firstname.lastname @inria.fr

I. INTRODUCTION

Peer-to-Peer (P2P) systems have been recognized as a key
communication model to build scalable platforms for dis-
tributed applications such as file sharing, distributed storage,
content delivery systems, etc. These systems often require
application-level dissemination primitives which are efficient
and reliable. Building such communication primitives in a
reliable manner would increase the confidence regarding their
behavior prior to deploying them in real settings. Using
Isabelle/HOL [5], we focus our efforts around the correct
design of an efficient communication primitive on top of the
CAN overlay network [|6]. In the process of this goal, we have
come up with a reasoning framework that will allow us in the
future to define dissemination primitives and formally prove
their correctness properties.

II. BACKGROUND AND MOTIVATION

The Content Addressable Network (CAN) [0] is a structured
P2P network based on a d-dimensional Cartesian coordinate
space labeled D. This space is dynamically partitioned among
all peers in the system such that each node is responsible for
storing data in a zone in D; stored data consist in (key, value)
pairs. To store the (k,v) pair, the key % is deterministically
mapped onto a point ¢ in D and then the value v is stored by
the node responsible for the zone comprising ¢. The lookup for
the value corresponding to a key k is achieved by applying the
same deterministic function on k to map it onto i. The query
processing is an iterative routing process which starts at the
query originator and which traverses its adjacent neighbours
(a peer’s routing table only contains his adjacent nodes), then
the neighbours’ adjacent neighbours so on and so forth until
it reaches the zone containing the value. as depicted by the
retrieve operation in Figure [I]

CAN is a practical infrastructure for file sharing, data storage
and can be also very effective when it comes to large scale
information dissemination. As a matter of fact, network-layer
multicast is still not widely adopted by most commercial
ISPs [3]] and this prevents the usage of practical native one-
to-many communication primitives by today’s large scale
applications. This technical impediment, mainly due to costs
issues and bandwidth preservation policies, was overcome with
the introduction of application-level multicast protocols such
as [2[]. Such protocols can be designed on top of P2P networks
such as CAN in order to take advantage of its underlying
geometrical topology and the various good properties it offers
such as deterministic lookup complexity, tolerance to churn,. ..

insert (k,v) |
Q|

==

|
gL

!
| i

| retrieve (<)|. - —

Fig. 1. Routing in CAN - example of data storage (insert(key ,value)) and
retrieval (retrieve(key)).

Why Isabelle/HOL? In general, formal methods improve the
reliability of proposed algorithm and the confidence one has in
their properties. In our case we want to see what conditions
are necessary to ensure the correctness and other properties
of a broadcast algorithm over a CAN. The kind of properties
we are interested in are coverage, i.e. all the nodes in the
network correctly receive the message to broadcast, efficiency,
i.e. a node receives the message only once and fermination,
i.e. the algorithm terminates correctly. Mechanical proofs will
ensure the correctness of the studied protocols, with a much
higher confidence than paper proofs which rely too often
on “well known” properties or “obvious” steps that could
reveal wrong or underspecified. A theorem prover enforces
the precise and sound formalization of the studied protocols,
and of the hypotheses ensuring their correction and properties.
Proving properties on distributed algorithms could be done by
specific formalisms for distributed systems, like TLA™T [4],
however we choose a more general theorem prover to have
better support for general reasoning. Indeed, reasoning on the
geometry of a CAN requires generic theorems that will be
better supported by a general purpose theorem prover like
Isabelle or Coq for example. Additionally, all formal methods
relying on model-checking work by instantiation on a finite
set of states, meaning one can only verify protocols on a
small number of processes. Theorem proving on the contrary
requires the help of the programmer to prove properties that
are valid on an arbitrary number of processes. Consequently,
the proofs performed in Isabelle/HOL are particularly adequate
to study large-scale distributed systems. The expressiveness of

Isabelle’s logic allows us to reason on an abstraction of the
system we design, meaning that we can abstract away some
properties and precise details of the CAN overlay and focus
on the aspects ensuring the correctness of the dissemination
algorithm properties. The benefits of using such an environ-
ment is that it gives us the confidence in the correctness of
the proofs we construct. There is a strong need for enriching
the existing Isabelle libraries with specific reasoning building
blocks for distributed systems. CAN is a popular distributed
hash table (DHT) which is used as a distributed substrate
for large scale applications. Thus, our motivation is to put
forward proven abstractions for proving correctness properties
of distributed algorithms on top of CAN in order to contribute
to the advancement of correct distributed algorithms.

III. A MECHANIZED MODEL FOR CAN AND BROADCAST
ALGORITHMS

We describe in this section some parts of our formalization
of the CAN network and an intuition behind the broadcast
algorithm by providing some definitions in Isabelle/HOL. Our
objective is to give a rough idea of our approach, but we refer

the reader to the source code available on our Web pageﬂ

for the exhaustive formalization. The Isabelle/HOL syntax is
much similar to mathematical notations; the main differences
are the following: — is the implication, :: defines the type
of an expression, and A=-B is the type of functions from A
to B. For manipulating structures Isabelle/HOL provides the
following notations: ! accesses an element of a list, # is the
list constructor it appends an element at the beginning of the
list, and @ appends two lists.

A. CAN

A crucial question when formalizing a complex structure like
a CAN is which level of abstraction should be used, and which
notions of Isabelle/HOL should represent basic notions of
CAN networks. We represent a CAN by a set of nodes, a zone
for each node, and a neighboring relationship, stating whether
one node is neighbour of another. More precisely, a CAN is
a set of integers identifying the different nodes. A function Z
matches each node to a Zone, where a zone is a Tuple set (a
tuple is an array of integers). Note that we abstract away a
few constraints of the CAN model which are not useful for
us, like zones are rectangular, and we do not relate zones
with the neighbouring notion as it does not reveal useful
for the moment. In Isabelle, a CAN is defined as follows:

IThe code can be found here:http://www-sop.inria.fr/oasis/personnel/
Ludovic.Henrio/misc. We use the Isabelle2009-2 version.

typedef CAN =

{(nodes::nat set, Z :: nat = Zone, neighbours:: (nat X nat)
set) .

finite nodes N\

finite neighbours N\

(Y x y. (x,y)€ neighbours —(y,x) € neighbours)A\

(V x. (x,x)¢ neighbours) N

(Ytup. In€nodes. tup € (Z n)) A

(V N€nodes. V N'€nodes. NAN' —s— intersects (Z N) (Z

N}
Additional constraints state that the set of nodes is finite,
the zones cover the whole space, and are disjunct. We de-
fine three auxiliary functions CAN_Nodes, CAN_Zones, and
CAN_neighbours returning each part of a CAN.

We also define a function intersects Z Z’ that checks whether
zone Z intersects zone Z’: it is true if Z and Z’ have at
least one point (tuple) in common. In the following, we say
that “a node intersects a zone Z”, if the zone of the node
(((CAN_Zones C) node)) intersects Z. Then we state that a
zone is connected? if the nodes it intersects are all connected
to one another (there is a path of neighbours between any two
nodes intersecting the zone).

It states that if N and N’ are two nodes which zones intersect Z,
then there is a list of nodes (all distinct) starting at n, ending at
n’, only passing by nodes intersecting Z, and for which each
node of the list is neighbour of the previous one. We also
proved a few generic lemmas that will be useful for proving
properties entailing CAN structure, however we do not detail
them here.

Let us first mention an induction principle that will allow
us to prove a property related to a zone by induction on
the size of the zone, or more precisely by induction on
the number of nodes intersecting the zone. In Isabelle, A
stands for “for all” (at the meta-level), and a theorem is
expressed by a term of the form [premise 1; premise 2| —
Conclusion. The induction theorem is thus written as follows:

theorem induct_node_zone:

[P {}

An Z. [\ Z'. card {node € CAN_Nodes C. intersects Z'
(CAN_Zones C node)}=n = P Z’;

card {node € CAN_Nodes C. intersects Z (CAN_Zones C
node)}y=Sucn) = PZ | = PZ

It states that, if (1) we prove a property P is true for an
empty zone, and (2) we prove that if P is true for all zones
of size n then it is true for all zones of size n + 1; then the
property is true for all zones.

B. Broadcast Specification

When the structure of the network is defined, we can
provide a definition for messages and for the path followed
by a message. A message is made of four pieces of
information: an identifier for the message (which could
identify uniquely its content for example), a source node, a
destination node, and the zone to which it must be transmitted.

2This notion is closed to the geometrical notion of connectivity, or rather
path connectivity.

http://www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/misc
http://www-sop.inria.fr/oasis/personnel/Ludovic.Henrio/misc

The Isabelle code defining such a quadruple is very simple:

types Message = nat X nat X nat X Zone

We decided to rely on the notion of zone to be covered
to define a broadcast algorithm, because it seems quite
adapted to a CAN. Also as we are looking for an efficient
algorithm, it seems quite reasonable to try to split efficiently
the zone to be covered in order to avoid sending a message
to the same node twice. Message_zone, Message_dest, and
Message_source are functions accessing the three first fields.
We also define an abbreviation <m|x,y,Z> for defining a
Message, this allows us to easily identify messages inside the
definitions and lemmas.

We can now define a broadcast mechanism for the CAN
overlay network. It is far from trivial to define an algorithm
in a convincing way in Isabelle/HOL. Indeed, the basic
language of Isabelle is a pure functional language similar to
A-calculus, which is not the language in which we would
usually encounter broadcasting algorithms. Here we want to
focus on the way a message triggers other ones, for this we
concentrate our specification on the notion of consequences,
and on a specification of the set of messages used to broadcast
an original message.

In our framework Broadcast 1is
CAN, a message set and
by several well-formedness

a triple made of a
initiator node constrained
rules as defined below:

typedef Broadcast =

{(can,msgsinitiator).

~VxymZm'Z'. (<m|x,y,Z>€msgs N <m'|x,y,Z">Emsgs) —>
(m=m'A Z=Z")) A (initiator € CAN_Nodes can)/
(Y msdZ. <ml|s,d,Z>Emsgs

— (s€ CAN_Nodes can AN de€ CAN_Nodes
CAN_neighbour can s dA\

(3 MsgL. valid_path msgs MsgL A destination MsgL = s A
source MsgL=initiator)\

vV m'd' Z' <m'|d,d'Z">emsgs

— (intersects (CAN_Zones cand’Y Z NZ'CZ))))}
The constraints expressed in the above definition state that:
e There is a single message between any 2 nodes

e The initiator is a node of the CAN

o All messages are exchanged between neighbour nodes of
the CAN

e All messages must originate from a node that has been
reached by a list of messages originating from the origin
node: valid_path msgs MsgL N destination MsgL = s A
source MsgL=initiator. Requiring the existence of such a
valid path ensures that a broadcast only relies on messages
transmitted from a node to its neighbour (except for the
origin of course). Note that it is not sufficient to require that
each message source is the destination of another message,
because that would mean that loops of messages not passing
by the origin would be allowed.

e FEach node d sends only messages (<m’|d,d’Z">) to
nodes it has to cover, i.e. node d’ must intersect the zone
Z that d received in its message. We say that the message
<m'|d,d'Z"> sent by d is a consequence of the first one
(<mls,d,Z>).

can N

e Finally, the zone of a message must always be bigger than
the one of its consequences: a node can only delegate the
coverage of a subset of the zone it is responsible for.

We note <C,M,n> such a Broadcast, and define functions
BC_CAN, BC_msgs, and BC_initiator to access its fields.
We can then define a predicate checking whether a broadcast
covers the whole CAN (each node of the CAN is either the
initiator or the destination of a message):

definition Coverage:: Broadcast=-bool

where Coverage BC =

Vn€(CAN_Nodes (BC_CAN BC)).

(n=BC_initiator BC V (3 m s Z. <m|s,n,Z>€BC_msgs BC))

From those definitions, we expect to prove completeness
of some specific broadcast algorithm, but also study their
optimality.

Overview of the Mechanization Process. Overall the current
specification and proofs consist of 1800 lines of Isabelle code.
As usual, most of the code is dedicated to proofs, but since
we are in the early stages of the formalization, and as our
framework requires a lot of different notions, the definitions
amount for more than 10% of this code. Difficult parts of the
reasoning concern the finite sets, and the difficulty to reason
by recurrence on a set that is finite but not inductively defined.
The CAN overlay network is a difficult setting for proofs, be-
cause the structure entails some (simple) geometrical reason-
ing, which is more complex than reasoning on structures that
could be easily defined by induction. Indeed, Isabelle/HOL
support for inductive reasoning is more valuable than for other
kind of reasoning; but this “only” makes the proofs more
difficult to perform, and longer.

A crucial part of our approach relies on the fact that the
definition and properties are expressed in a formalism that is
convincing: it must be easy for an external reader familiar with
basic logics and mathematics to understand our formalism, to
be convinced by our formalization of a CAN network, and of
its properties. Note that we do not plan to extract code, and
thus an efficient formalization is not a crucial prerequisite.

It is important for us to have a formalism for expressing
the CAN broadcast that is easy to understand; that is why
we presented the sketch of the specification of a broadcast.
Although the specification is inductive and thus not in a
classical form for a broadcast algorithm, we think it is clear
enough to be convincing, and that it is easy to extract an
algorithm from it. This way of expressing a broadcast algo-
rithm is not as natural as one would expect because a form
of event-based formulation of the algorithm “when a message
M is received, send messages M1, M2, and M3” would be
more adapted. However, such an event-like formulation is not
well supported in Isabelle/HOL. In the future, we will try to
provide abbreviations in Isabelle to allow a formulation closer
to the reaction to message reception events. This formalization
provides a set of theorems allowing one to prove the properties
of communication algorithms, over CAN-like networks. The
outcome of this work will thus be a set of properties for
several broadcast algorithms, starting by coverage, (i.e. each

node receives the message). As we will define precisely the
hypotheses on the network topology and on the algorithm, we
will know exactly to which kind of networks those algorithms
are applicable. For more details, we refer the readers to [1].

(1]

[2]

(3]

[4]

(51

(6]

REFERENCES

Francesco Bongiovanni and Ludovic Henrio. Mechanical Support for
Efficient Dissemination on the CAN Overlay Network. Research Report
RR-7599, INRIA, 2011.

Y. Chu, S.G. Rao, S. Seshan, and H. Zhang. A case for end system mul-
ticast. Selected Areas in Communications, IEEE Journal on, 20(8):1456—
1471, 2002.

S. E Deering and D. R Cheriton. Multicast routing in datagram
internetworks and extended lans. ACM Transactions on Computer Systems
(TOCS), 8(2):85-110, 1990.

L. Lamport and Safari Tech Books Online (Online service). Specifying
systems: The TLA+ language and tools for hardware and software
engineers, volume 14. Addison-Wesley, 2003.

T. Nipkow, M. Wenzel, and L.C. Paulson. Isabelle/HOL: a proof assistant
for higher-order logic. Lecture Notes In Computer Science; Vol. 2283,
page 205, 2002.

Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard Karp, and Scott
Shenker. A Scalable Content-Addressable Network. In Proceedings of
the 2001 Conference on Applications, Technologies, Architectures, and
Protocols for Computer Communications (SIGCOMM), pages 161-172.
ACM, 2001.

	Introduction
	Background and motivation
	A Mechanized Model for CAN and Broadcast Algorithms
	References

