
1

A Locally Nameless Theory of Objects
L. Henrio, F. Kammüller, B. Lutz and H. Sudhof

CNRS – I3S – INRIA, Sophia-Antipolis and Technische Universität Berlin

I. INTRODUCTION

This paper presents the formalisation of an object calculus in
Isabelle/HOL highlighting the binder technique called locally
nameless1. This techniques has its origins already in a note
at the end of de Bruijn’s paper [5] introducing the classical
de Bruijn indices. In the last few years, with the advent of
mechanized proofs in the domain of programming languages,
e.g. [1], this technique attracted new attention. The most
recent work on locally nameless technique [2] provides cofinite
quantification, necessary for proving non-trivial properties.
Indeed the de Bruijn indices are often criticised, as being too
technical, that is why alternative techniques are investigated.
The de Bruijn indices method, however, is known to be
reliable, and is often chosen in order to focus on aspects
of programming languages unrelated to variable bindings.
With locally nameless techniques, one expects to spend less
time proving auxiliary lemmas dealing with variable bind-
ings, but also to obtain theorems that are more convincing
because closer to the paper version. Our contributions are a
formalisation in Isabelle/HOL of ς-calculus; and an in depth
comparison of both locally nameless and de Bruijn complete
mechanisations including specification and proofs.

II. BINDER TECHNIQUES

The formalisation of programming languages in rigorous
frameworks has revealed some crucial issues summarised in
the POPL-mark challenge [1], where the representation of
binders is a central problem. Intuitively, a language that has
local scopes and parametrisation – for example functions
λx.fx – needs to refer to the formal parameters – here x
– when they occur inside these scopes. The natural, human
understandable way is to use variables, like x, to define and
denote formal parameters by name, but variables are not well
suited for mechanisations. Variable capture may occur: a free
variable x in a term t may accidentally be “captured” when
substituting t inside a scope where x bound. To avoid this, we
use a consistent renaming, α-equivalence (renaming of bound
variables). However, α-equivalence creates equivalence classes
making equality and proofs of theorems harder to handle.

De Bruijn Indices: The solution proposed by N. G. de
Bruijn, is to replace each occurrence of a variable by an integer
equal to the number of binders that have to be crossed to reach
the binder for the considered variable: a variable is replaced by
the distance from its binding scope. For example, the λ-term
λx.x(λy.x y) becomes λ(0(λ1 0)). Unfortunately, substitution
becomes technical because of the “lifting” of indices when
entering a binder, or replacing a term under binders.

This work was supported by DFG project Ascot and Aspen (grants Ja
379/18-1 and Ka 2757/1-1).

1http://afp.sourceforge.net/entries/Locally-Nameless-Sigma.shtml

Locally Nameless: The de Bruijn method can be refined in
order to avoid manipulation of explicit indices. For this, the
principle of locally nameless representation is to use indices
to represent bound variables, and classical named variables to
represent free (unbound) variables. Open and close operations
translate between those representations [2]. This technique is
attractive as it combines unique representation, with human
understandable expression of specification.

The open operation, written tu, substitutes a term u for
the outermost bound variable, in the term t. For example
(bvar 0 λ((bvar 1)(bvar 0)))n is equal to n λ(n (bvar 0))). The
opposite operation closes a term: given a name, the closing
replaces the occurrence of variables of this name with an index
for a variable bound at the outermost level.

In the locally nameless approach we must use only well-
formed terms, where bound variables are represented by
indices. The notion of locally closed terms ensures this e.g.
λ(bvar 2) is not locally closed. Local closure of terms is a
necessary requirement for most theorems. Another problem
arises when reducing a term under a binder. Useful properties
should be valid when closing a term under any fresh variable.
We need: ∀x ∈ FV (t).tx → (t′)x =⇒ λ(t) → λ(t′). The
drawback of this proposition is that it is sensitive to the set
of free variables, that may vary in an unexpected way. The
approach of cofinite quantification [2] should be used: we
abstract over the set of free variables FV(t), and let fresh
variable range over the complementary of an existentially
quantified finite set L:∃L finite.∀x /∈ L . . .. This set can then
be instantiated appropriately, when handling proofs.

Nominal Techniques: Another approach, proposed by Urban
based on Pitts’ work on nominal logic [9], is called nominal
technique [11]. Here, terms are identified as a set bijective to
all terms factorised by α-equivalence. The classical hypothesis,
“there is a fresh variable” for a term t is replaced by “there is
a finite support for x”: the set of atoms used in t is finite, and
infinitely many “fresh” atoms are available. Unfortunately, we
cannot use the Isabelle/HOL package for nominal techniques
as it is, because our terms contain finite maps, and while it
is trivial that a finite maps guarantee finite support, such a
reasoning is not yet supported by Urban’s package.

Higher Order Abstract Syntax: In HOAS binders are di-
rectly represented by binders of the meta-level [10]. The
encoding is more direct than in the other approaches, but
HOAS is restricted when it comes to meta-level reasoning [7].

III. LOCALLY NAMELESS ς -CALCULUS

Objects are in our formalisation defined as sets of unordered
labelled methods [li = ς(x, y)b]i∈1..n (object “fields” are
considered as methods with no parameters). ς binds two



2

variables: the self x and a method parameter y in each method.
The object language features method call t.l(s), and method
update t.l := ς(x, y)b on objects. This calculus corresponds
to the definitions of the ς-calculus of Abadi and Cardelli [3]
but introduces an explicit method parameter beside self. An
object is a finite map from label names to objects. The term
[l1 7→ [], l2 7→ ς(x, y)x].l1 := ς(x, y)y defines a simple object,
and modifies one of its fields.

A. Syntax

The syntax of objects with locally nameless representation
differs not very much from the de Bruijn representation.
Indeed, the only difference is the additional constructor Fvar
introducing named fVariables as terms. Those are for con-
venience chosen to be the type string.
datatype bVariable = Self nat | Param nat
types fVariable = string
datatype term =

Bvar bVariable
| Fvar fVariable
| Obj (Label ⇒f term) type
| Call term Label term
| Upd term Label term

The datatype bVariable comprises two exclusive possibilities
(a datatype is a generalized sum type): it can represent the self
parameter, or the added (second) method parameter. Here is
the example object shown above.
Upd (Obj [l1 7→ empty, l2 7→ Bvar (Self 0)] T) l1 (Bvar (Param 0))

Opening a term at a bound variable corresponds to a kind
of instantiation of this bound variable with a given subterm.
Thus, opening can also be seen as a form of substitution. We
will in fact directly employ opening as a substitution when
defining the semantics. Hence, the following definition’s core
part is the first clause, the others just pass the recursion into the
term structure. This first clause replaces a bound variable if n
matches the index of the parameter. Due to the two parameter
types of our terms, we always open with a pair of terms and
replace, depending on whether the bound is Self or Param,
by the first or second element of the pair, respectively.
open :: [nat, term, term, term] ⇒ term ("{_ → [_,_]} _")
and open_option :: [nat, term, term, term option] ⇒ term option
where
op_Bvar:{k→[s,p]}(Bvar b) =

(case b of (Self i) ⇒ (if (k = i) then s else (Bvar b))
| (Param i) ⇒ (if (k = i) then p else (Bvar b)))

...
|op_Obj :{k →[s,p]}(Obj f T)=Obj(λl.open_option(Suc k) s p (f l)) T
|op_None:open_option k s p None = None
|op_Some:open_option k s p (Some t) = Some ({k→[s,p]}t)

Let us only describe the most characteristic case: open_Obj.
Recursive opening inside the object is defined by mapping a
function (λl. ...) on all its methods (most of them being
undefined, None). This explains why we use two mutually
recursive functions open and open_option, one of them
accepting Some term or None. The function applied to each
member method is the recursive application of open, but with
Suc k as index because we entered a binder (similarly to what
we would do for de Bruijn method).

To abstract a variable, close is defined similarly. As close
corresponds to a method abstraction we chose the syntax
{_ ←[_,_]} _. The meaning of close as an abstraction is

reflected by the choice of the syntax for the operator for
closing at 0.

ς [s,p] t == {0 ← [s,p]}t

Opening and closing efficiently convert free and bound vari-
ables backwards and forwards. Remember that the coexistence
of free and bound variables necessitates restricting propo-
sitions to manipulate only terms without “unbound bound
variables”, i.e. locally closed terms (written lc t).

B. Cofinite Quantification

One problem when changing between free and bound
variables is the need for fresh variables. Otherwise, two
originally different variables might be considered as the same
one. Hence, whenever we have a rules which uses a newly
introduced variable name, we need to find a fresh name.
Technically, we can use a function FV collecting the free
variables of a term, and add the additional premise x /∈ FV(t)
whenever a fresh variable name x is required. This way of
formalising can be described as the “exists-fresh” approach
[2]. For example, suppose that t is a subterm under a binder,
to make it locally closed, we need to instantiate the top-level
bound variable of t: t[s,p], but to keep the original term t
(and open the term later with s and p), we need s and p fresh.

The “exists-fresh” approach leads to very clumsy proofs:
intuitively, we need to prove statements for a set of free
variables differing from the ones given as hypotheses. In recent
work by Aydemir et al. [2], a more sophisticated technique
called cofinite quantification is introduced that eases the proofs
involving such rules. The basic idea (cf Section II) is to
abstract from sets of free variables FV (t), but instead consider
some arbitrary finite set L, i.e. assuming a “cofinite set” of
variable names. Since L is arbitrary, it can be chosen later
as a convenient set bigger than the set of free variables.
Any naı̈ve way using simply locally nameless representation
without using cofinite induction in the semantic definition
would lead to unsolvable proof obligations for some theorems.
Thus the semantics of our calculus is expressed by rules of
the form:

finite L lc o

∀x y. x 6=y ∧ x, y /∈ L =⇒ ∃t′′.(t[x, y] →ς t′′ ∧ t′ = ς[x, y]t′′)
o.l := t→ς o.l := t′

C. Proved Properties

A basic property of our object theory is confluence.
Theorem 1: t→ς t0 ∧ t→ς t1 ⇒ ∃t′.t0→∗ς t′ ∧ t1→∗ς t′

In an initial experiment we had first mechanized this proof for
a simplified ς-calculus with lists and de Bruijn technique [6].
We adapted this proof to locally nameless representation.

We also specified a type system for the calculus and proved
preservation and progress.

IV. COMPARISON WITH DE BRUIJN TECHNIQUE

The first crucial point of comparison between the different
binder representations is the point of view of the formalisation.



3

Two criteria are important here: how easy it is to write the
formalisation, and how easy and convincing it is to read it.

The advantage of the locally nameless formulation is the
closeness to paper style notation. In the specification of the
syntax and semantics we often encounter some technical over-
head due to the new constructors for free variables. Moreover,
we need to establish the well-formedness of terms by adding lc
predicates to the premises of the reduction rules. Fortunately,
the additional lc condition mainly states that substituted terms
correspond to correct ς-calculus terms.

Let us focus on the reduction inside binders. Specifying that
any field can be reduced in de Bruijn notation leads to the rule:
Obj: Js →ςt; l ∈ dom fK=⇒ Obj (f (l 7→ s)) T→ςObj (f (l 7→ t)) T

This is very similar to the paper version. The locally name-
less is less straightforward: we need cofinite quantification:
Obj: J l ∈ dom f; finite L; ∀l∈dom f. body (the (f l));
∀s p. s/∈L ∧ p/∈L ∧ s 6=p−→

∃t’’. t[Fvar s,Fvar p] →ς t’’ ∧ t’ = ς[s,p] t’’) K
=⇒ Obj (f(l 7→ t)) T →ς Obj (f(l 7→ t’)) T

Additional requirements refine what is meant by “reduce under
the binder”; in fact the difficulty is to make the sub-term under
the binder locally closed before reducing it, which somehow
refines the intuitive notion of (correct) reduction under binders.

The essential relations of the calculus, reduction and typing,
are not more readable in their respective locally nameless
versions, compared to their de Bruijn incarnations. In both
formalisations, the introduction of syntactic sugar can bring
some rules very close to a paper version. Some advantages
are apparent: the more restrictive reduction relation for locally
nameless variables is closer to the version found on paper, as
it does not apply to terms with dangling indices.

Concerning proofs, the notable benefit comes from the
explicit distinction between the variable types, which can
improve readability and ease reasoning for many lemmata,
especially the basic lemmata and confluence proofs.

Several lemmata about various translations between the
two kinds of variables – bound and free – used in the
locally nameless version require rather technical proofs. The
technicality of the proofs stems to a large part from the more
complex induction schemes, caused by the more complex re-
duction relation. By contrast, the de Bruijn version’s reduction
relation and thus induction scheme is much easier to use. This
advantage, however, is negated by the lemmata required for the
lifting in conjunction with the auxiliary constructs which are
of comparable complexity and arguably even less readable.

Concerning typing, the locally nameless formalisation im-
proves the understandability of proofs, but at the price of rather
technical lemmata for renaming. We are not able to observe
a major improvement in the complexity of the major proofs,
but for the most part, there is no notable burden either. The
proof principles are similar for either variable representation.

V. CONCLUSIONS

The clear advantage of the locally nameless formalisation is
the handling of free variables. The de Bruijn version did not
allow reasoning about free variables for a very simple reason:

it is not possible to express free variables. More precisely,
unbound de Bruijn indices could sometimes simulate free
variables, but such a solution is unsatisfactory because the
intent of a free variable is different from a dangling index.
Moreover, the explicit distinction between bound and free
variables eases the handling of either kind of variable and
enhances the readability of proofs and formalisations. Cofinite
quantification, freshness and renaming are the major reasons
for additional and technical proofs in the locally nameless
representation, and all of these items are required for the
reasoning about named free variables. The locally nameless
rules are more complex than their de Bruijn counterparts
because the locally nameless representation introduces new
concepts and is precise about well-formedness and closure.
This initial formal overhead is paid back by a natural notation
in theorems, and by improvement for interactive proofs.

This paper also shows that locally nameless techniques can
be easily adapted to the modelling of an object language, and
to the use of binders for multiple parameters.

REFERENCES

[1] B. Aydemir, A. Bohannon, N. Foster, B. Pierce, J. Vaughan,
D. Vytiniotis, G. Washburn, S. Weirich, S. Zdancewic,
M. Fairbairn, P. Sewell. The POPLmark Challenge.
http://alliance.seas.upenn.edu/ plclub/cgi-bin/poplmark/.

[2] B. Aydemir, A. Charguéraud, B. C. Pierce, R. Pollack, S. Weirich.
Engineering Formal Metatheory. Principles of Programming Languages,
POPL’08, 2008.

[3] Martı́n Abadi and Luca Cardelli. A Theory of Objects. Springer, 1996.
[4] Hendrik Pieter Barendregt. The Lambda Calculus, its Syntax and

Semantics. North-Holland, 2nd edition, 1984.
[5] N. G. de Bruijn. Lambda calculus notation with nameless dummies, a

tool for automatic formula manipulation, with application to the Church-
Rosser theorem. Indagationes Mathematicae, 34, 1972.

[6] L. Henrio and F. Kammüller. A Mechanized Model of the Theory of
Objects. FMOODS 2007. LNCS 4468, Springer, 2007.

[7] F. Honsell, M. Miculan, and Ivan Scagnetto. Pi-calculus in
(Co)inductive-type theory. Theoretical Computer Science253(2):239–
285, 2001.

[8] F. Kammüller and H. Sudhof. Towards a Mechanized Theory of Aspects.
em Theorem Proving in Higher Order Logics 2009. Emerging Trends.

[9] A. M. Pitts. Nominal Logic, A First Order Theory of Names and
Binding. Information and Computation, 186:165–193, 2003.

[10] C. Roeckl and D. Hirschkoff. A fully adequate shallow embedding of the
π-calculus in Isabelle/HOL with mechanized syntax analysis. Journal of
Functional Programming, 13:415–451, 2003.

[11] Christian Urban et al. Nominal Methods Group. Web-page at
http://www4.in.tum.de/∼urbanc/Nominal/.


