
PSL vs. CCSL

Régis Gascon Julien DeAntoni Frédéric Mallet

INRIA Sophia-Antipolis - EPI AOSTE

Université Nice Sophia-Antipolis

SAFA Workshop - October 6th, 2010

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

High level specification

System design needs descriptions at different abstraction level.

MARTE: UML profile for real time systems.

MARTE/CCSL can be used for high level specification.

CCSL observers allow checking an implementation (VHDL)
conforms the specification. [André, Mallet, & DeAntoni ’10]

PSL assertions can also be used to express required properties
on the system (lower level).

model checking,
equivalence checking.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Why comparing PSL and CCSL?

CCSL and PSL are used in similar roles though designated for
different purposes.

Clock Constraint Specification Language

constructs from net theory and synchronous languages.
timed and causal patterns common in embedded systems.

Property Specification Language

textual language for temporal logic.
sugaring operators to raise the abstraction level.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Agenda

Definitions:

Clock Constraint Specification Language,

Property Specification Language.

Preliminary comparisons.

Translations (fragments).

Conclusion.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Clock Constraint Specification Language (CCSL)

CCSL is based on clocks (sequence of event occurrences).

CCSL specification define constraints between the occurrences
of clocks.

CCSL relations

c1 ⊂ c2 (subclocking),

c1] c2 (exclusion),

c1 ≺ c2 (precedence), c1 � c2 (weak precedence),

c1 ∼ c2 (alternance).

CCSL expressions (building new clocks)

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Clock Constraint Specification Language (CCSL)

CCSL is based on clocks (sequence of event occurrences).

CCSL specification define constraints between the occurrences
of clocks.

CCSL relations

CCSL expressions (building new clocks)

c1 + c2 (union), c1 ∗ c2 (intersection), c1 − c2 (difference),

c1 H bw (filtering),

c1 ∧ c2 (greatest lower bound) c1 ∨ c2 (lowest upper bound),

etc. . .

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Semantics (examples)

Models are of the form σ : N→ 2VAR.

c1 ⊂ c2 (subclocking)

c2 > > > ⊥ > > > > . . .
c1 ⊥ > ⊥ ⊥ > ⊥ > > . . .

c1 � c2 (weak precedence)

c1 ∼ c2 (alternance)

c
∆
= c1 + c2 (union)

c
∆
= c1 ∧ c2 (glb)

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Semantics (examples)

Models are of the form σ : N→ 2VAR.

c1 ⊂ c2 (subclocking)

c1 � c2 (weak precedence)

c1 > > > ⊥ > > ⊥ ⊥ . . .
1 2 3 3 4 5 5 5

c2 ⊥ > ⊥ > > ⊥ > > . . .
0 1 1 2 3 3 4 5

c1 ∼ c2 (alternance)

c
∆
= c1 + c2 (union)

c
∆
= c1 ∧ c2 (glb)

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Semantics (examples)

Models are of the form σ : N→ 2VAR.

c1 ⊂ c2 (subclocking)

c1 � c2 (weak precedence)

c1 ∼ c2 (alternance) bounded precedence

c1 > ⊥ > ⊥ ⊥ > ⊥ > . . .
c2 ⊥ > ⊥ ⊥ > ⊥ > ⊥ . . .

c
∆
= c1 + c2 (union)

c
∆
= c1 ∧ c2 (glb)

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Semantics (examples)

Models are of the form σ : N→ 2VAR.

c1 ⊂ c2 (subclocking)

c1 � c2 (weak precedence)

c1 ∼ c2 (alternance)

c
∆
= c1 + c2 (union)

c1 ⊥ > ⊥ ⊥ > ⊥ > > . . .
c2 ⊥ > > ⊥ > ⊥ ⊥ > . . .

c ⊥ > > ⊥ > ⊥ > > . . .

c
∆
= c1 ∧ c2 (glb)

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Semantics (examples)

Models are of the form σ : N→ 2VAR.

c1 ⊂ c2 (subclocking)

c1 � c2 (weak precedence)

c1 ∼ c2 (alternance)

c
∆
= c1 + c2 (union)

c
∆
= c1 ∧ c2 (glb)

c1 > > ⊥ ⊥ > > ⊥ > . . .
1 2 2 2 3 4 4 5 . . .

c2 ⊥ > > > > ⊥ ⊥ ⊥ . . .
0 1 2 3 4 4 4 4 . . .

c ⊥ > > ⊥ > > ⊥ ⊥ . . .
0 1 2 2 3 4 4 4

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Clock Constraint Specification Language (CCSL)

CCSL is based on clocks (sequence of event occurrences).

CCSL specification define constraints between the occurrences
of clocks.

CCSL relations

CCSL expressions (building new clocks)

CCSL specification

Clocks

+ Definitions: c
∆
= < Expression >

+ Relations

seen as a conjunction of constraints.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Property Specification Language (PSL)

IEEE standard for hardware assertion

LTL + regular expressions + sugaring operators

Same expressiveness than LTL.

Here, we consider the following kernel:

Boolean formula:

b ::= p | ¬b | b ∧ b | b ∨ b

Regular expressions

r ::= b | r · r | r ∪ r | r ∩ r | r∗

PSL properties

φ ::= r | φ ∧ φ | φ ∨ φ | ¬φ | Xφ | φUφ

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

PSL semantics

Models are also of the form σ : N→ 2VAR

σ, i |= p iff p ∈ σ(i).

Boolean cases and regular expressions are standard.

σ, i |= Xφ iff σ, i + 1 |= φ (φ holds at the next position.)

p ⊥ > . . . |= Xp

σ, i |= φUψ iff there exist j ≥ i such that

σ, j |= ψ and
for all i ≤ k < j , σ, k |= φ.

(φ holds until a position where ψ holds).

p > > > . . .
q ⊥ ⊥ > . . .

|= pUq

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

PSL semantics

Models are also of the form σ : N→ 2VAR

σ, i |= p iff p ∈ σ(i).

Boolean cases and regular expressions are standard.

Fφ ≡ >Uφ (φ eventually holds.)

p ⊥ ⊥ . . . ⊥ > . . . |= Fp

Gφ ≡ ¬F¬φ (φ always holds.)

p > > > . . . |= Gp

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Preliminary Comparisons

CCSL and PSL share common models,

but none of these languages is included in the other.

CCSL is designed to express safety:
“Something bad never happens” (Gφ in PSL).

PSL cannot express precedence, glb and lub
(needs unbounded counter).

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Comparable fragments

What are the subsets that can be translated ?

We choose to bound some CCSL operators:

Precedence: c1 �n c2 means

c1 precedes c2,
but the advance of c1 never exceeds n.

Glb, Lub (bound on the relative advance).

On the other hand, we consider the safety fragment of PSL.

Lemma

Every bounded CCSL specification can be encoded in PSL.

Lemma

Every safety PSL formula can be encoded in CCSL.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean Automata

We use an automaton based approach.

Boolean automaton: automaton whose transitions are labeled
by Boolean formulas.

PSL Boolean
automata CCSL

Vardi & Wolper

Sistla & Clake

This Work

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean automaton → CCSL (example)

This kind of translation is limited by the fact that CCSL cannot
express liveness (Fφ in temporal logic).

Lemma

If every state is accepting, a Boolean automaton can be simulated
by a CCSL specification.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean automaton → CCSL (example)

q0 q1

a ∧ b

a ∧ ¬b ∧ ¬c

Transitions:

T0
∆
= a ∗ b

T1
∆
= a − (b + c)

Global clock and initialization:

Glob
∆
= q0 + q1 + a + b + c

Init
∆
= Glob H 10ω

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean automaton → CCSL (example)

q0 q1

T0

T1

At each instant either a state or a transition occurs:

Glob = (q0 + q1) + T0 + T1

Two states cannot occurs at the same time

q0] q1

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean automaton → CCSL (example)

q0 q1

T0

T1

Each states alternate with its output:

q0 ∼ T0

q1 ∼ T1

and with its input

T1 ∪ Init ∼ q0

T0 ∼ q1

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Boolean automaton ← CCSL (example)

Boolean automata cannot encode unbounded counters.

Lemma

Every CCSL specification in the bounded fragment can be encoded
by a Boolean automaton.

Example: c1 �3 c2

0 1 2 3
c1 ∧ ¬c2

c1 ∧ ¬c2

c2 ∧ ¬c1

c1 ∧ ¬c2

c2 ∧ ¬c1

¬c1 ∧ ¬c2 ¬c1 ∧ ¬c2 ¬c1 ∧ ¬c2 ¬c1 ∧ ¬c2

c1 ∧ c2 c1 ∧ c2 c1 ∧ c2

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Main results

Lemma

The safety fragment of PSL can be simulated in CCSL.

Indeed, the translation of safety PSL to Boolean automata is such
that every state is accepting.

Lemma

The bounded fragment of CCSL can be simulated in PSL.

By intermediate translation to Boolean automata or directly.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Concluding remarks

Contributions:

Identification of differences between CCSL and PSL.

Translations for large fragments of these languages.

Sometimes the context naturally bounds precedence
(see e.g. alternance).

PSL misses data (integer, strings) to efficiently encode CCSL
(even the bounded fragment).

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Future work

Adding temporal modalities to a CCSL like language.

Checking that a CCSL specification induce a finite state
system.

Defining CCSL libraries:

for PSL subsets,
for state machines.

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

Questions ?

R. Gascon, J. DeAntoni, F. Mallet PSL vs. CCSL

