Communication Refinement for SOC Design

Hocine Mokrani, Rabéa Ameur-Boulifa, Sophie Coudert
System-on-Chip Laboratory (LabSoC), GET/Telecom-Paris

2229, routes des Crétes BP 193
F-06904 Sophia-antipolis Cedex
Email: first_name.last_name @telecom-paristech.fr

Abstract— We present a methodology for efficient system-level
design space exploration of system-on-chip (SoC). The method-
ology we proposed provides a formal approach for modeling and
analysis system-level design. Indeed, it provides a mean to build
models of architectures and application at an abstract level, to
relate the two models with the mapping function, and to validate
and analyze the performance of the resulting system.

I. INTRODUCTION

To achieve a satisfactory design quality, along the increasing
complexity of both the systems on chip (SoCs) and appli-
cations, design at high level of abstraction and verification
methodologies are required. Because models are abstract, it is
possible to speed up simulation and to apply formal analysis
techniques. Our work focuses on formal verification capability
to offer guarantees about a design. The methodology we ad-
vocate consists of developing abstract application models and
architecture models, followed by a mapping step to relate the
application model to the architecture. Afterwards, the system
(application-architecture-mapping combination) is analyzed by
using formal techniques. Once the system is validated, more
details are introduced, the analysis is reiterated and so on.
Our contribution: a new design dimension is added to the
traditional methodology. The extended methodology involves
formal design paradigm both to drive architecture refinement
and exploration and to prove correctness of refinement steps.

II. OUR METHODOLOGY

Our approach follows the general Y-chart scheme, as shown
in Fig. 1, where application and architecture are provided
separately. The application model drives the architecture de-
sign. Firstly, the designer studies the applications, makes some
initial computation and analysis, and proposes a candidate
platform architecture. By mapping the application onto the
platform architecture, the designer evaluates and compares
several instances of the platform. The evaluation indicates
whether the selected plate-form and the design parameters
satisfies given requirements which could be functional or
non-functional. Separating application and architecture models
allows designers to use a single application model to test
different partitioning and map it onto a range of architecture
models, possibly representing different instances of a single
platform or the same platform instance at various abstraction
levels. The strength of our methodology is to provide incre-
mental design. It allows designer to start from a high-level

Emmanuelle Encrenaz-Tiphene
Laboratoire d’informatique de Paris VI
Université Pierre et Marie Curie (Paris VI)
F-75252 Paris Cedex 05
Email: emmanuelle.encrenaz@lip6.fr

plate-form (with abstract components), and gradually more
detailed components will be introduced until convergence to
the desired architecture.

Extraction

Application Architecture

Mapping

System1
Application + architecture

jonof C
Component

Communication

Relation {
\. Refinement

Systemi
App+Archi+RComm

Design Methodology

A. Application Modeling

To model the functional behavior of an application at high
level of abstraction LabSoC has proposed a very simple lan-
guage called TML [11] (Task Modeling Language). The TML
model very close to Kahn processes network model [5] allows
by using tasks and communication channels to capture the
parallelism available at application-level assuming unbounded
physical resources. At this level, there is no difference between
hardware tasks and software tasks because no partitioning is
defined yet. There is no data processing details inside the
tasks. Operations within a task model are totally ordered.
The proposed task modeling language consists of usual in-
structions (arithmetic/logic instructions, variable settings, tests,
loops, etc), of communications instructions (reading/writing
abstract data samples in channels, sending/receiving events and
requests) and of computational instructions.

B. Architecture

An architecture is a set of interconnected hardware com-
ponents. These components are the usual ones, they can be
Processing Elements (PE) such as processors (standard or
specific), hardware units, ..., Communication Elements (CE)



such as bus structures, Memory Elements (ME) such as RAM
or FIFO buffer and Interface Elements (IE) such as Bridge,
Arbiter, controller of interrupt.

C. Mapping

Once both an application model and an architecture model
have been defined, mapping can be performed. The application
is assigned to an architecture (final) after several iterations
of refinement process which starts by the following rules:
- Each task is mapped onto a process element (PE). This
mapping can be many-to-one, in which case the tasks need
to be scheduled by the PE. - Each channel is mapped onto
one-to-one communication elements CE. This mapping can
also maps the channels onto a combination of communication
elements (CE) and memory elements (ME), possibly including
user defined blocks, such as a bridge or controller. Typically,
these do not have an equivalent element in the application
model.

III. REFINEMENT OF COMMUNICATION CHANNELS

In its abstract form, the application is modeled as a set
of communications processes free of any architectural con-
straints. As it is mapped onto an architecture the level of
abstraction is moved down. So the communication mechanism
must be taken into account since the behavior of the processes
depends on the behavior of the communication channel. For
instance, communication can be performed over a reliable
channel connecting two processes with finite (or infinite)
buffer. The level of abstraction is lowered further down by
considering a more detailed instance for the channel, like bus
architecture. The illustration is given in the example of the Fig.
2 (figure inspired from [7]). Consider an application which
consists of two tasks connected via a channel as shown in
Fig.2(a). In the first step, the application model is mapped to
the target architecture. In this case, each task is mapped onto a
single PE unit and the channel is mapped onto a finite buffer
Fig. 2(b). In refinement step, the communication channel is
transformed from the perfect buffer to a lossy medium Fig.2(c)
where errors can occur.

In our framework, the system descriptions are given in an
informal manner. These informal specifications need to be
translated into formal models (e.g., process algebra, finite
state machine, etc) which capture the essential properties of
the application. The behavior of both the application and
the architecture can be captured by the notion of traces. For
an application a trace represents a sequence of computation
and communication actions (operations) that are performed
when it is executed. Concerning an architecture a trace a
sequence of actions that are accepted to be executed on it.
The mapping function translates the application traces into
the architecture traces, i.e, the applications actions into more
detailed architecture actions giving as a result traces permitted
by the system.

Refining the communication medium from a simple channel
to more detailed one will increase the communication oper-
ations and its relationship with computation. The idea is to

1 Application mapped
onto architecture

(b)

Communication
medium with
errors
management

Fig. 2. (a) Simple application: two-tasks with communication channel, (b)
replacing channel with Finite Buffer, (c) adding errors

help designers check whether two systems at different levels
of abstraction have any semantic inconsistencies that could
have been introduced during the refinement process. So in
order to ensure the compliance between the different levels of
refinement, we need to give behavioral semantics of the related
components and to formally characterize refinement steps. -
The application model: set of traces that are generated by
an application consisting of a sequence of observable actions
performed by the application. - The architecture model: set of
traces that are accepted by the architecture. - The mapping
function as a series of well-defined steps (or rules) which
transform an application trace to an architecture trace. Once an
application is mapped onto an architecture the resulting system
model will be set of traces that can be executed. As shown
in Fig. 2 replacing the original communication by a concrete
bus will involve several transformations which modifies its
behavior. Typically, the data transfer action on an abstract
channel will be converted to a sequence of bus transactions.
Besides converting abstract data transfer to bus trace, it is nec-
essary to preserve the communication semantics of the original
model, i.e the synchronization between different components.
For instance, on application level each abstract data transfer
is independent from others. However, on a concrete bus they
have to share the same medium and synchronization events.
Therefore, additional synchronizations are required to avoid
conflicts on the bus.

For more complex designs, like a design where several
slaves components talk to several masters, the basic action
of data transfer remain the same, but the refinement process
requires more work. Indeed, it will take into account the
arbitration mechanism, the interrupt controller, etc...

IV. RELATED WORK

There are various works and design methodology in the
development of SoC that integrates formal verification of
system in each level in the design process. Among these
methods, we cite VeriAgent [9] which proposes an interface
between UML description tools and formal verification tools
with model checking, the Polis approach [3] seek the formal
verification using FSMs, also we cite Metropolis [10], ArchAn
[8], Ptolemy [2] and [6]. Some of these methodologies and



works integrate formal method but no methodology provide
mathematical relationship between different system-levels.

Alike Abrial’s B Method [1] our approach dedicated for the
SoC development is based on refinement technique allowing
one to gradually introduce complexity into the design, incre-
mentally verifying its correctness by automatic or interactive
tools.

Much works has been done to design and experiment model
of communication in architecture exploration. For example, [4]
which proposes a practical approach to the communication
synthesis for hardware/software systems. [6] which proposes
a technique based on trace transformation for automate the
communication refinement in architecture exploration.

V. CONCLUSION AND FUTURE DIRECTIONS

The work presented in this paper is built upon methodology
developed by our team LabSoC. It focuses on the integration of
formal refinement in a system-level design methodology. The
design methodology proposed supports refinement based de-
sign, and formal verification to prove correctness of refinement
steps. We are currently formalizing the presented concepts
(application, architecture, mapping) to support communication
refinement in the mapping steps. We plan to automate this pro-
cess by way of automatically generating refinement directives.

REFERENCES

[1] J.-R. Abrial. The B-book: assigning programs to meanings. 1996.

[2] C.P. Cheng, T.Fristoe, and E.A. Lee. Applied verification: The ptolemy
approach. Technical Report No. UCB/EECS-2008-41, April 19, 2008.

[3] F.Balarin, M Chiodo, P. GIUSTO, H.Hsieh, A. Jurecska, L. Lavagno,
and al. hardware-software co-design of embedded system : the polis
approach. may 1997.

[4] Denis Hommais, Frederic Petrot, and Ivan Auge. A practical tool box
for system level communication synthesis. In CODES ’01: Proceedings
of the ninth international symposium on Hardware/software codesign,
pages 48-53, 2001.

[5] Gilles Kahn. The semantics of simple language for parallel program-
ming. In IFIP Congress, pages 471-475, 1974.

[6] Paul Lieverse, Pieter van der Wolf, and Ed Deprettere. A trace
transformation technique for communication refinement. In CODES ’01:
Proceedings of the ninth international symposium on Hardware/software
codesign, pages 134—139, 2001.

[7] Radu Marculescu, Umit Y. Ogras, and Nicholas H. Zamora. Compu-
tation and communication refinement for multiprocessor soc design:
A system-level perspective. ACM Trans. Design Autom. Electr. Syst.,
11(3):564-592, 2006.

[8] Yves Mathys and André Chatelain. Verification strategy for integration
3g baseband soc. In DAC ’03: Proceedings of the 40th annual Design
Automation Conference, pages 7-10. ACM, 2003.

[9] Edjard Mota, Edmund M. Clarke, Alex Groce, Waleska Oliveira, Marcia
Falco, and Jorge Kanda. Veriagent: an approach to integrating uml and
formal verification tools. Electr. Notes Theor. Comput. Sci., 95:111-129,
2004.

[10] M. Sgroi, M. Sheets, A. Mihal, K. Keutzer, S. Malik, J. Rabaey,
and A. Sangiovanni-Vencentelli. Addressing the system-on-a-chip in-
terconnect woes through communication-based design. In DAC ’'01:
Proceedings of the 38th annual Design Automation Conference, pages
667-672. ACM, 2001.

[11] W.Muhammad, L. Apvrille, R.A. Boulifa, S. Coudert, and R. Pacalet.
Abstract application modeling for system design space exploration.
Euromicro Conference on Digital System Design (DSD?06), Dubrovnik,
Croatia, August 2006.



