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Context 

Calculi abstract away real programming 
languages: 
•  Proofs made on the calculus allow 

optimisation and ensure properties on real 
programs 

Use of theorem prover to increase confidence in 
those proofs 

A general problem is the representation of 
variables 

We focus here on a simple object language  



Each method is a function with a parameter: “self” 

Functional ς-calculus 

Syntax 

Semantics (Abadi - Cardelli) 

Why functional?  updating a field creates a new object (copy) 



An Example 



An Example 



What are De Bruijn Indices? 

De Bruijn indices avoid having to deal with α-conversion 
equivalent to 

Variables are natural numbers depending on the depth  of 
the parameter 

also represents [l = ς(y)y]

[l = ς(y)y]



Why De Bruijn Indices? 

Drawbacks: 
  Terms are “ugly”  We are interested in general 

properties / not for extracting an interpreter … 
  Definition of subst and lift: semantics more complex 
  Proofs of many additional (easy) lemmas  
Advantages 
  Established approach 
  Reuse Nipkow’s framework for confluence of the λ-calculus 
Alternative approaches, e.g. locally nameless 

Unique representation -> avoids dealing with alpha conversion 





What is locally nameless technique? 

Bound variables are represented by their De Bruijn index 
Free variables are represented by a “usual” variable 

[l = ς(x)x.l := ς(y)z]

[l = 0.l :=z]
manipulate only locally closed terms i.e. all indexed variables 

must be bound 

 and                               are forbidden            [l = 1] [m = [l = 2]]



Opening and Closing 

open and close change between bound and free variables 
 helps maintain the “locally closed” invariant 

[l = 0; m = [l = 1]; n = [l = 0]]

0[x] → x
[l = 1][x] → [l = x]
[l = 0][x] → [l = 0]

open close 

[x][l = 0] → [l = 0]
[x][l = x] → [l = 1]
[x]x → 0

non-LC terms 



A method parameter 

Syntax 
a, b ::= x Variable

| [lj = ς(xj , yj)bj ]j∈1..n object definition
| a.lj(b) (j ∈ 1..n) method call
| a.lj := ς(x, y)b (j ∈ 1..n) update

open close 



Cofinite Quantification 

When specifying semantics or proving properties, we need 
to open terms:  

x cannot be taken randomly, an idea: 

Typically, proofs by induction, we must prove: 

Sometimes impossible if t’≠t, similar problem for: 
We use cofinite quantification: 

P (t[x])

∃x "∈ FV(t). P (t[x])

∃x "∈ FV(t′). P (t′[x])

∃L finite.∀x #∈ L. P (t[x])

∃x "∈ FV(t). P (t[x])  

∀x "∈ FV

t’ t x 





Semantics with cofinite quantification 

Reduce inside update (adapted for self+parameter): 

 



In Isabelle 



Properties and Proofs 

•  Translated proofs for De Bruijn: 
•  Confluence 
•  Typing: subject reduction and progress 

•  Different lemmas: 
•  lifting and manipulation of indices for De Bruijn 
•  Translation between free and bound variables for LN 

•  Not particularly shorter, but LN more precise 
•  Induction scheme more complex due to more complex 

semantics (cofinite quantification) 



Conclusion on LN representation 

•  New concepts wrt de Bruijn:  
o opening and closing 
o locally closed terms (precondition of many lemmas 

and semantic rules) 
o cofinite quantification 

•  Better structure, accuracy, and understanding: 
o Distinction between free and bound variables 
o Cofinite quantification 

•  LN adapted to objects and to multiple parameters 
•  Terms can be written in a similar manner as paper 

version (using closing) 



Other techniques? 

•  Nominal techniques:  
•  Terms are identified as a set bijective to all terms 

factorised by alpha-equivalence 
•  There must be a finite support for a term t 
•  Well supported in Isabelle but not adapted to finite 

maps for the moment 

•  Higher Order Abstract Syntax 
•  binders represented by binders of the meta-level 
•  not very convenient in our case 





Confluence Principles 

Ensures that all computations are equivalent (same result) 
Generally based on a diamond property: 

Diamond ⇒   confluent: 

2 - Confluence 

a 

b c 

d 

p 

q r 

s 



Confluence Principles (2) 

In general we have to introduce a new reduction that 
verifies the diamond property 

⊆ ⊆ 
⇒      confluent 

and 

2 - Confluence 

a 

b c 

d 



Confluence of the ς-calculus 

  Based on Nipkow’s framework: Confluence for the  
λ-calculus 
-  Useful lemmas: commute, Church-Rosser, diamond 
-  Structure of a confluence proof in Isabelle 

  Definition of a parallel reduction           (verifies diamond) 
-  Like for λ-calculus, can reduce all sub-terms in parallel 

-  Also includes             (semantics of the ς-calculus) 

2 - Confluence 



Number of  
methods 

Reducing in Parallel inside Object 

Subgoal (looks trivial but proof is tricky): 

Solution: split into several reductions on object fields 

2 - Confluence 

ς-calculus confluence proof similar to Nipkow’s framework but: 

•  Much less automatic 

•  Difference of granularity between lists of terms and objects 

•  More cases for diamond (more constructors/rules) 



In the Meantime … 

Objects as finite maps from labels to methods instead of 
lists of methods 
-  Definition of finite maps and a new induction principle  
-  Closer to original ς-calculus (syntax and semantics); 

new recurrence principle on terms 
Formalization of the basic type system for the functional  
ς-calculus 
-  Typing rules (Abadi - Cardelli) 
-  Subject reduction, progress (no stuck configuration) 

3 - Ongoing Work, Applications, Conclusion 



Todo List 

Remove De Bruijn indices  “nominal techniques”? 

Introduce methods with a parameter: ς(x,y) / a.l(b) 

Apply to other results on object languages  
(concurrence, mobility, …) 

  A base model for Aspect Oriented Programming 

3 - Ongoing Work, Applications, Conclusion 



Towards Distribution 

A model for the ASP calculus in Isabelle; ASP formalizes: 
-  Active objects (AO) without shared memory 
-  AO is the entry point and the master object of the activity 
-  Communicating by asynchronous method calls with futures 

Currently: 
-  Definition of a functional ASP in Isabelle 
-  Proof of well-formedness of the reduction (no creation of 

reference to non-existing active objects or futures) 
To do …. 

-  A type system for ASP 
-  Proof of confluence for the functional ASP 
-  Extension of the concurrency in the functional calculus 
-  Case of the imperative ASP calculus … 

3 - Ongoing Work, Applications, Conclusion 



Conclusion 

A formalization of the ς-calculus in Isabelle 
A confluence proof for the functional ς-calculus  
-  Parallel reduction inside objects 

A base framework for developments on objects, confluence 
and concurrency 

A lot of possible applications (distribution / typing / AOP …) 

Experiments on Isabelle (few months development) 
- User-friendly, relatively fast development 
- Finding the right structure/representation is crucial 
- Difficulties when modifying / reusing code 

http://www.cs.tu-berlin.de/~flokam/isabelle/sigma/ 

3 - Ongoing Work, Applications, Conclusion 


