Experiments with distributed Model-Checking
of group-based applications

Eric Madelaine, Ludovic Henrio,
Rabéa Ameur-Boulifa, Raluca Halalai

Oasis team INRIA -- CNRS - I3S -- Univ. of Nice Sophia-Antipolis

SAFA Workshop, October 2010, Sophia-Antipolis

Motivations ?

We already have published case-studies of behaliesamantics and
verification for distributed objects/components,

We wanted to explore:

- applicability of our approaches to “bigger” and mogalistic cases,
- new tools for finite-state model-checking,

- execution on our large cloud infrastructure.

Characteristics of this study:

- Asynchronous (but bounded) request queues

- Parameterized system (value passing _and_ topology)
- Group communication

This presentation is an extension of:
Behavioural Models for Group Communications, WCSI, Malaga, 2010 (EPTCYS)

Eric MADELAINE I Z Zi 2

Agenda

Background
» Active Objects, Groups, the VerCors platform

Models for groups

 The Case-study
* Behavioural semantics of broadcast messages and asynchmo®ies

State generation and Verification
« State space generation: sequential / distributegritahical
* Proving properties

Conclusion & Perspectives

Eric MADELAINE I Z Zi

ProActive : Active objects

® Aag = newActive (“A” [...], VirtualNode)
® Vvl =ag.foo (param);
® VVv2=ag.bar (param);

® vi.bar(); //Wait-By-Necessity

Req. Queue

' 5 Thread
Eric MADELAINE

Wait-By-Necessity
IS a
Dataflow
Synchronization

4

Groups

* One-to-many communication
A single instruction for many communications
 Allows optimisations and specific synchronisations

=>» A convenient programming abstraction

o Specially useful for SPMD programs, but also farsin
of distributed applications

e Several data distribution policies are possiblg.. e
e Scatter
e Broadcast

Eric MADELAINE I Z Zi

The Vercors Specification and Verification

Platform (current prototypes)

Vercors

Runtime

GCM / ProActive

Graphical Editor [~ — | ADL/IDL

Architecture definition (final)
(Eclipse Plugin)

CADP

ooy Model Finite Nets/
- . p ets
Spe(i'lcll_(éa).tlon ::> Genel’a'[OI’ ::> model Fiacre 1 — bcg
4

1

Minimize / Model-check

Eric MADELAINE

Agenda

Background
» Active Objects, Groups, the VerCors platform

Models for groups

 The Case-study
* Behavioural semantics of broadcast messages and asynzhous proxies

State generation and Verification
« State space generation: sequential / distributeeraitahical
* Proving properties

Conclusion & Perspectives

Eric MADELAINE I Z Zi

Running Example :
« rendez-vous agreement » (1)

Initiator Participant [i]

ISuggest(date) . (broadcast)

independent,
:) asynchronous
?Suggest(i,b) : responses

[V I, b=true]
'Validate

? R_Validate (All)
(acknowledge)

Eric MADELAINE

Running Example :
« rendez-vous agreement » (2)

Initiator Participant [i]

ISuggest(date)

?Suggest(i,b)
[3 I, b=false]

ICancel

(no acknowledge)

Eric MADELAINE I Z Zi

Running Example :
« rendez-vous agreement »

Properties ?

- Absence of deadlocks

- Progress or termination (reachabillity)
- Inevitability

- Boundedness (of request queues)

Eric MADELAINE I Z Zi

Agenda

Background
» Active Objects, Groups, the VerCors platform

Models for groups

 The Case-study
* Behavioural semantics of broadcast messages and asynzhous proxies

State generation and Verification
« State space generation: sequential / distributeeraitahical
* Proving properties

Conclusion & Perspectives

Eric MADELAINE I Z Zi

Parameterized Networks of Synchronised
Automata (pNets)

We have used them to formalize the behavioural s&osaof:

- Active ObjectqForte’04)

- Objects with first class futurésacs’08)

- Fractal components, distributed components, recardtgpn(Annals of Telecom’09)

synch vectors : <Think(k), Think; ., >
<TakeL(k), Takelppiong » TaKerou) > -+

philol] "\ Fork[K]

Eric MADELAINE I Z Zi

Building pNet models (1)

Nets forActive objects communicationschema :
From the set of public methods, and their signatowed :

 The (parameterized) action algebra
e The structure of the future proxies and the refjgesue
* One synchronisation vector per exchanged message.

Client(c)

/ gé body

—

C—

call(get,f)

<

Service

Queue

[.]

<

return(get,x)

Eric MADELAINE I Z Zi

Building pNet models (2)

Proxies for ﬁroup Proxy [c] \
Asynchronous
requests T?Q—m(d)

(o)
- 2R
Manages the return of Iget_m(x) Ob m(x)
results, with flexible

policies: \ get_m(i.x)

I

Vector of results

- (Body)
First N results '
Individual results > 'Q_m(d)

~
~

Eric MADELAINE I Z Zi

Building pNet models (2)

Group communication:: (Body]
\

i

BC

Cobi
/ \Ie 0 I €D

[Proxy] [E;rticipants [l]]]]]]

BC= Broadcast
One single synch vector for all participants

<Q_m(d), 'Q_m(d)yq,, ?Q_M(dR,oxy, ?Q_M(d)yy; s -+, ?7Q_M(d)y; >

CO= Asynchronous Collection
One synch vector for each participant in the group
<R_m(x), ?R_M(dhgy, *> *, .-, IR_MX) ppy » ..., *>
<R_m(x), ?R_m(cbhq, *, 'R_MX) py, < -o0y >

Eric MADELAINE I Z Zi

This is a small

sstem:
10 pLTS

{ parameter
variabless

19 synch vectors,
iIncluding 3
broadcast and 2
collectors.

Eric MAD

=i+l

Initiator

i€[l.G]

Generated Model: the full picture

Participant][i]

?Q_Suggest(c,date) |

[N=G

Proxy_suggest|c]

?Proxy_slggest[c].Suggest

[n < N1 IlwaitN(n)

lget(Results)

?Suggest
N: =0

?R_suggest(i,val)
sults[i]:=val
N+

date)

[Results[i] # 1]
IgetNth(i,Results[i])

i
{
BC
Q_Valid

1Gancel() Q_Cancel() —
Validate(cl) get_Suggest(c Results)
ISuggest(c,date) gethth_Stgdest(c,i.val)

ISuggest(c,date)
waitN_Vdlidate(c1,G)

© Q Q

[
IT_CollateResults(Ok)

Q
?getNtz]‘Q,éuggest(c,i,x

Ok:=0k Uz

[0k] ICollateResults(|
ICancel()

[0x]

Validate(c1)

H Proxy_validate[c1] h
o)|
a:te(cl)

/?

{
Results:=[1,..., L] |

o

waitN_Suggest(c,n)

waitN_Validate(c1,n)

CO:
R_Validate(i)

(req)
pop(queue)

10utOfBounds(err_mess)

/&:rve(req)

?Terminate(req)

i€ [1.G]

Call_sug
T_sugge:

Suggest

IR_suggest(c,val

IT_suggest()

i€ [1.G]

?Call_suggest(c,date)

Call_vallidate(c1)
T_validate()
- Call_cancel(
T_cancel()
Validate
Cancel

IR_Validate(c1)

Agenda

Background
» Active Objects, Groups, the VerCors platform

Models for groups

 The Case-study
* Behavioural semantics of broadcast messages and asynchmo®ies

State generation and Verification
« State space generation: sequential / distributed Adrarchical
* Proving properties

Conclusion & Perspectives

Eric MADELAINE I Z Zi

State generation 1: classical

3 participants Brute force Minimized | Total time

Data €{d1,d2 } : — _
RescBOOl Single participant 1801/5 338 90/ 376 8

15 visible labels Initiator 3163/152 081 54/1489 11"

Full system, queue| 170K /1646 K| 458/1 284
of length 2

Machine:
Fedora 10, 4Go RAM Group of 3 > 10711 states
2 dual-core proc@2,4Ghy | Participants

- With no hierarchical minimization: the generatmima stand-aloneg
group of 3 participants would be impossible

- It is essential to build sub-systems in the cdrceatext (=
behavioural contract}> e.g. Projector tool of CADP.

Eric MADELAINE I Z Zi

State generation 2: distributed

Principles:

o State space partitioned on a cluster by a stast function. No shared
memory.

* The state space is merged before other tools ifmeation, model-
checking) can be applied. Distributed MC is planmefiiture versions
of CADP.

On the fly partial order reduction available:
e Tau-compression (collapsing tau-chains)
« Tau-confluence (selecting only representativesoaifluent-sets)

Eric MADELAINE I Z Zi

State generation 2: distributed

generation Brute force Total time

Full system with 3 Brute force 170 K/ 1646 K 6'45
participants Tau-compression 170 K / 607 K 11°48
(8x4 cores) Tau-confluence 5K /14 K 30

Group of 2 Brute force 13M/48 M 11'32

participants Tau-confluence 392K /1354K 19h 10’55
(15x8 cores)

Group of 3 Brute force (estimated 125 G states)

participants Tau-confluence Out of memory during
local computation

- Distributed state generation has a (fixed) ovedhbat allow for very
large RAM configurations. The bottleneck is the geephase.

- On-the-fly partial-order techniqgues may help teesenemory space,
a high price. It may also fail...

Eric MADELAINE I Z Zi

State generation 3: hierarchical

Classical compositional state generation:

Split the application into smaller pieces, minimeaeh with (branching) bisimulation
before combining them.

Distributed verification architecture:

Define the verification activities as a workflow,danse a generic scheduler on the
cloud infrastructure. Some of the workflow nodesratgtinode (distributed) tasks.

Eric MADELAINE I Z Zi

$

Task 1

InitiatorOptim.fcr Configl.gcf Book nodes; Config2.gcf "

Prepare nodes;
‘ Task 2.1 ' Build GCF , Task 2.2 '

- Compile client; Compile server; Flac +
Distributor Generate state Generate state Distributor
space space

InitiatorOptim.hcg Participant.bcg

Flac +

ParticipantSK[i].svl
Task 3

' Rename

Task 2.3 Participants
Merge sources ParticipantSK[i].bcg

$

Task4
System.exp - Build product;

Minimization

$

SystemMin.bcg

BCG tools

State generation 3: hierarchical

Classical compositional state generation:
Split the application into smaller pieces, minimeaeh with (branching) bisimulation
before combining them.
—=Thebiggest intermediate structunas ~ 3000 states before reduction.
—=A group of 3 (reduced) participants would be 90”@08 000 states.

Distributed verification architecture:

Define the verification activities as a workflow,canse a generic scheduler on the
cloud infrastructure. Some of the workflow nodesratgtinode (distributed) tasks.

=> Open questions: formalism and tool supporpecgy
- the structural splitting
- the mapping to verification tasks.

Eric MADELAINE I Z Zi

Proving properties

 These experiments have been done while develdpengncoding, so
we had real opportunities to find bugs (and we did)

Properties proved:

- Reachability and progress.
< True* .T CollateResult (f alse) > True
< True* .R suggest (i,b) > True

- Inevitability: Specification patterns
After 1Q Suggest(id) Eventually 'Q Cancel(.) v !Q validate(.)

- Boundedness:
< True=* .Error > True (with queues of length 1)
[True = .Error] False (with queues of length 2)

Eric MADELAINE I Z Zi

Regular p+calculus

Conclusions

We have presented:

- A behavioural semantics for group-based distributguiegiions, based on the pNets
formalism, allowing for finite-state model-checkingthe CADP platform

- Practical results in term of state generation (spacetime) with various strategies,
Including distributed state-generation.

- Hierarchical state space generation/minimizationgiai generic cloud infrastructure.

Perspectives:

- Automatisation of the pNet encoding in our VerCordfplan, with the challenge of
delivering these tools to non-specialists

- Extension to distributed components, including recumétion.
- (Much) bigger experiments, ...

Papers, Use-cases and Tools, Position Offers at :
http://www-sop.inria.fr/oasis/Vercors

Eric MADELAINE I Z Zi

Bonuses

The CADP Toolset

pNets: some elements of formal definitions
Flacre encoding

Discussion

PacaGrid infrastructure

Verification Tools

CADP toolset (INRIA Rhones-Alpes, VASY team)

* Generic Front-end
(Lotos, BCG, Sync-vector§,jacre
symbolic simulator, graph exploration, etc.

« Distributed Model generation
Up to billions of states
On-the-fly, Tau-reduction, Constrained...

o Evaluator model-checker
Deadlock search / Regularcalculus

« Bisimulation ckecking, minimization

Eric MADELAINE ---- OASIS IE’ Zi

pNets and Nets : operators

« pNets arggeneralized synchronisation operatorat the semantic level.
They address: multiway synchronisation, parameteri@apologies, and
dynamic topologies.

Definitions:
o A Systemis a tree-like structure with pNets at nodes and$haTleaves

e Data Abstraction: given a countable (resp, finite) domain for each
parameter of a system, itsstantiation is a countable (resp. finite)
system.

> Value Passing case : Preservation of safety and liveness properties
[Cleaveland & Riely 93]

» Parameterized topologies : no similar result in general.

Eric MADELAINE I Z Zi

The FIACRE intermediate format

= Low level semantic format, from the Fiacre project, and

OpenEmbedd platform

processQueue [Q_Suggest data,
Q_Validate:in data2, Q_Cancetiong, ...]
IS
statesS_empty, S1, S2, ...
var X:data, y:dataz, ...

from S_empty
select
Q_Suggest?xp S1

[
Q_Validate?yfo S2

énd

componentSystem [Q_Suggest: data, ...]
IS
port R_ValidateO, ...: indexG

par Q_Suggest, .in
R_Suggest0, R_ValidateO, -= Initiator

|
R_Suggest0, R _Validate® ParticipantO

[Q_Suggest, R_SuggestO,... |

[Q _Suggest, R_Suggest0, R_ValidateO, |..

.. end

Eric MADELAINE ---- OASIS IE’ Zi

Discussion

1. Why do we need a request gueue of length 2 ?

2. Optimal model generation means combining manyrtiggeies:
Use context (contract) to generate the models of lsagissystems
Abstract (data, visible events) in an optimal way
Build / minimized hierarchically
Need for a lot of intelligence in the scripting lalage (SVL)

3. Flexibility, monitoring, control of the distribed tools
- Very few distributed platforms (CADP, DIVINE, U. TwEnLTS-min)
- Move to standardized grid/cloud infrastructures?

e

PacaGrid

ﬂ >6880res
> 2 TB RAM

(‘DII:Q -
2.4GHz Intel Xeo#wt7450

Storage Serve{aMm: 128GB (32 x 4GB)

http://proactive.inria.fr/pacagrid/

AT

