
Construction of Models Needs Idempotent
Transformations

Clementine NEMO, Mireille BLAY-FORNARINO
Universite de Nice - Sophia Antipolis

Laboratoire I3S (CNRS-UNSA), Equipe Modalis
Batiment Polytech’Sophia - Dept. SI, 930 route des Colles

B.P. 145 F-06903 Sophia Antipolis Cedex
(nemo,blay)@polytech.unice.fr

I. CHALLENGE

Model transformations play a critical role in Model Driven
Development because they automate recurrent software devel-
opment tasks. Some of these transformations are refinement
of models by adding or retracting elements to produce new
models conforming to additional constraints. For example,
such transformations are used to integrate non functional
properties. But modifications of the resulting model can break
the conformity to those functional properties. Our challenge
is to detect and restore this conformity applying the same
transformation again. In this paper, we defend that model
transformation is the key concept to (i) validate and (ii)
restore models and we establish a system to define idempotent
transformations.

II. GUIDELINE EXAMPLE

Figure 1 depicts a component diagram. On the initial
model (m0) the component Server provides an interface
ManageData with an operation addData.

Fig. 1. Steps to restore a model by re-application:
1) Initial model (m0) is transformed by applying transformation Tcertif .
2) The user modifies the resulting model m1 by adding a Trace interface.
3) The transformation Tcertif is applied again. It adds a certificate parameter
to getAccess operation.

To improve the model m0, we add a security concern.
We include it to certify the access to the Server. So we

apply a model transformation Tcertif defined by the following
constraint Ccertif : all operations of all provided interfaces of
the secured component have a Certificate parameter as
input. The application of the transformation Tcertif adds or
retracts elements to create a model that verifies the constraint
Ccertif , i.e. the model conforms to Tcertif .

In order to apply Tcertif on m0 the role secured component
[1], used in the constraint expression, is bound to the Server
component of the model m0. It ensures that (a) all operations
of all interfaces provided by the secured component require a
certificate parameter and (b) each provided interface defines
a getCertificate operation. The result of the application is
depicted o n the model m1 and the modifications are red
highlighted.

III. APPLICATION AND RE-APPLICATION OF
TRANSFORMATIONS

A. Motivation

In our example, the transformation Tcertif aims to build
models supporting certification process. All models resulting
from the Tcertif ’s application satisfy the constraint Ccertif .

However model evolutions can lead to constraint viola-
tions, e.g. adding an interface Trace with an operation
getAccess without the Certificate input parameter
(result on the model m2) breaks the conformity of m1 to
Tcertif .

Expressing these constraints using OCL is possible but it
will not automatically correct the model. The Re-application
of a transformation should be a way to restore the conformity
of the model to a given transformation [2]. Re-applying the
transformation Tcertif must only add the needed parameter
and operation. The modifications of the transformation re-
applications are red highlighted on the model m3.

Nevertheless not all transformations can be applied sev-
eral times on a same model without an unexpected side-
effect, e.g. adding a Certificate input parameter or a
getCertificate operation even if they already exist, or
adding a Certificate input parameter to the operation
getCertificate. Only transformations with the idempo-
tent property can be safely applied several times to a model.

B. Idempotency, the hidden property

Some approaches support several applications of the same
transformation on a model, but they do not associate the
idempotent property to the transformations themselves. The
QVT transformation language [3] guarantees to update the
necessary elements by the use of the Check-Before-Enforce
mode. Other transformation languages limit the number of
applications of a transformation rules [4], they specify the
direction of the application [2], propose operators of com-
position to factorize the same actions [5] or maintain the
target context by graph analysis [6]. AGG supports rules with
negative application conditions often used to avoid the creation
of duplicated elements [7].

The common point between these approaches is support the
definition of transformations that can be applied several times.
The developer is in charge of ensuring that the transformations
have the idempotent property. Whereas the writing of the
initial transformations is easy, the addition of conditions to
return them idempotent is complex and error-prone. Hence
we propose to define transformations in a way that they
automatically have the idempotent property, facilitating by this
means the design of transformations and enforcing the role of
transformations in model-driven software development.

IV. IDEMPOTENT TRANSFORMATIONS

A. Definition and application of transformations

Fig. 2. Transformation application : τσ(m) = m′

a) A transformation τ is defined by a quadruplet
(mmsource,mmtarget,Expr,Sτ). mmsource and
mmtarget are the metamodels which define the spaces
of the transformations, Expr is the transformation
expression, and Sτ is a set of free variables of Expr.
These variables are used to bind the transformation to

the model. In the guideline example, the set of free
variables refers to the role secured component.

b) The conditions to apply a transformation τ on a model
m are: (condition 1) the model has to conform to the
metamodel source (m ∈ mmsource) and (condition 2)
all the variables of Sτ have to be bound to an element of
the model m according to their typing [8]. The binding
is a substitution σ(τ,m) = {(var, e)|var ∈ Sτ , e ∈ m}.
We note τσ(m) the application of the transformation on
the model m according to the substitution σ.

c) The conformity of a model to a transformation results
from the application of the transformation. The model
must satisfy the constraints defined by the target meta-
model (m′ ∈ MMtarget). We say that m′ conforms to
the transformation T .

Figure 2 depicts these definitions graphically.

B. Definition and properties of idempotent transformations

According to a given substitution σ(τ,m), a transformation
τ can be re-applied on the resulting model m′ = τσ(m) if :

1) the transformation is quasi-endogenous, i.e. it pre-
serves the conformity to the source metamodel, i.e.
mmtarget ⊆ mmsource

1.
2) the transformation is substitution-preserving, i.e.
∀(var, e) ∈ σ(τ,m) ⇒ e ∈ m′

Transformations satisfying these properties are idempotent
if they conform to the following definition.

Definition (Idempotent transformation) Let τ a quasi-
endogen and substitution-preserving transformation.
The transformation τ(mmsource,mmtarget,Sτ) is idempotent
if: ∀m ∈ mmsource, τ(m) = m′ ⇒ τ(m′) = m′

Our goal is to support the definition of idempotent trans-
formations in a transparent way for the user. The user only
specifies actions to transform the initial model in a model
conforming to the target metamodel. The user can then modify
this model and apply the same transformation several times
on that model to restore it. If any modification is performed,
the model conforms to the transformation. // We call such
transformations IT. We now define them.

C. IT : Idempotent Transformation by construction

An IT is a transformation whose Expr is composed of three
parts : a selection part that selects elements, an identification
part that identifies the elements to be created, and a modifi-
cation part that modifies the model.

The selection part: includes the elements necessary to
modify the model. It is defined as a sequence of selection
actions. Each selection action is idempotent, i.e. in the same
context, the same elements are selected. These actions are only
based on positive literals such as existence of an element.
Moreover, the selection actions do not select the elements
created or valuate by the transformation application itself, e.g.
in the guideline example, the transformation Tcertif will never

1∀me∈ mmtarget, me∈ mmsource

select the getCertificate operation because it was created by
this transformation application. We note selectτσ

(m) the set
of selected elements by τσ(m).

The selection part does not check if the model conforms
to the source metamodel. This conformity is supposed to be
checked before to apply the transformation. When the set of
selected elements is empty, it only means the transformation
has nothing to do. It means the model conforms to the
transformation.

The identification part: points out in a unique way each
element (e.g. for a component, its name; for a reference,
its name, the identifiers of the source and target). We note
identτσ (m) the set of identifiers for τσ(m). The identification
actions return identifiers according to the elements selected by
selection actions. Identifiers do not depend on the number of
selected elements.

The modification part: is a sequence of idempotent basic
actions closed by selectτ (m), identτ (m) and σ(τ,m) (e.g
creating an element, setting a value, deleting an element).
These actions do not depend on the number of selected
elements and identifiers.

D. Why ITs are idempotent ?

ITs are idempotent if the basic actions are executed on
the same subset of elements. Let us demonstrate that :
selectτ (m′) ⊆ selectτ (m).

Let τ an IT, let m a model like m ∈ mmsource, and
let σ(τ,m) a binding between τ like τσ(m) = m′ and
selectτ (m) = {e|e ∈ m}.

By contradiction we suppose that ∃e′ ∈ selectτ (m′), e′ 6∈
selectτ (m). It means that:

• e′ is selected because is created by τ(m). It is a contra-
diction because in the definition of the selection part, the
created element are not selected. So e′ ∈ m.

• e′ is selected according to new elements or to updates
values. For the same reason, this is a contradiction
because of the definition of the selection part. So e′ ∈ m.

• e′ is selected according to the non existence of an
element. It is a contradiction, by definition, because we
forbid to select element according to negative literals.

Consequently there is no way to select an element that was
not in selectτ (m). However since elements could have been
deleted there are elements in selectτ (m) that are no more in
selectτ (m′). So we proved that selectτ (m′) ⊆ selectτ (m).

Since identifiers and basic actions are computed according
to the selected elements therefore identτ (m′) ⊆ identτ (m)
and actionτ (m′) ⊆ actionτ (m). Since all the actions are
idempotent and executed on the same elements (no action
depends on the element number) therefore they do not modify
the initial model.

We now illustrate our approach with a system supporting
definition of IT.

V. A SYSTEM TO WRITE IDEMPOTENT TRANSFORMATIONS

We define a model as a set of named and typed elements.
A value can be associated with some elements. An element
is identified in a unique way (by the identification action) in
the model. The applications of transformations are identified

element(server, component, server, ap0).
element(manageData_ap0, interface, manageData, ap0).
element(server_provides_manageData_ap0, reference,

provides, ap0).
hasForValue(server_provides_manageData_ap0,,

[server, manageData_ap0], ap0).

Fig. 3. Partial Prolog definition of the model m0 in figure 1

and the identifier is associated to each element, value or meta
added. This system has been implemented in Prolog (cf. Fig
3).2

The actions to select elements are based on : the element
identifier, the type, the name, and the application identifier.
We can find all the elements with a given name, or typed
by a given type and so on. These selection actions will not
select an element which was created or assigned by a previous
application of the transformation (cf. Fig 4).
existElem(Id,Meta,Name,Ap,NotAp) :-

element(Id,Meta,Name,Ap),
(NotAp == null ; Ap \== NotAp).

Fig. 4. A selection action to select elements

The basic actions to modify a model are : creation of a new
element with a given identifier, type and name; set a value to a
given element; add a meta to a given element; delete a given
element. Each of these actions are executed according to a
given transformation application identifier.

trCertif([Secured],Ap) :-
doForAll(Ap,
[existReference(RefId,provides),
directlyLinked(RefId,Secured,Interface),
existReference(RefOp,operation),
directlyLinked(RefOp,Interface,Operation)],
[getParameterID(Operation,c,IdPar),
getReferenceID([Operation,parameter,IdPar],IdRef),
getReferenceID([IdPar,type],IdType)],
[createParameter(IdPar,IdRef,IdType,Operation,

c,certificate)]).
trCertif([Secured],Ap) :-
doForAll(Ap,
[existReference(RefId,provides),
directlyLinked(RefId,Secured,Interface)
],
[
...
],
[
createOperation(IdGetCertificate,

IdRefGetCertificateInterface2Operation,
Interface,getAccess),

createParameter(IdPar,IdRef,IdType,IdGetCertificate,
return,certificate)]).

Fig. 5. Partial definition of IT corresponding to TCertif in figure 1

2Source code is available at : http://modalis.polytech.unice.fr/˜ clemen-
tine/PHD/policies.xhtml

In order to facilitate the design of a component model,
we defined a set of more elaborated actions using the basic
actions. The following IT (cf. fig 5) uses these composed ac-
tions and describes the transformation Tcertif of the guideline
example (cf. Fig. 1).

Independently of the transformation language, if the aim is
to re-apply the TCertif , the transformation implementation has
to express additional information, such as :
• Select operations defined in provided interfaces but not

the operation corresponding to getCertificate,
• Do not create a parameter whose the name is c if it

already exists,
• Do not create an operation getCertificate if it’s already

defined.
The advantage to the user is noticeable: less effort and less

number of errors. This complexity is tackled in the imple-
mentation of the actions and the engine to execute ITs. We
are now able to apply several times the same transformation
on a model and restore it.

VI. CONCLUSION

Re-application of transformation restores a model if the
transformation has the idempotency property. In this paper we
define a system to easily design idempotent transformations by
action composition. Now, our challenge is to construct a model
conforming to a set of transformations. We use idempotent
property of ITs to apply them several times. This process
is repeated until a fixed point is reached (the model is not
modified any more by transformation applications) or a cycle
is detected (same sequence of modification actions).

REFERENCES

[1] R. France, K. Dae-Kyoo, S. Eunjee, and S. Ghost, Using Roles to
Characterize Model Families, 2003.

[2] P. Stevens, Bidirectional Model Transformations in QVT: Semantic Issues
and Open Questions, Jan. 2010.

[3] OMG, MOF QVT Final Adopted Specification, OMG Document
ptc/2005-11-01, Object Modeling Group, Jun. 2005. [Online]. Available:
http://www.omg.org/cgi-bin/doc?ptc/2005-11-01

[4] A. Lajmi, S. Cauvin, M. Ziane, and T. Ziadi, “A Multi-View Model-
Driven Approach for Packaging Software Components,” in 25th Annual
Symposium on Applied Computing(SAC 2010). ACM, Mar. 2010.

[5] J. Sanchez and J. Garcia, Approaches for Model Transformation Reuse:
Factorization and Composition. Springer, 2008.

[6] I. Rath, G. Bergmann, A. Okros, and D. Varro, “Incremental Pattern
Matching in the VIATRA Model Transformation System,” in Interna-
tional Conference on Model Transformation(ICMT’08). Springer, Jul.
2008.

[7] T. Mens, G. Kniesel, and O. Runge, “Transformation dependency anal-
ysis - A comparison of two approaches,” in Langages et Modèles à
Objets(LMO2006), Mar. 2006.

[8] J. Steel and J.-M. Jézéquel, “Model Typing for Improving Reuse
in Model-Driven Engineering,” in International Conference on Model
Driven Engineering Languages and Systems(MODELS/UML), ser. LNCS,
vol. 3713. ACM/IEE, Oct. 2005, pp. 84–96.

