
PSL vs. CCSL

Régis Gascon,Julien DeAntoni,Frédéric Mallet

EPI Aoste, I3S/INRIA, Sophia Antipolis, France

1 Introduction

The Property Specification Language (PSL) [5] is a lan-
guage based on temporal logics and regular expressions.
It is used for expressing assertions in the design of sys-
tems. The Constraint Specification Language (CCSL) has
been defined as a companion language for the UML pro-
file for Modeling and Analysis of Real-Time and Embedded
systems (MARTE) [4]. It was designed as a specification
language to express causal and chronological properties of
real-time systems. CCSL has been used to verify time prop-
erties of Esterel and VHDL implementations [2, 3]. We give
here some hints as what are the main differences between
PSL and CCSL.

2 Property Specification Language

PSL has been defined as an IEEE standard [5]. Basi-
cally, the language is based on regular expressions and tem-
poral logics. The Sequential Extended Regular Expressions
(SERE) describe a behavioral properties on a finite part of
the execution. They are built over the Boolean algebra de-
fined by:

b ::= x | b ∧ b | b ∨ b | ¬b

where x is a Boolean variable representing a signal of the
system. In the following we consider a countably set of
Boolean variables VAR. The set of SERE can be defined
by the following grammar:

r ::= b | {r} | r; r | r : r | r|r | r&&r | [∗0] | r[∗].

The semantics is very similar to regular expressions. Ac-
cording to the definition of PSL, a run is driven by global
cycles and at each cycle a subset of signals occur. We rep-
resent these runs with words of the form σ : N→ 2VAR (or
σ : {0, . . . , |σ|−1} → 2VAR when σ is finite) that associate
to each global cycles a set of signals. This representation is
similar to linear models for temporal logics. A SERE is
evaluated over a finite subsequence of σ. For i ≤ j ≤ |σ|.

Brackets are equivalent to parenthesis. The operators
r1; r2 (concatenation) and r1 : r2 (fusion) differ by the cy-
cle where the second expression must start. With the fusion

operator, the expression r2 is evaluated at the cycle where
r1 ends and with the concatenation operator, r2 is evaluated
at the next cycle. The expression r|r represents disjunction.
The conjunction operator r1&&r2 is such that r1 and r2
must holds on paths of the same length. However, classical
conjunction (non length-matching) can be expressed with
{r1; true[∗]}&&{r2; true[∗]}. Finally, the operator r[∗] is
the repetition of r zero or more instances and [∗0] repre-
sents the empty SERE which means that no cycle occurs in
the system (equivalent to the regular expression ε).

We will consider this set of expressions as the kernel of
SEREs. This kernel is obviously equivalent to regular ex-
pressions. In PSL, many additional commodity operators
(not presented here) are defined to make specifications more
concise. SEREs are the atomic formulas PSL properties.
The kernel of PSL linear properties is defined by:

φ ::= r | next! φ | φ until! φ | not φ.

where r is a SERE. The classical definition of LTL is such
that the set of atomic formulas is restricted to Boolean ex-
pressions (replace r by b in the definition above). However,
the addition of SEREs as atomic formulas does not add ex-
pressiveness to the logic. In this paper, we will consider
only the linear-time property but PSL also defines a simi-
lar CTL variant. PSL also defines syntactic sugar operators
for temporal operators (e.g., always φ, next φ, φ1 until φ2,
φ1 before φ2). next! and until! correspond respectively to
the classical LTL operators X and U. The operators next
and until are their weak variants.

3 Clock Constraint Specification Language

A clock is a totally ordered set of instants. A time struc-
ture is a set of clocks C and relations on instants. The basic
relations are precedence (≺), coincidence (≡), and exclu-
sion (#). For any instants i and j in a time structure, i ≺ j
means that the only acceptable execution traces are those
where i occurs strictly before (precedes) j. i ≡ j imposes
instants i and j to be coincident, whereas i # j forbids the
coincidence of the two instants. In this paper, we consider
discrete sets of instants only, so that the instants of a clock

1

can be indexed by natural numbers. For a clock c, c[k] de-
notes its kth instant.

Specifying a full time structure using only instant rela-
tions is not realistic since clocks are usually infinite sets
of instants. Thus an enumerative specification of instant
relations is forbidden. Hence the idea to extend relations
to clocks. The Clock Constraint Specification Language
(CCSL) has been defined to specify such relations between
clocks. As an example, consider the clock relation prece-
dence (denoted ≺). a ≺ b, read ‘a precedes b’ or also
‘a is faster than b’, specifies that for all instants of clock
a, its nth instant precedes the nth instant of clock b. More
precisely: a ≺ b means ∀k ∈ N?, a[k] ≺ b[k];

A CCSL specification consists of clock declarations and
conjunctions of clock relations between clock expressions.
A clock expression is a declared clock or a new clock de-
fined from existing ones. An example of clock expression
is delay (denoted $). a $ n specifies that a new clock is
created and is the exact image of a, delayed for n instants
of a. Note that this expression is a simplified version of
the expression defer, which specifies that a clock can be de-
layed for a number of instants counted on another clock. For
simplicity, we give only the semantics of the delay: a $ n
defines a clock c such that ∀k ∈ N?, c[k] ≡ a[k + n]

A technical report [1] describes the syntax and the se-
mantics of a kernel set of CCSL constraints.

A CCSL specification is a list of definitions and relations
seen as a conjunction. A timed structure satisfies the speci-
fication iff it satisfies all the relations. CCSL specifications
can be simulated by the tool TimeSquare to visualize the
execution of a specification and possibly detect deadlocks.
To display an execution the timed structured must be totally
ordered. We call this a trace. A partially ordered timed
structure corresponds to several traces since independent in-
stants can be ordered in different ways. As PSL models are
totally ordered, it is more convenient in the following to es-
tablish correspondence with traces rather than with general
time structures.

4 Expressiveness of PSL and CCSL

To compare the expressiveness of PSL and CCSL we
must define an equivalence relation between their models.
Let T be a time structure over the set of clocks CLK.

As a trace T defines a total ordering of the instants of the
clocks in CLK we can define for every instant i the function
δ(i) as the number of distinct instants that strictly precedes
i (one identifies the sets of instants that coincide). We say
that T is equivalent to a temporal logic model σ iff there
exist a bijection f : CLK→ VAR such that:
(C) for every n ∈ N we have f(c) ∈ σ(n) iff there is i ∈ Ic
such that δ(i) = n.

A CCSL specification and a PSL property are equivalent
iff for every model satisfying the specification there is an
equivalent model satisfying the property and vice versa.

Most of the CCSL operators can be encoded by equiva-
lent LTL formulas. However, some relations introduce un-
bounded parameters and cannot be encoded. For instance,
the precedence relation cannot be expressed by an equiv-
alent LTL formula since one need to count the respective
occurrences of the clocks put in relation. Since PSL is as
expressive as LTL, it cannot encode this relation too. The
same problem occurs with other CCSL relations not intro-
duced here (c1 ∧ c2, c1 ∨ c2 in [1]).

Conversely, CCSL cannot express the whole PSL lan-
guage too. There is no way in CCSL to enforce an oc-
currence of a clock. So, reachability or liveness proper-
ties cannot be expressed in CCSL. For instance, the formula
true until p that is satisfied by every model where p holds
at some position has no equivalent in CCSL. This means
that there is no CCSL specification that is satisfied exactly
by the time structures where the set of instants of a given
clock is non empty.

Also, CCSL cannot express the next and until operators
of temporal logics since it cannot ensure that the right part
of the until will be reached or that a property is satisfied
before the end of the model in the finite case. Note that
in CCSL the next operator is not really meaningful when
one has a partial ordering of the clocks. We can tackle this
problem by imposing that next operators are linked to events
represented by sets of clocks. This corresponds to the oper-
ators next_event defined in PSL.

References

[1] C. André. Syntax and semantics of the clock constraint
specication language. Technical Report 6925, INRIA,
2009.

[2] C. André and F. Mallet. Specification and verification
of time requirements with CCSL and esterel. In Int.
Conf. on Languages Compilers, and Tools for Embed-
ded Systems (LCTES’09), volume 44, pages 167–176,
Dublin, Ireland, June 2009. ACM DL.

[3] A. Mehmood Kahn, F. Mallet, C. André, and R. de Si-
mone. IP-XACT components with abstract time charac-
terization. In Forum on specification, verification & De-
sign Languages, FDL’09. ECSI, IEEE Computer Press,
September 2009.

[4] OMG. UML Profile for MARTE, v1.0. Object Manage-
ment Group, November 2009. formal/2009-11-02.

[5] IEEE standard for Property Specification Language
(PSL), IEEE std 1850-2005.

2

