
Eric MADELAINE ---- OASIS 1

Eric Madelaine, Ludovic Henrio,

Rabéa Ameur-Boulifa, Raluca Halalai

Oasis team : INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis

SAFA Workshop, October 2010, Sophia-Antipolis

Experiments with distributed Model-Checking
of group-based applications

Eric MADELAINE 2

Motivations ?

We already have published case-studies of behavioural semantics and
verification for distributed objects/components,

We wanted to explore:
- applicability of our approaches to “bigger” and more realistic cases,
- new tools for finite-state model-checking,
- execution on our large cloud infrastructure.

Characteristics of this study:
- Asynchronous (but bounded) request queues
- Parameterized system (value passing _and_ topology)
- Group communication

This presentation is an extension of:
Behavioural Models for Group Communications, WCSI, Malaga, 2010 (EPTCS)

Eric MADELAINE 3

• Background
• Active Objects, Groups, the VerCors platform

• Models for groups

• The Case-study

• Behavioural semantics of broadcast messages and asynchronous proxies

• State generation and Verification
• State space generation: sequential / distributed / hierarchical

• Proving properties

• Conclusion & Perspectives

Agenda

Eric MADELAINE 4

A

ProActive : Active objects

Proxy

Java Object

A ag = newActive (“A”, […], VirtualNode)
V v1 = ag.foo (param);
V v2 = ag.bar (param);
...
v1.bar(); //Wait-By-Necessity

V

Wait-By-Necessity
is a

Dataflow
Synchronization

JVM

A

JVM

Active Object

Future Object Request

Req. Queue

Thread

v1v2 ag

WBN!

Eric MADELAINE 5

Groups

• One-to-many communication
• A single instruction for many communications

• Allows optimisations and specific synchronisations

� A convenient programming abstraction

• Specially useful for SPMD programs, but also for most
of distributed applications

• Several data distribution policies are possible, e.g.:
• Scatter

• Broadcast

Eric MADELAINE 6

The Vercors Specification and Verification
Platform (current prototypes)

Behav
Specification

(LTS)

Graphical Editor
Architecture definition

(Eclipse Plugin)

Vercors

ADL/IDL
(final)

pNets/
Fiacre

Model
Generator

Finite
model

CADP

Distributor

Minimize / Model-check

.bcg

Caesar.open

Runtime

GCM / ProActive

Eric MADELAINE 7

• Background
• Active Objects, Groups, the VerCors platform

• Models for groups

• The Case-study

• Behavioural semantics of broadcast messages and asynchronous proxies

• State generation and Verification
• State space generation: sequential / distributed / hierarchical

• Proving properties

• Conclusion & Perspectives

Agenda

Eric MADELAINE 8

Running Example :
« rendez-vous agreement » (1)

Initiator Participant [i]

!Suggest(date)

?Suggest(i,b)

[∀∀∀∀ i, b=true]

!Validate

? R_Validate (All)

(broadcast)

independent,
asynchronous
responses

(acknowledge)

Eric MADELAINE 9

Running Example :
« rendez-vous agreement » (2)
Initiator Participant [i]

!Suggest(date)

?Suggest(i,b)

[∃∃∃∃ i, b=false]

!Cancel

(no acknowledge)

Eric MADELAINE 10

Running Example :
« rendez-vous agreement »

Properties ?

- Absence of deadlocks

- Progress or termination (reachability)

- Inevitability

- Boundedness (of request queues)

Eric MADELAINE 11

• Background
• Active Objects, Groups, the VerCors platform

• Models for groups

• The Case-study

• Behavioural semantics of broadcast messages and asynchronous proxies

• State generation and Verification
• State space generation: sequential / distributed / hierarchical

• Proving properties

• Conclusion & Perspectives

Agenda

Eric MADELAINE 12

Parameterized Networks of Synchronised
Automata (pNets)

We have used them to formalize the behavioural semantics of:
- Active Objects (Forte’04)

- Objects with first class futures (Facs’08)

- Fractal components, distributed components, reconfiguration (Annals of Telecom’09)

synch vectors : <Think(k), Think Philo[k] >

<TakeL(k), TakeLPhilo[k] , Take Fork[k-1] >, …

Philo[k] Fork[k]

Take

Drop

TakeL

TakeR

DropR
DropL

Think

Eat

Eric MADELAINE 13

Building pNet models (1)

Nets for Active objects communicationschema :

From the set of public methods, and their signature, build :
• The (parameterized) action algebra

• The structure of the future proxies and the request queue

• One synchronisation vector per exchanged message.

ServiceClient(c)

call(get,f)

return(get,x)

Proxy
[f]

Queue
[…]

body body

A
JVM

A

V

JVM

v1v2 ag

WBN!

Eric MADELAINE 14

Building pNet models (2)

Proxies for
Asynchronous
requests

Manages the return of
results, with flexible
policies:

- Vector of results

- First N results
- Individual results

Group Proxy [c]

BC
Q_m(d)

CO
R_m(v)

i ∈∈∈∈ DDDD

i ∈∈∈∈ DDDD

Body

!Q_m(d)

?get_m(x)

[c]

!get_m(x)
?R_m(x)

?Q_m(d)

!get_m(i,x)

Eric MADELAINE 15

Building pNet models (2)

Group communication :

BC= Broadcast
One single synch vector for all participants

<Q_m(d), !Q_m(d)Body, ?Q_m(d)Proxy, ?Q_m(d) P[1] , …, ?Q_m(d) P[n] >

CO= Asynchronous Collection
One synch vector for each participant in the group

<R_m(x), ?R_m(d)Body, *, * , …, !R_m(x) P[i] , …, * >

<R_m(x), ?R_m(d)Body, *, !R_m(x) P[i] , * , …, * >

Body

Proxy Participants [i]

BC
Q_m(d)

CO
R_m(v)

i ∈∈∈∈ DDDD
i ∈∈∈∈ DDDD

Eric MADELAINE ---- OASIS 16

Generated Model: the full picture

R_suggest(i,val)
CO:

...

Group(G)

?Suggest
N:=0

Proxy_suggest[c]

!getNth(i,Results[i])

?R_suggest(i,val)

[N=G]

!get(Results)

get_Suggest(c,Results)

Proxy_validate[c1]

!waitN_Validate(c1,G)

waitN_Suggest(c,n)
getNth_Suggest(c,i,val)

Initiator

!Participant[i].Q_suggest(c,date)

?Proxy_suggest[c].Suggest

!Suggest(c,date)
!Validate(c1)

!Cancel()

waitN_Validate(c1,n)

Results[i]:=val
N++

!waitN(n)

!CollateResults(c1)

?T_CollateResults(Ok)

!Suggest(c,date)

Ok

!Validate(c1)

!Cancel()

?CollateResults(c)
Ok:=true
i:=0

CollateResults

!T_CollateResults(Ok)

?getNth_Suggest(c,i,x)

i:=i+1

[i=G]

Body

Call_suggest(c,date)

Call_validate(c1)

Suggest

Queue

push(req,queue)

?Q_Suggest(c,date)

?Q_Validate(c1)

?Q_Cancel

...

...

Validate

Cancel

Participant[i]

T_validate()

!Call(req)

?Terminate(req)

req

?Serve(req)

Body

Serve(req)

!Serve(req)
req:=pop(queue)?Q_*

!OutOfBounds(err_mess)

Call_cancel()
T_cancel()

T_suggest()

!T_suggest()

!R_suggest(c,val)

?Call_suggest(c,date)

CO:
R_Validate(i)

BC:

Q_Validate(c1)

Q_Cancel()
BC:

BC:

Q_Suggest(c,date)

!R_Validate(c1)

Results:=[⊥, . . . ,⊥]

[Results[i] 6= ⊥]

i ∈ [1..G]

[n ≤ N]

[Ok]

[¬ Ok]

Ok:=Ok ∪x

i ∈ [1..G]

i ∈ [1..G]

This is a small
system:

10 pLTS

7 parameter
variabless

19 synch vectors,
including 3
broadcast and 2
collectors.

Eric MADELAINE 17

• Background
• Active Objects, Groups, the VerCors platform

• Models for groups

• The Case-study

• Behavioural semantics of broadcast messages and asynchronous proxies

• State generation and Verification
• State space generation: sequential / distributed / hierarchical
• Proving properties

• Conclusion & Perspectives

Agenda

Eric MADELAINE 18

State generation 1: classical

- With no hierarchical minimization: the generation of a stand-alone
group of 3 participants would be impossible

- It is essential to build sub-systems in the correct context (=
behavioural contract) => e.g. Projector tool of CADP.

--> 10^11 statesGroup of 3
participants

406 "458 / 1 284170 K / 1 646 KFull system, queue
of length 2

11 "54 / 1 4893 163 / 152 081Initiator

8 "90 / 3761 801 / 5 338Single participant

Total timeMinimizedBrute force3 participants
Data ∈∈∈∈ { d1,d2 }
Res∈∈∈∈Bool
15 visible labels

Machine:

Fedora 10, 4Go RAM

2 dual-core proc@2,4Ghz

Eric MADELAINE 19

State generation 2: distributed

Principles:

• State space partitioned on a cluster by a static hash function. No shared
memory.

• The state space is merged before other tools (minimization, model-
checking) can be applied. Distributed MC is planned in future versions
of CADP.

On the fly partial order reduction available:

• Tau-compression (collapsing tau-chains)

• Tau-confluence (selecting only representatives of confluent-sets)

Eric MADELAINE 20

State generation 2: distributed

- Distributed state generation has a (fixed) overhead, but allow for very
large RAM configurations. The bottleneck is the merge phase.

- On-the-fly partial-order techniques may help to save memory space, at
a high price. It may also fail…

(estimated 125 G states)

Out of memory during
local computation

Brute force

Tau-confluence

Group of 3
participants

Brute force

Tau-confluence

Brute force

Tau-compression
Tau-confluence

generation

11’32

19h 10’55

13 M / 48 M

392 K / 1 354 K

Group of 2
participants
(15x8 cores)

6’45

11’48
30’

170 K / 1 646 K

170 K / 607 K
5 K / 14 K

Full system with 3
participants
(8x4 cores)

Total timeBrute force

Eric MADELAINE 21

State generation 3: hierarchical

Classical compositional state generation:

Split the application into smaller pieces, minimize each with (branching) bisimulation
before combining them.

Distributed verification architecture:
Define the verification activities as a workflow, and use a generic scheduler on the
cloud infrastructure. Some of the workflow nodes are multinode (distributed) tasks.

Task 1

Book nodes;

Prepare nodes;

Build GCFTask 2.1

Compile client;

Generate state

space

Task 2.2

Compile server;

Generate state

space

Task 2.3

Merge sources

Task 3

Rename

Participants

Task 4

Build product;

Minimization

Config1.gcf Config2.gcfInitiatorOptim.fcr Participant.fcr

InitiatorOptim.bcg Participant.bcg

Participant$K[i].svl

Participant$K[i].bcg

SystemMin.bcg

Flac +

Distributor

Flac +

Distributor

SVL

BCG tools

System.exp

Eric MADELAINE 23

State generation 3: hierarchical

Classical compositional state generation:
Split the application into smaller pieces, minimize each with (branching) bisimulation
before combining them.

⇒The biggest intermediate structurehas ~ 3000 states before reduction.
⇒A group of 3 (reduced) participants would be 90^3 = 800 000 states.

Distributed verification architecture:
Define the verification activities as a workflow, and use a generic scheduler on the
cloud infrastructure. Some of the workflow nodes are multinode (distributed) tasks.

=> Open questions: formalism and tool support to specify
- the structural splitting
- the mapping to verification tasks.

Eric MADELAINE 24

Proving properties

• These experiments have been done while developing the encoding, so
we had real opportunities to find bugs (and we did)

Properties proved:
- Reachability and progress:

< True ∗ .T CollateResult (f alse) > True
< True ∗ .R suggest (i,b) > True

- Inevitability:
After !Q_Suggest(id) Eventually !Q_Cancel(.) ∨ !Q_validate(.)

- Boundedness:
< True ∗ .Error > True (with queues of length 1)
[True ∗ .Error] False (with queues of length 2)

Regular μμμμ-calculus

Specification patterns

Eric MADELAINE 25

Conclusions
We have presented:

- A behavioural semantics for group-based distributed applications, based on the pNets
formalism, allowing for finite-state model-checking in the CADP platform

- Practical results in term of state generation (space and time) with various strategies,
including distributed state-generation.

- Hierarchical state space generation/minimization using a generic cloud infrastructure.

Perspectives:

- Automatisation of the pNet encoding in our VerCors platform, with the challenge of
delivering these tools to non-specialists

- Extension to distributed components, including reconfiguration.

- (Much) bigger experiments, …

Papers, Use-cases and Tools, Position Offers at :
http://www-sop.inria.fr/oasis/Vercors

Bonuses

- The CADP Toolset

- pNets: some elements of formal definitions

- Fiacre encoding

- Discussion

- PacaGrid infrastructure

Eric MADELAINE ---- OASIS 27

Verification Tools

CADP toolset (INRIA Rhones-Alpes, VASY team)

• Generic Front-end
(Lotos, BCG, Sync-vectors, Fiacre)

symbolic simulator, graph exploration, etc.

• Distributed Model generation
Up to billions of states

On-the-fly, Tau-reduction, Constrained…

• Evaluator model-checker
Deadlock search / Regular μ-calculus

• Bisimulation ckecking, minimization

Eric MADELAINE 28

pNets and Nets : operators

• pNets are generalized synchronisation operatorsat the semantic level.
They address: multiway synchronisation, parameterized topologies, and
dynamic topologies.

Definitions:

• A Systemis a tree-like structure with pNets at nodes and pLTS at leaves

• Data Abstraction: given a countable (resp, finite) domain for each
parameter of a system, its instantiation is a countable (resp. finite)
system.

� Value Passing case : Preservation of safety and liveness properties
[Cleaveland & Riely 93]

� Parameterized topologies : no similar result in general.

Eric MADELAINE ---- OASIS 29

The FIACRE intermediate format

⇒ Low level semantic format, from the Fiacre project, and
OpenEmbedd platform

processQueue [Q_Suggest: in data,
Q_Validate: in data2, Q_Cancel: none, ...]

is
statesS_empty, S1, S2, ...
var x:data, y:data2, ...

from S_empty
select

Q_Suggest?x; to S1
[]

Q_Validate?y; to S2
...
end

componentSystem [Q_Suggest: data, ...]
is
port R_Validate0, ...: indexG

par Q_Suggest, ... in
R_Suggest0, R_Validate0, ... -> Initiator

[Q_Suggest, R_Suggest0, R_Validate0, ...]
||

R_Suggest0, R_Validate0-> Participant0
[Q_Suggest, R_Suggest0,...]

||
... end

Discussion

1. Why do we need a request queue of length 2 ?

2. Optimal model generation means combining many techniques:
- Use context (contract) to generate the models of basic sub-systems

- Abstract (data, visible events) in an optimal way

- Build / minimized hierarchically

- Need for a lot of intelligence in the scripting language (SVL)

3. Flexibility, monitoring, control of the distributed tools
- Very few distributed platforms (CADP, DiViNE, U.Twente LTS-min)

- Move to standardized grid/cloud infrastructures?

PacaGridPacaGrid

Eon Cluster
Windows

CCS Cluster

Storage Server
GPUs

Cloud

Cluster

47 computing nodes +

1 frontal nodes

CPU: Dual-processor quad-core

2.3GHz AMD Opteron 2356

RAM: 32 GB (8 x 4GB)

13 computing nodes

CPU: Quad-processor hexa-core

2.4GHz Intel Xeon E7450

RAM: 128GB (32 x 4GB)

�688 cores

�2 TB RAM

http://proactive.inria.fr/pacagrid/

