Communication Refinement for SOC Design

Hocine Mokrani,

Rabéa Ameur-Boulifa, Sophie Coudert, Emmanuelle Encrenaz-Tephène

LABSOC (Telecom ParisTech) hmokrani@telecom-paristech.fr

> SAFA-Sophia Antipolis 2010 07-10-2010

Our work aims to improve the architecture exploration phase by incremental development of SoCs and the use of formal verification techniques.

Plan

- Design methodology.
- Our approach.
- Case study.
- Conclusion.

Design Methodology

Application

- Separation of application and architecture.
- Data abstraction.
- TML Modeling the system by a tasks network communicating via channels.
 - **Task**: "Calculus/communication" Instructions, variable Setting, Tests and loops.
 - Channels:
 - Channels: BR-NBW, NBR-NBW, BR-BW
 - Events: FIFO fini, FIFO infini.
 - Requests: FIFO infinie.

[1] W.Muhammad and al. *Abstract application modeling for system design space exploration*. August 2006.

Application (Cont.)

Architecture

ELECO

Mapping

$\mathsf{Platform} = \mathsf{Architecture} \oplus \mathsf{Application}$

SOCs Refinement

Software Refinement.

 [2] Sebastian Ritz and al. High-Level Software Synthesis for the Design of Communication Systems. 1993.

• Hardware Refinement.

- [3]F.Balarin and al. Hardware-software co-design of embedded system : the polis approach. 1997
- Communication Refinement.
 - [5] Paul Lieverse and al, A trace transformation technique for communication refinement.2001.

Formalization

Formal refinement

- Formal Refinement ⇒ Property preservation.
- Formalisms and tools:
 - B method.
 - [6] J.R. Abrial. The B-book, 1996.
 - Z language.
 - [7] G. Smith. The Object-Z Specification Language. 2000.
 - LTS refinement (Simulation, Bisimulation, ...).
 [8] M.B. Josephs, A stat-based approach to communicating processes.1988.
 - Process Algebra Refinement (Trace, Failure, readness,...).
 [9] J.R van Glabbeek, *The linear time-branching time spectrum I*.
- Property preservation ⇒ Refinement Semantics.

Models

CHANNEL C1, BRBW, 1,Task1, Task2

TASK Task2 WHILE(1) READ C1 EXEC ENDWHILE ENDTASK

Application Model Construction

ApplicationCasedStudynstruction

Global Application Model

Platform2 Model

- Write \triangleq CheckSignalRoom; StoreData; SignalData.
- **Read** ≜ CheckSignalData; LoadData; SignalRoom.
- Transformation:

Read; Exec ≜ CheckSignalData; LoadData; SignalRoom

Platform Model Construction

Platform Model Construction

Global Platform Model

Refinement Study

- To apply refinement^[8], we need:
 - to give a correspondence between all Application actions and platform actions.
 - hide the rest of platform actions .

Refinement Study

- To apply refinement^[8], we need:
 - to give a correspondence between all Application actions and platform actions.
 - hide the rest of platform actions .

Global Platform Model (Tau)

Downward Simulation

- D relation such that:
 - Every initial state of Process *i*+1 must correspond to a initial state of Process*i*.
 - If the Processes are in corresponding states, they must be able to engage in the same events.
 - If the processes are in corresponding states and P2 can engage in e, P1 must be able to engage in e in such a way that the processes remain in corresponding states.

Conclusion and future work

Integration of formal refinement in system-level design methodology.

- Currently
 - Formalizing the presented concept (Application, Architecture, Mapping) => Choose the accurate abstraction.
 - Study of real bus Refinement. (AMBA bus)
- Future
 - Extraction function.
 - How about the other components Refinement.

Thank you