f l weitd S¥9NL. e CENTRE NATIONAL
H[nvusll(% DE LA RECHERCHE
1C€ sopHiA ANTIPOLIS & w?¥ SCIENTIFIQUE

A Locally Nameless Theory of Objects

Ludovic Henrio, Florian Kammuller, Bianca Lutz, and Henry Sudhof

1. Introduction: c-calculus and De Bruijn notation
2. locally nameless technique
3. formalization in Isabelle and proofs

SAFA workshop — Oct 2010

Context

Calculi abstract away real programming
languages:

- Proofs made on the calculus allow
optimisation and ensure properties on real
programs

Use of theorem prover to increase confidence in
those proofs

A general problem is the representation of
variables

We focus here on a simple object language

Functional ¢c-calculus

Syntax Each method is a function with a parameter: “self”
a,b = Zj_ _,_/_ L variable
'Ll.z = ¢(z;)by)? €t object definition
(7 € 1..n) method call
a,.lj = ¢(z)b (7 € 1..n) update

Semantics (Abadi - Cardelli)

Let 0 = [lj = C(.’L‘j)bj]jel”n (lj distinct).

o is an object with method names !; and methods ¢(z;)b;

0.l; —g bj{x; < o} (7 € 1..n) selection / method call
ol =¢(x)b —psl; =¢(x)bl; = c(a:,;)bze(l"n)_{”] (7 € 1..n) update / override

Why functional? =» updating a field creates a new object (copy)

An Example

[X = s@)l], getX = c(@)2.X].getX

B
tg-b(:c\)a: X

An Example

What are De Bruijn Indices?

De Bruijn indices avoid having to deal with a-conversion

[l - g(gj)gj] equivalent to [l — g(y)y]
Variables are natural numbers depending on the depth of
the parameter

I =c(x)z] (=@ =<y
| |
! [#f(@’l)()] I = qlas{ll'=()1]]

also represents || = ¢(y)y]

Why De Bruijn Indices?

Unique representation -> avoids dealing with alpha conversion

Drawbacks:

. Terms are “ugly” =» We are interested in general
properties / not for extracting an interpreter ...

. Definition of subst and /ift: semantics more complex

. Proofs of many additional (easy) lemmas

Advantages

. Established approach

. Reuse Nipkow’s framework for confluence of the A-calculus

Alternative approaches, e.g. locally nameless

2 — Locally Nameless technique

What is locally nameless technique?

Bound variables are represented by their De Bruijn index
Free variables are represented by a “usual” variable

! =<(x)r.l:=<(y)2

|
[=0.l:=z

manipulate only locally closed terms i.e. all indexed variables
must be bound

[l — 1]and [m — [l — 2“ are forbidden

Opening and Closing

open and close change between bound and free variables

A method parameter

Syntax
a,b:= x Variable
1 = c(xj,y;)b;]7€H" object definition
a.l; (D) (7 € 1..n) method call
a.lj = ¢(x,y)b (7 € 1..n) update
open close

tt[S,P] [S,p] t

Cofinite Quantification

When specifying semantics or proving properties, we need
to open terms: P(t[:p])

X cannot be taken randomly, an idea:

3z & FV(t). P(t1®)

t!
Typically, proofs by induction, we must prove: x|

Jo & FV(t). P(t®) 2 3z & FV(t). Pt

Sometimes impossible if t'#t, similar problem for: Va Q FV
We use cofinite quantification:

L finite.Vx ¢ L. P(t®)

3 — Semantics and Properties

Semantics with cofinite quantification

Reduce inside update (adapted for self+parameter):

AR t' =¢lx, ylt"” 1c o
0.l .=t —.o0l:=1t
. Z
gl vl ¢ t' =¢lx, y|t” finite L
Vo y. x#y N\ x,y¢ L 1c o

ol:=t—col:=t

In Isabelle

datatype sterm =

Bvar bVariable

Fvar fVariable

Obj (Label = sterm) type
Call sterm Label sterm
Upd sterm Label sterm

| beta_UpdR:

| finite L; Vs p. s € LApPp €L ASFPp
_>(E| £ t[Fvar s,Fvar p] — t’? A t’= ¢ [S,p]t“); 1c 11]]
— Updult — Updul t’

Properties and Proofs

* Translated proofs for De Bruijn:

* Confluence

* Typing: subject reduction and progress
* Different lemmas:

* lifting and manipulation of indices for De Bruijn

* Translation between free and bound variables for LN
* Not particularly shorter, but LN more precise

* |nduction scheme more complex due to more complex
semantics (cofinite quantification)

Conclusion on LN representation

* New concepts wrt de Bruijn:
O opening and closing

O locally closed terms (precondition of many lemmas
and semantic rules)

O cofinite quantification

* Better structure, accuracy, and understanding:
O Distinction between free and bound variables
O Cofinite quantification

* LN adapted to objects and to multiple parameters

* Terms can be written in a similar manner as paper
version (using closing)

Other techniques?

Nominal techniques:

- Terms are identified as a set bijective to all terms
factorised by alpha-equivalence

- There must be a finite support for a term t

- Well supported in Isabelle but not adapted to finite
maps for the moment

Higher Order Abstract Syntax
- binders represented by binders of the meta-level

- not very convenient in our case

Confluence Principles

Ensures that all computations are equivalent (same result)
Generally based on a diamond property:

N/ o

S Diamond => \ confluent: b \
\ /

2 - Confluence

Confluence Principles (2)

In general we have to introduce a new reduction that
verifies the diamond property

R

L________________‘y

| diamond R; T C R; R C T® | — confluent T

2 - Confluence

Confluence of the ¢c-calculus

. Based on Nipkow’s framework: Confluence for the
A-calculus

- Useful lemmas: commute, Church-Rosser, diamond
- Structure of a confluence proof in Isabelle
. Definition of a parallel reduction =>3 (verifies diamond)
- Like for A-calculus, can reduce all sub-terms in parallel
upd: [s =5 s8’; t 23t | = Updslt =5 Upd s’ 1t’
- Also includes —3 (semantics of the c-calculus)

upd’: [Obj s =5 Obj 875 t =5 t° |
—> (Upd (Obj s) 1 t) =3 (Obj (s’ [1 := t’]))

2 - Confluence

Reducing in Parallel inside Object

Subgoal (looks trivial but proof is tricky):

c-calculus confluence proof similar to Nipkow’s framework but:

* Much less automatic
* Difference of granularity between lists of terms and objects

* More cases for diamond (more constructors/rules)

2 - Confluence

In the Meantime ...

Objects as finite maps from labels to methods instead of
lists of methods

- Definition of finite maps and a new induction principle

- Closer to original c-calculus (syntax and semantics);
new recurrence principle on terms

Formalization of the basic type system for the functional
c-calculus

- Typing rules (Abadi - Cardelli)
- Subject reduction, progress (no stuck configuration)

3 - Ongoing Work, Applications, Conclusion

Todo List

Remove De Bruijn indices =» “nominal techniques™?

Introduce methods with a parameter: ¢(x,y) / a.l(b)

Apply to other results on object languages
(concurrence, mobility, ...)

=>» A base model for Aspect Oriented Programming

3 - Ongoing Work, Applications, Conclusion

Towards Distribution

A model for the ASP calculus in Isabelle; ASP formalizes:
- Active objects (AO) without shared memory
- AO is the entry point and the master object of the activity

- Communicating by asynchronous method calls with futures
Currently:

- Definition of a functional ASP in Isabelle

- Proof of well-formedness of the reduction (no creation of

reference to non-existing active objects or futures)
Todo

- A type system for ASP
- Proof of confluence for the functional ASP

- Extension of the concurrency in the functional calculus
- Case of the imperative ASP calculus ...

Conclusion

A formalization of the c-calculus in Isabelle
A confluence proof for the functional c-calculus
- Parallel reduction inside objects

A base framework for developments on objects, confluence
and concurrency

A lot of possible applications (distribution / typing / AOP ...)

Experiments on Isabelle (few months development)
-User-friendly, relatively fast development
-Finding the right structure/representation is crucial

-Difficulties when modifying / reusing code
http://www.cs.tu-berlin.de/~flokam/isabelle/sigma/

3 - Ongoing Work, Applications, Conclusion

