
A Locally Nameless Theory of Objects

1.  Introduction: ς-calculus and De Bruijn notation
2.  locally nameless technique
3.  formalization in Isabelle and proofs

Ludovic Henrio, Florian Kammüller, Bianca Lutz, and Henry Sudhof

SAFA workshop – Oct 2010

Context

Calculi abstract away real programming
languages:
•  Proofs made on the calculus allow

optimisation and ensure properties on real
programs

Use of theorem prover to increase confidence in
those proofs

A general problem is the representation of
variables

We focus here on a simple object language

Each method is a function with a parameter: “self”

Functional ς-calculus

Syntax

Semantics (Abadi - Cardelli)

Why functional?  updating a field creates a new object (copy)

An Example

An Example

What are De Bruijn Indices?

De Bruijn indices avoid having to deal with α-conversion
equivalent to

Variables are natural numbers depending on the depth of
the parameter

also represents [l = ς(y)y]

[l = ς(y)y]

Why De Bruijn Indices?

Drawbacks:
  Terms are “ugly”  We are interested in general

properties / not for extracting an interpreter …
  Definition of subst and lift: semantics more complex
  Proofs of many additional (easy) lemmas
Advantages
  Established approach
  Reuse Nipkow’s framework for confluence of the λ-calculus
Alternative approaches, e.g. locally nameless

Unique representation -> avoids dealing with alpha conversion

What is locally nameless technique?

Bound variables are represented by their De Bruijn index
Free variables are represented by a “usual” variable

[l = ς(x)x.l := ς(y)z]

[l = 0.l :=z]
manipulate only locally closed terms i.e. all indexed variables

must be bound

 and are forbidden [l = 1] [m = [l = 2]]

Opening and Closing

open and close change between bound and free variables
 helps maintain the “locally closed” invariant

[l = 0; m = [l = 1]; n = [l = 0]]

0[x] → x
[l = 1][x] → [l = x]
[l = 0][x] → [l = 0]

open close

[x][l = 0] → [l = 0]
[x][l = x] → [l = 1]
[x]x → 0

non-LC terms

A method parameter

Syntax
a, b ::= x Variable

| [lj = ς(xj , yj)bj]j∈1..n object definition
| a.lj(b) (j ∈ 1..n) method call
| a.lj := ς(x, y)b (j ∈ 1..n) update

open close

Cofinite Quantification

When specifying semantics or proving properties, we need
to open terms:

x cannot be taken randomly, an idea:

Typically, proofs by induction, we must prove:

Sometimes impossible if t’≠t, similar problem for:
We use cofinite quantification:

P (t[x])

∃x "∈ FV(t). P (t[x])

∃x "∈ FV(t′). P (t′[x])

∃L finite.∀x #∈ L. P (t[x])

∃x "∈ FV(t). P (t[x]) 

∀x "∈ FV

t’ t x

Semantics with cofinite quantification

Reduce inside update (adapted for self+parameter):



In Isabelle

Properties and Proofs

•  Translated proofs for De Bruijn:
•  Confluence
•  Typing: subject reduction and progress

•  Different lemmas:
•  lifting and manipulation of indices for De Bruijn
•  Translation between free and bound variables for LN

•  Not particularly shorter, but LN more precise
•  Induction scheme more complex due to more complex

semantics (cofinite quantification)

Conclusion on LN representation

•  New concepts wrt de Bruijn:
o opening and closing
o locally closed terms (precondition of many lemmas

and semantic rules)
o cofinite quantification

•  Better structure, accuracy, and understanding:
o Distinction between free and bound variables
o Cofinite quantification

•  LN adapted to objects and to multiple parameters
•  Terms can be written in a similar manner as paper

version (using closing)

Other techniques?

•  Nominal techniques:
•  Terms are identified as a set bijective to all terms

factorised by alpha-equivalence
•  There must be a finite support for a term t
•  Well supported in Isabelle but not adapted to finite

maps for the moment

•  Higher Order Abstract Syntax
•  binders represented by binders of the meta-level
•  not very convenient in our case

Confluence Principles

Ensures that all computations are equivalent (same result)
Generally based on a diamond property:

Diamond ⇒ confluent:

2 - Confluence

a

b c

d

p

q r

s

Confluence Principles (2)

In general we have to introduce a new reduction that
verifies the diamond property

⊆ ⊆
⇒ confluent

and

2 - Confluence

a

b c

d

Confluence of the ς-calculus

  Based on Nipkow’s framework: Confluence for the
λ-calculus
-  Useful lemmas: commute, Church-Rosser, diamond
-  Structure of a confluence proof in Isabelle

  Definition of a parallel reduction (verifies diamond)
-  Like for λ-calculus, can reduce all sub-terms in parallel

-  Also includes (semantics of the ς-calculus)

2 - Confluence

Number of
methods

Reducing in Parallel inside Object

Subgoal (looks trivial but proof is tricky):

Solution: split into several reductions on object fields

2 - Confluence

ς-calculus confluence proof similar to Nipkow’s framework but:

•  Much less automatic

•  Difference of granularity between lists of terms and objects

•  More cases for diamond (more constructors/rules)

In the Meantime …

Objects as finite maps from labels to methods instead of
lists of methods
-  Definition of finite maps and a new induction principle
-  Closer to original ς-calculus (syntax and semantics);

new recurrence principle on terms
Formalization of the basic type system for the functional
ς-calculus
-  Typing rules (Abadi - Cardelli)
-  Subject reduction, progress (no stuck configuration)

3 - Ongoing Work, Applications, Conclusion

Todo List

Remove De Bruijn indices  “nominal techniques”?

Introduce methods with a parameter: ς(x,y) / a.l(b)

Apply to other results on object languages
(concurrence, mobility, …)

  A base model for Aspect Oriented Programming

3 - Ongoing Work, Applications, Conclusion

Towards Distribution

A model for the ASP calculus in Isabelle; ASP formalizes:
-  Active objects (AO) without shared memory
-  AO is the entry point and the master object of the activity
-  Communicating by asynchronous method calls with futures

Currently:
-  Definition of a functional ASP in Isabelle
-  Proof of well-formedness of the reduction (no creation of

reference to non-existing active objects or futures)
To do ….

-  A type system for ASP
-  Proof of confluence for the functional ASP
-  Extension of the concurrency in the functional calculus
-  Case of the imperative ASP calculus …

3 - Ongoing Work, Applications, Conclusion

Conclusion

A formalization of the ς-calculus in Isabelle
A confluence proof for the functional ς-calculus
-  Parallel reduction inside objects

A base framework for developments on objects, confluence
and concurrency

A lot of possible applications (distribution / typing / AOP …)

Experiments on Isabelle (few months development)
- User-friendly, relatively fast development
- Finding the right structure/representation is crucial
- Difficulties when modifying / reusing code

http://www.cs.tu-berlin.de/~flokam/isabelle/sigma/

3 - Ongoing Work, Applications, Conclusion

