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Chapter 1

Introduction

Contents
1.1 Problematic . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

1.2 Objectives and Contributions . . . . . . . . . . . . . . . . . . . 4

1.3 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

1.4 Reading Itineraries . . . . . . . . . . . . . . . . . . . . . . . . . 6

The relevance of parallel programming is evident. There has never been a
point in time where we have had a dearer need for parallel programming models
to harness the power of increasingly complex parallel systems [Yel08]. On one
side large scale distributed-memory computing such as cluster and grid comput-
ing [FK99]; and on the other parallel shared-memory computing through new
multi-core processors [ABC+06].

The difficulties of parallel programming have led to the development of many
parallel programming models, each having its particular strengths. One thing
which they have in common is that parallel programming models pursue a bal-
ance between simplicity (abstractions) and expressiveness (details), measured
ultimately by performance.

Nevertheless, of all the programming models out there, only a few have been
embraced as mainstream, while most remain confined in niches. In this thesis
we address such a model, algorithmic skeletons.

1.1 Problematic

As recognized in Cole’s manifesto [Col04], algorithmic skeletons offer simplicity,
portability, re-use, performance, and optimization; but have yet failed to reach
mainstream in parallel programming. With this goal in mind, Cole’s manifesto
has proposed four key principles to guide the development of algorithmic skele-
ton systems: minimal conceptual disruption, integrate ad-hoc parallelism, ac-
commodate diversity, and show the pay-back.

If we look at the evolution of algorithmic skeleton programming, we can see
that it has varied greatly since the term was coined by Cole [Col91]. Perhaps

3



4 Chapter 1. Introduction

the most significant change has been the realization that algorithmic skeletons
should be provided as libraries instead of languages. Indeed, as will be discussed
later on this thesis, most of the recently developed skeleton frameworks have
been provided as libraries in object-oriented languages. This is in accordance
with the first principle of Cole’s manifesto: minimal conceptual disruption.

The implications of having skeletons as libraries has changed the way in
which we envision the design and implementation of skeleton frameworks, and
more importantly how the programmer interacts with the framework.

We believe that offering algorithmic skeletons as libraries implies that skele-
tons no longer have to provide support for all types of parallel applications, but
can concentrate on Cole’s first and fourth principles: minimal conceptual dis-
ruption and showing the pay-back. The assumption is that programmers will
use algorithmic skeleton libraries for what they are good at: structured parallel
programming, while they will choose some other parallel programming model
for what they are not good at: irregular parallel applications. Thus, for com-
plex applications, a mixture of libraries, each implementing a different parallel
programming model, will likely be used.

Several works on the literature have argued that cost models are one of the
strength in algorithmic skeleton programming. While this is a good property to
have, other programming models such as MPI which do not have cost models
have proliferated, and are the de facto standard way of achieving parallel and
distributed programming. Indeed, we believe that by them selves cost models
are not enough to tip the balance in favor of algorithmic skeletons, and thus
further advances in other aspects are needed.

Therefore, in this thesis we pursue other features which might help program-
mers adopt algorithmic skeleton programming. Namely performance tuning,
type safe composition and file access/transfer.

1.2 Objectives and Contributions

The main objective of this thesis is the design and implementation of a skeleton
library capable of executing applications in parallel and distributed infrastruc-
tures.

The main contributions of this thesis are:

• A survey on the state of the art of algorithmic skeleton programming.

• A model for algorithmic skeleton programming and its implementation as
a Java library, Calcium, featuring: nestable, task and data parallel, skele-
tons; and multiple environments for parallel and distributed executions
among others.

• A performance tuning model for algorithmic skeletons and its implementa-
tion in Calcium [CL07].

• A type system for nestable algorithmic skeleton and its implementation
using Java Generics in Calcium [CHL08].
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• File access/transfer contributions. First, an active object based file transfer
model and its implementation in ProActive [BCLQ06, BCL07]. Second, a
transparent file access model for algorithmic skeletons and its implemen-
tation in Calcium [CL08].

1.3 Overview

This document is organized as follows:

• Chapter 2 provides a state of the art on algorithmic skeleton programming
frameworks. The chapter begins with a description of well-known paral-
lel and distributed programming models. Then, the chapter provides a
description of several well known algorithmic skeleton frameworks. The
descriptions try to provide a brief summary and highlight the main charac-
teristics of each framework. Also, a discussion is made where the skeleton
frameworks are compared and the work in this thesis is positioned with
respect to the state of the art.

• Chapter 3 provides an introduction and a description of the proposed skele-
ton framework: Calcium. The chapter begins with a description of the sup-
ported skeleton patterns in Calcium. Then, the chapter describes the hy-
potheses upon which Calcium’s skeleton programming model is built. The
chapter continues with the formalization of the programming model which
shows how parallelism is achieved. Then, the chapter moves on to describ-
ing how this model is implemented in Java, and also how the framework
can support multiple execution environments. The chapter finishes with a
concrete example: a naive solution for finding prime numbers.

• Chapter 4 presents a performance tuning model for algorithmic skeletons.
The chapter aims at bringing performance debugging to the abstraction
level of algorithmic skeletons. For this, performance metrics are gathered
and an inference tree is used to find the possible cause of the performance
bug. The cause is then related back to the skeleton code suspected of
causing the performance bug. Experimental validations are made with an
NQueens skeleton based application.

• Chapter 5 defines a theoretical type system for skeleton and proves that
this type system is indeed safe as it guarantees the subject reduction prop-
erty. The chapter then addresses the implementation of such a type system
in Java using Generics.

• Chapter 6 defines a transparent, non-invasive, file access/transfer model
for algorithmic skeletons. The model is implemented in Calcium and exper-
imental benchmarks are made with a BLAST skeleton based application.

• Chapter 7 concludes this thesis by providing future research perspectives
and summarizing the contributions.
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Figure 1.1: Suggested Chapter Reading Itineraries

1.4 Reading Itineraries

This thesis can be navigated in several ways depending on the reader’s pref-
erence. The suggested itineraries are shown in Figure 1.1 and are detailed as
follows:

• Contribution Summary. This corresponds to the introduction and the
conclusion of the thesis which outline the main contributions.
The suggested itinerary is: 1→7.

• Contribution Summary and Context. Shows the main contributions
and the context of this thesis.
The suggested itinerary is: 1→2→7.

• Contribution Core. Shows the main contribution of this thesis in depth.
The orders in which Chapters 4, 5, and 6 are read is indifferent.
The suggested itinerary is: 3→ (4 | 5 | 6).

• Complete. This is the complete reading of this thesis.
The suggested itinerary is: 1→2→ 3→ (4 | 5 | 6)→ 7.
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This chapter provides relevant background and a state of the art on algo-
rithmic skeleton programming. The chapter begins with a general background
on distributed programming models. Then, the second section provides a non-
exhaustive survey on algorithmic skeleton frameworks. For each framework, a
brief description is provided and its main features are highlighted. Then, the
third section discusses and compares the different algorithmic skeleton frame-
works. The fourth section provides relevant background on the ProActive Li-
brary, and the final section concludes the chapter.

2.1 Distributed Programming Models

2.1.1 Remote Procedure Calls

Remote Procedure Calls (RPC) [TA90] is the mechanism by which procedures
are executed on distant machines with a different address space. Several soft-
ware tools have been implemented on top of RPC, such as the popular NFS
(Network File System) protocol, NIS (Network Information System), etc. The
advantage of RPC over regular network connections is that programmers can
invoke remote procedures without the burdens of network communications such
as: port connections, socket creations, data writing/reading, etc. A drawback of
RPC is that client programs are not aware if remote procedure are successfully
executed on the remote address space. Additionally, both client and server must
have a prearranged understanding on the procedure’s identification numbers
and their versions.

7
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More recently, GridRPC has been proposed [SNM+02], offering services such
as asynchronous coarse-grained parallels tasks. In GridRPC, remote calls are
delegated to intermediate agents which handle the scheduling and load balanc-
ing of invocations. Each remote call is assigned an identifier which can be used
to cancel or await the call.

Unfortunately, both traditional RPC and GridRPC are limitted to well de-
fined point to point client-server interactions.

2.1.2 Message passing

Message passing programming models, such as MPI [(MP96], are probably the
most popular programming models in the absence of shared memory environ-
ments (e.g. clusters). This is likely due to their efficiency, latency management,
modularity and synchronization operations. Compared with RPC, MPI not only
provides point to point but also one to many communications. MPI provides
other important operations such as send/receive, gather and reduction, and syn-
chronization (barriers) among others.

Unfortunately, MPI’s high efficiency is achieved at the cost of low level ab-
stractions. Programmers are burdened with low level communication details.
For example, MPI programmers must manually deal with data serialization and
type casting. Also, the message passing paradigm is error prone, being rela-
tively easy for a programmer to obtain deadlocks. Furthermore, Gorlatch has
also pointed out the dangers of send/receive operations in contrast with collec-
tive operations [Gor04].

2.1.3 Bulk Synchronous Parallelism (BSP)

Bulk-Synchronous Parallel (BSP) is a programming model introduced by Valiant
[Val90]. BSP offers an abstract view of PRAM like models which allows portable
prediction of performance on many architectures.

In BSP, a computer has a set of processor memory pairs. Processors are
connected through a network and exchange information at well defined points in
the application. A BSP program is executed as a sequence of super-steps, each
one divided into three phases. In the first phase computations take place using
local available data and requests for remote data are sent to other processors.
In the second stage, the requested data is delivered to the processors, and in the
third stage a global synchronization takes place.

The main advantages of BSP are its simplicity, portability, and the ability to
predict the execution time of an application with cost calculus models [LHF00,
Lou01]. The execution time of an application is the sum of all its super-steps.
The execution time of a super-step is the sum of the maximum time for each
phase. Therefore, the performance of an application on a different architecture
can be predicted by adjusting the architecture dependant parameters of the cost
calculus model [HM99].

Besides cost models, BSP formalisms have been defined to address other is-
sues. For example, exception management [GGLD06, GL07], type checking for
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invalid compositions [GL03, GL05], and parallel juxtaposition for divide-and-
conquer algorithms [LBGLR06, Lou03] among others.

2.1.4 Distributed Objects

Distributed objects provide a higher level of abstraction than both RPC and MPI.
In a distributed object environment, objects can be remote entities accessible
via remote method invocations. A remote method invocation can change the
state of the object; and can be achieved as a standard part of the language (like
Java RMI) or through a middleware layer like CORBA [Gro99]. There are many
distributed object libraries, such as the already mentioned CORBA and Java
RMI; but also DCOM which is a Microsofit platform; Distributed Ruby; etc.

As stated by Emmerich [Emm00], there are several differences between reg-
ular object oriented programming and distributed objects. Distributed objects
must also deal with: life cycle, object references, request latency, object activa-
tion, parallelism, communication, failure, and security. Additionally, one of the
goals of distributed objects is to bridge the heterogeneity of different architec-
tures. In CORBA, this is achieved with an interface description language (IDL)
and its mapping to other languages. In Java RMI the idea is to have heteroge-
neous systems running portable Java applications, furthermore unknown object
types can be downloaded from distant nodes and instantiated at runtime.

2.1.5 Distributed Components

There are many component models for distributed computing both industry or
academy oriented. No standard definition of component exists, but a frequently
cited is [Szy98]:

A software component is a unit of composition with contractually
specified interfaces and explicit context dependencies only. A software
component can be deployed independently and is subject to composi-
tion by third parties.

Therefore, component based programming addresses three concerns of soft-
ware development: encapsulation, composition and description. The encap-
sulation sees components as black-boxes, with well defined services accessible
through interfaces. The composition means that components can be assembled
to work together, and in hierarchical models new components can be created
from sub-components. The description means that the assembly of components
is defined with architecture description languages, which allows for the compo-
sition of tools and type verification.

Industry oriented components tend to focus more on the development life
cycle of components. Some of the most known industry oriented components
models are Sun’s Enterprise Java Beans (EJBs) [MICb], Microsft’s .NET [Mica],
and the Corba Component Model (CCM) [Gro99]. CCM components define a role
for each actor of the programming process: designer, implementer, packager,
deployer and end-user.
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On the other side, academy oriented components target specific research in-
terests. For example the Commmon Component Architecture (CCA) [For] tar-
gets high-performance computing with a minimal component architecture. An-
other example is the Grid Component Model (GCM) [Cor06] which is based on
Fractal [BCL+06] but extends it for distributed and Grid computing. As in Frac-
tal, GCM allows for hierarchical composition, separation of functional and non-
functional interfaces; but also considers deployment, collective communications
[BCHM07], and autonomic behavior [ACD+08] among others.

2.1.6 Workflows and Service Oriented Architectures

We consider a workflow to be a coordination of a set of loosly coupled and re-
motely available services (and tasks). A workflow system is composed of mainly
four elements: design, scheduling, fault tolerance, and data movement [YB05].
Workflow systems come in many flavors depending on their domains such as sci-
entific applications (e.g. SAWE [TZ07a, TZ07b]), problem solving environment
(e.g. SEGL [CLKRR05]), industry oriented (e.g. BPEL [OAS07]), etc. In general,
workflows are programmed with a high-level language (or GUI) which describes
the flow of data from one service to the next. A workflow enactment system is
in charge of the workflow’s scheduling in accordance with the program’s control
logic, fault tolerance, and data transfer management.

A feature that distinguishes workflows from other programming models is
the role of the data movement. While other models are mostly concerned with
transfer of small quantities of data (stored in main memory), workflows pro-
vide abstraction to transfer large amounts of data (located in secondary storage)
between workflow units. For example, Java CoG Kit’s [vLFGL01] data trans-
fer operations are explicitly defined like any other task, in the sense that a
data transfer operation must be submitted for execution as a data-transfer-task
[vLAG+03, vLGP+04]. Another example is Unicore [ES01, Uni], which uses a
workflow programing model to order dependencies between tasks. All tasks be-
longing to the same job share a jobspace file system abstraction. The job de-
scription also specifies which files must be imported into the jobspace before the
execution of the job, and which files must be exported after the job is finished.
Files that must be imported and exported to the jobspace are staged before and
after the job begins. Additionally, it is also possible to interact with sub-jobs
(which have their own jobspace) by explicitly adding file transfer modules in the
workflow. The file transfer modules handle the input and output of files between
the jobspace and the sub-jobspaces.

Thus workflows require programmers to explicitly add data management
units to their applications.

2.2 Algorithmic Skeletons Frameworks

Algorithmic skeletons (skeletons for short) are a high level programming model
for parallel and distributed computing introduced by Cole in [Col91]. Skele-
tons take advantage of common programming patterns to hide the complexity



Section 2.2. Algorithmic Skeletons Frameworks 11

of parallel and distributed applications. Starting from a basic set of patterns
(skeletons), more complex patterns can be built by nesting the basic ones.

The most outstanding feature of algorithmic skeletons, which differentiates
them from other high-level programming models, is that message passing is
implicitly defined by the skeleton patterns. Programmers do not have to specify
the message passing between the application’s sequential parts. This yields two
implications. First, as the communication patterns are known in advance, cost
models can be applied to schedule skeletons programs [HM99]. Second, that
skeleton programming is deadlock free.

There are not many surveys concerning algorithmic skeleton in the litera-
ture. Of those available, each addresses a specific concern. The first one is
that of Hammond and Michaelson [HM99] which provides a broad background
on parallel programming models related with functional programming. This
survey covers a variety of topics such as cost models, BSP models, coordina-
tion languages and algorithmic skeletons. Another survey corresponds to that
of Hamdan [Ham99] which focuses on cost models for algorithmic skeletons. A
more recent survey, and dedicated to the subject of algorithmic skeletons and
patterns, has been compiled by Rabhi and Gorlatch [RG03]. This survey pro-
vides in depth description of several well known skeleton frameworks such as
HDC, Eden, and P3L among others. A more general survey addressing environ-
ments for parallel and distributed computing can be found in [DDdSL02].

In lack of a recent survey in the literature, the rest of this section provides a
non-exhaustive survey on algorithmic skeleton frameworks, which focuses on re-
search pluralism and recent results. For each skeleton framework in the survey,
a brief description is provided and its relevance and main features are high-
lighted. Then, in the Section 2.3 a comparison between the frameworks is pre-
sented.

2.2.1 Alt and HOC-SA

Alt et al. [Alt07] have proposed a skeleton framework for the Grid [ABG02,
AG03c, AG03b, AG03a]. We shall call this framework Alt for lack of a better
name. In Alt, skeletons are offered as services accessible through Java Remote
Method Invocation (RMI). Once a skeleton service has been found, the skeleton
is remotely called from the client program using an invoke API. Special con-
tainer objects are used to pass parameters and obtain results between different
skeleton invocations. Contrary to other frameworks, skeletons are not nestable.
The control flow between skeletons is explicitly manipulated by the programmer
from inside the client application. Thus, type verification is explicitly performed
by Java in the client program. Additionally, a Grid Workflow Description Lan-
guage (GWorkflowDL) can be used to define the execution flow between skeleton
services.

Higher Order Components (HOC) combine concepts from skeleton, compo-
nent, and services [DG04]. HOC are remotely accessible by clients as distant
services which implement a parallelism pattern. A remote client provides the
specific application code to the HOC and the input data. The code and data
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are shipped from the client host to the remote service host. Then, the HOC is
deployed and executed on the remote infrastructure in accordance with the spe-
cific HOC pattern. Once the computation is finished, the result is delivered back
to the programmer. The main challenges behind HOC correspond to the stor-
age and look up of remote services, and the code shipping from the client. In
other words, HOC is mainly focused on how skeleton can be remotely accessed
as services. For example, a HOC wrapping of eSkel’s (see 2.2.5) pipeline skele-
ton is described in [DBCG05], and of Lithium’s farm skeleton in [DGC+05]. On
the backend, several middlewares have been studied for HOC such as: Globus
[DG04], ProActive [DGB+06], and KOALA [DEDG06].

2.2.2 ASSIST

ASSIST [ACD+06] is a programming environment which provides programmers
with a structured coordination language. The coordination language can express
parallel programs as an arbitrary graph of software modules. The module graph
describes how a set of modules interact with each other using a set of typed data
streams. The modules can be sequential or parallel. Sequential modules can
be written in C, C++, or Fortran; and parallel modules are programmed with a
special ASSIST parallel module (parmod).

AdHoc, a hierarchical and fault-tolerant Distributed Shared Memory (DSM)
system is used to interconnect streams of data between processing elements
by providing a repository with: get/put/remove/execute operations [AADJ07,
ADG+05, AT04]. Research around AdHoc has focused on transparency, scala-
bility, and fault-tolerance of the data repository.

While not a classical skeleton framework, in the sense that no skeletons are
provided, ASSIST’s generic parmod can be specialized into classical skeletons
such as: farm, map, etc. ASSIST also supports autonomic control of parmods
[APP+05], and can be subject to a performance contract by dynamically adapting
the number of resources used.

2.2.3 CO2P3S

CO2P3S (Correct Object-Oriented Pattern-based Parallel Programming System),
is a pattern oriented development environment [MAB+02, MSS99, MSSB00],
which achieves parallelism using threads in Java.

CO2P3S is concerned with the complete development process of a parallel ap-
plication. Programmers interact through a programming GUI to choose a pat-
tern and its configuration options. Then, programmers fill the hooks required
for the pattern, and new code is generated as a framework in Java for the paral-
lel execution of the application. The generated framework uses three levels, in
descending order of abstraction: patterns layer, intermediate code layer, and na-
tive code layer. Thus, advanced programmers may intervene the generated code
at multiple levels to tune the performance of their applications. The generated
code is mostly type safe, using the types provided by the programmer which do
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not require extension of superclass, but fails to be completely type safe such as
in the reduce(..., Object reducer) method in the mesh pattern.

The set of patterns supported in CO2P3S corresponds to method-sequence,
distributor, mesh, and wavefront. Complex applications can be built by com-
posing frameworks with their object references. Nevertheless, if no pattern is
suitable, the MetaCO2P3S [BMA+02, MSS+02] graphical tool addresses exten-
sibility by allowing programmers to modify the pattern designs and introduce
new patterns into CO2P3S.

Support for distributed memory architectures in CO2P3S was introduced in
[TSS+03]. To use a distributed memory pattern, programmers must change the
pattern’s memory option from shared to distributed, and generate the new code.
From the usage perspective, the distributed memory version of the code requires
the management of remote exceptions.

2.2.4 Eden

Eden [LOmRP05] is a parallel programming language for distributed memory
environments, which extends Haskell [HJW+92]. Processes are defined explic-
itly to achieve parallel programming, while their communications remain im-
plicit [BLMP97]. Processes communicate through unidirectional channels, which
connect one writer to exactly one reader. Programmers only need to specify
which data a processes depends on. Eden’s process model provides direct control
over process granularity, data distribution and communication topology.

Eden is not a skeleton language in the sense that skeletons are not provided
as language constructs. Instead, skeletons are defined on top of Eden’s lower-
level process abstraction, supporting both task and data parallelism. Eden intro-
duces the concept of implementation skeleton [KLPR01], which is an architecture
independent scheme that describes a parallel implementation of an algorithmic
skeleton.

Recent research on Eden has focused on scalability. A hierarchical taskpool
has been provided, capable of handling dynamically created tasks in the compu-
tation nodes [Pri06, BDLP08].

2.2.5 eSkel

The Edinburgh Skeleton Library (eSkel) is provided in C and runs on top of
MPI [(MP96]. The first version of eSkel was described in [Col04], while a later
version is presented in [BCGH05b]. An example of a baseline stereo application
programmed with eSkel can be found in [BCGH05d].

In [BC05], nesting-mode and interaction-mode for skeletons are defined. The
nesting-mode can be either transient or persistent, while the interaction-mode
can be either implicit or explicit. Transient nesting means that the nested skele-
ton is instantiated for each invocation and destroyed afterwards, while persis-
tent means that the skeleton is instantiated once and the same skeleton instance
will be invoked throughout the application. Implicit interaction means that the
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flow of data between skeletons is completely defined by the skeleton composi-
tion, while explicit means that data can be generated or removed from the flow
in a way not specified by the skeleton composition. For example, a skeleton that
produces an output without ever receiving an input has explicit interaction.

Performance prediction for scheduling and resource mapping, mainly for pipe-
lines, has been explored by Benoit et al. [BCGH04, BCGH05a, BCGH05c, BR07].
They provided a performance model for each mapping, based on process algebra,
and determine the best scheduling strategy based on the results of the model.

More recent works have addressed the problem of adaptation on structured
parallel programming [YCGH07, GVC07], in particular for the pipe skeleton
[GVC06, GVC08].

2.2.6 HDC

Higher-order Divide and Conquer (HDC) [HL00] is a subset of the functional
language Haskell [HJW+92]. Functional programs are presented as polymor-
phic higher-order functions, which can be compiled into C/MPI, and linked with
skeleton implementations. The language focus on divide and conquer paradigm,
and starting from a general kind of divide and conquer skeleton, more specific
cases with efficient implementations are derived. The specific cases correspond
to: fixed recursion depth, constant recursion degree, multiple block recursion,
elementwise operations, and correspondant communications [Her00].

HDC pays special attention to the subproblem’s granularity and its relation
with the number of available processors. The total number of processors is a
key parameter for the performance of the skeleton program as HDC strives to
estimate an adequate assignment of processors for each part of the program.
Thus, the performance of the application is strongly related with the estimated
number of processors leading to either exceeding number of subproblems, or not
enough parallelism to exploit available processors.

2.2.7 JaSkel

JaSkel [FSP06] is a Java based skeleton framework providing skeletons such
as farm, pipe and heartbeat. Skeletons are specialized using inheritance. Pro-
grammers implement the abstract methods for each skeleton to provide their
application specific code. Skeletons in JaSkel are provided in both sequential,
concurrent and dynamic versions. For example, the concurrent farm can be used
in shared memory environments (threads), but not in distributed environments
(clusters) where the distributed farm should be used. To change from one ver-
sion to the other, programmers must change their classes’ signature to inherit
from a different skeleton. The nesting of skeletons uses the basic Java Object
class, and therefore no type system is enforced during the skeleton composition.

The distribution aspects of the computation are handled in JaSkel using AOP,
more specifically the AspectJ [KHH+01] implementation. Thus, JaSkel can be
deployed on both cluster and Grid like infrastructures [SP07, AHM+07]. Nev-
ertheless, a drawback of the JaSkel approach is that the nesting of the skeleton
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strictly relates to the deployment infrastructure. Thus, a double nesting of farm
yields a better performance than a single farm on hierarchical infrastructures.
This defeats the purpose of using AOP to separate the distribution and func-
tional concerns of the skeleton program.

2.2.8 Lithium and Muskel

Lithium [AD99, ADD04, ADT03, DT02] and its successor Muskel [DD06b] are
skeleton frameworks developed at University of Pisa, Italy. Both of them pro-
vide nestable skeletons to the programmer as Java libraries. The evaluation of
a skeleton application follows a formal definition of operational semantics in-
troduced by Aldinucci and Danelutto [AD04, AD07b], which can handle both
task and data parallelism. The semantics describe both functional and parallel
behavior of the skeleton language using a labeled transition system. Addition-
ally, several performance optimization are applied such as: skeleton rewriting
techniques [ADT03, AD99], task lookahead, and server-to-server lazy binding
[ADD04].

At the implementation level, Lithium exploits macro-data flow [Dan01, Dan99]
to achieve parallelism. When the input stream receives a new parameter, the
skeleton program is processed to obtain a macro-data flow graph. The nodes of
the graph are macro-data flow instructions (MDFi) which represent the sequen-
tial pieces of code provided by the programmer. Tasks are used to group together
several MDFi, and are consumed by idle processing elements from a task pool.
When the computation of the graph is concluded, the result is placed into the
output stream and thus delivered back to the user.

Muskel also provides non-functional features such as Quality of Service (QoS)
[Dan05]; security between task pool and interpreters [AD07a, AD08]; and re-
source discovery, load balancing, and fault tolerance when interfaced with Java
/ Jini Parallel Framework (JJPF) [DD05], a distributed execution framework.
Muskel also provides support for combining structured with unstructured pro-
gramming [DD06a] and recent research has addressed extensibility [ADD07].

2.2.9 Mallba

Mallba [AAB+02] is a library for combinatorial optimizations supporting exact,
heuristic and hybrid search strategies [AAB+06]. Each strategy is implemented
in Mallba as a generic skeleton which can be used by prodiving the required
code. On the exact search algorithms Mallba provides branch-and-bound and
dynamic-optimization skeletons. For local search heuristics Mallba supports:
hill climbing, metropolis, simulated annealing, and tabu search; and also pop-
ulation based heuristics derived from evolutionary algorithms such as genetic
algorithms, evolution strategy, and others (CHC). The hybrid skeletons combine
strategies, such as: GASA, a mixture of genetic algorithm and simulated anneal-
ing, and CHCCES which combines CHC and ES.

The skeletons are provided as a C++ library and are not nestable but type
safe. A custom MPI abstraction layer is used, NetStream, which takes care
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of primitive data type marshalling, synchronization, etc. A skeleton may have
multiple lower-level parallel implementations depending on the target archi-
tectures: sequential, LAN, and WAN. For example: centralized master-slave,
distributed master-slave, etc.

Mallba also provides state variables which hold the state of the search skele-
ton. The state links the search with the environment, and can be accessed to
inspect the evolution of the search and decide on future actions. For example,
the state can be used to store the best solution found so far, or α, β values for
branch and bound pruning [ALG+07].

Compared with other frameworks, Mallba’s usage of skeletons concepts is
unique. Skeletons are provided as parametric search strategies rather than
parametric parallelization patterns.

2.2.10 P3L, SkIE, SKElib

P3L [BDO+95, BCD+97] is a skeleton based coordination language. P3L pro-
vides skeleton constructs which are used to coordinate the parallel or sequential
execution of C code. A compiler named Anacleto [CDF+97] is provided for the
language. Anacleto uses implementation templates to compile P3L code into a
target architecture. Thus, a skeleton can have several templates each optimized
for a different architecture. A template implements a skeleton on a specific ar-
chitecture and provides a parametric process graph with a performance model.
The performance model can then be used to decide program transformations
which can lead to performance optimizations [ACD98].

A P3L module corresponds to a properly defined skeleton construct with in-
put and output streams, and other sub-modules or sequential C code. Modules
can be nested using the two tier model, where the outer level is composed of
task parallel skeletons, while data parallel skeletons may be used in the inner
level [DPP97]. Type verification is performed at the data flow level, when the
programmer explicitly specifies the type of the input and output streams, and
by specifying the flow of data between sub-modules.

SkIE [BDPV99] is quite similar to P3L, as it is also based on a coordination
language, but provides advanced features such as debugging tools, performance
analysis, visualization and graphical user interface. Instead of directly using
the coordination language, programmers interact with a graphical tool, where
parallel modules based on skeletons can be composed.

SKELib [DS00] builds upon the contributions of P3L and SkIE by inheriting,
among others, the template system. It differs from them because a coordination
language is no longer used, but instead skeletons are provided as a library in
C, with performance similar as the one achieved in P3L. Contrary to Skil (see
2.2.16), another C like skeleton framework, type safety is not addressed in SKE-
Lib.
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2.2.11 PAS and EPAS

PAS (Parallel Architectural Skeletons) is a framework for skeleton programming
developed in C++ and MPI [GSP99, GSP02]. Programmers use an extension of
C++ to write their skeleton applications1. The code is then passed through a
Perl script which expands the code to pure C++ where skeletons are specialized
through inheritance.

In PAS, every skeleton has a Representative (Rep) object which must be pro-
vided by the programmer and is in charge of coordinating the skeleton’s execu-
tion. Skeletons can be nested in a hierarchical fashion via the Rep objects. Be-
sides the skeleton’s execution, the Rep also explicitly manages the reception of
data from the higher level skeleton, and the sending of data to the sub-skeletons.
A parametrized communication/synchronization protocol is used to send and re-
ceive data between parent and sub-skeletons.

An extension of PAS labeled as SuperPas [AGL04] and later as EPAS [ASGL05]
addresses skeleton extensibility concerns. With the EPAS tool, new skeletons
can be added to PAS. A Skeleton Description Language (SDL) is used to describe
the skeleton pattern by specifying the topology with respect to a virtual proces-
sor grid. The SDL can then be compiled into native C++ code, which can be used
as any other skeleton.

2.2.12 SBASCO

SBASCO (Skeleton-BAsed Scientific COmponents) is a programming environ-
ment oriented towards efficient development of parallel and distributed numeri-
cal applications [DRST04]. SBASCO aims at integrating two programming mod-
els: skeletons and components with a custom composition language. An appli-
cation view of a component provides a description of its interfaces (input and
output type); while a configuration view provides, in addition, a description of
the component’s internal structure and processor layout. A component’s inter-
nal structure can be defined using three skeletons: farm, pipe and multi-block.

SBASCO’s addresses domain decomposable applications through its multi-
block skeleton. Domains are specified through arrays (mainly two dimensional),
which are decomposed into sub-arrays with possible overlapping boundaries.
The computation then takes place in an iterative BSP like fashion. The first
stage consists of local computations, while the second stage performs boundary
exchanges. A use case is presented for a reaction-diffusion problem in [DRR+06b].

Two type of components are presented in [DRR+05]. Scientific Components
(SC) which provide the functional code; and Communication Aspect Components
(CAC) which encapsulate non-functional behavior such as communication, dis-
tribution processor layout and replication. For example, SC components are
connected to a CAC component which can act as a manager at runtime by dy-
namically re-mapping processors assigned to a SC. A use case showing improved
performance when using CAC components is shown in [DRR+06a].

1The authors claim that it is not really a C++ extension, but a textual interface, as program-
mers can also code directly in pure C++.
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2.2.13 SCL

The Structured Coordination Language (SCL) was one of the first languages in-
troduced for skeleton programming [DFH+93, DGTY95, DkGTY95]. SCL is con-
sidered a base language, and was designed to be integrated with a host language,
for example Fortran. In SCL, skeletons are classified into three types: configu-
ration, elementary and computation. Configuration skeletons abstract patterns
for commonly used data structures such as distributed arrays (ParArray). Ele-
mentary skeletons correspond to data parallel skeletons such as map, scan, and
fold. Computation skeletons which abstract the control flow and correspond
mainly to task parallel skeletons such as farm, SPMD, and iterateUntil.

2.2.14 SKiPPER, QUAFF

SKiPPER is a domain specific skeleton library for vision applications [SGD99,
SG02] which provides skeletons in CAML [Mau95], and thus relies on CAML for
type safety. Skeletons are presented in two ways: declarative and operational.
Declarative skeletons are directly used by programmers, while their operational
versions provide an architecture specific target implementation. From the run-
time environment, CAML skeleton specifications, and application specific func-
tions (provided in C by the programmer), new C code is generated and compiled
to run the application on the target architecture. One of the interesting things
about SKiPPER is that the skeleton program can be executed sequentially for
debugging.

Different approaches have been explored in SKiPPER for writting opera-
tional skeletons: static data-flow graphs, parametric process networks, hierar-
chical task graphs, and tagged-token data-flow graphs [SG02].

QUAFF [FSCL06] is a more recent skeleton library written in C++ and MPI.
QUAFF relies on template-based meta-programming techniques to reduce run-
time overheads and perform skeleton expansions and optimizations at compila-
tion time. Skeletons can be nested and sequential functions are stateful. Besides
type checking, QUAFF takes advantage of C++ templates to generate, at com-
pilation time, new C/MPI code. QUAFF is based on the CSP-model, where the
skeleton program is described as a process network and production rules (single,
serial, par, join) [FS07].

2.2.15 SkeTo

The SkeTo [MIEH06] project is a C++ library which achieves parallelization us-
ing MPI. SkeTo is different to other skeleton libraries because instead of provid-
ing nestable parallelism patterns, SkeTo provides parallel skeletons for parallel
data structures such as: lists [MIEH06], trees [MHT03, MHT06], and matrices
[EHKT05]. The data structures are typed using templates, and several paral-
lel operations can be invoked on them. For example the list structure provides
parallel operations such as: map, reduce, scan, zip, shift, etc...

Additional research around SkeTo has also focused on optimizations strate-
gies by transformation, and more recently domain specific optimizations [EMHT07].
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For example, SkeTo provides a fusion transformation [MKI+04] which merges
two successive function invocations into a single one, thus decreasing the func-
tion call overheads and avoiding the creation of intermediate data structures
passed between functions.

2.2.16 Skil and Muesli

Skil [BK95, BK96a, BK96b, BK96c, BK98] is an imperative language for skele-
ton programming. Skeletons are not directly part of the language but are im-
plemented with it. Skil uses a subset of C language which provides functional
language like features such as higher order functions, curring and polymorphic
types. When Skil is compiled, such features are eliminated and a regular C
code is produced. Thus, Skil transforms polymorphic high order functions into
monomorphic first order C functions. Skil does not support nestable composition
of skeletons. Data parallelism is achieved using specific data parallel structures,
for example to spread arrays among available processors. Filter skeletons can
be used.

The Muesli skeleton library [KS02, Kuc02, KS05] re-implements many of the
ideas introduced in Skil, but instead of a subset of the C language, skeletons are
offered through C++. Contrary to Skil, Muesli supports nesting of task and data
parallel skeletons [KC02] but is limited to P3L’s two tier approach (see 2.2.10).
C++ templates are used to render skeletons polymorphic, but no type system
is enforced. The supported skeletons are distributed array and matrix for data
parallelism; and pipeline, farm, and parallel composition (a farm variant).

Recent research has focused mostly on optimizations [Kuc04] and scalability
for specific skeletons such as: farm [PK05b, PK05a, PK08a], branch and bound
[PK06] and divide and conquer [PK08b].

2.2.17 TBB

TBB (Threading Building Blocks) is a C++ library for parallel programming de-
veloped by Intel to take advantage of multi-core architectures [Int]. TBB offers
parallel patterns such as: for, reduce, scan, do, sort, and pipeline; and concurrent
data structures as: hashmap, vector, and queue. An interesting aspect of TBB is
that, contrary to most of the frameworks described here, TBB was created by an
industry company instead of an academic institution.

To our knowledge, TBB does not label itself as a skeleton framework, but we
provide a description here because of the evident relationship with skeleton pro-
gramming: parallelism is abstracted through patterns. Compared with skeleton
frameworks, TBB provides lower level abstractions with more control on lower
level parallelism aspects such as: granularity, the possibility to combine with
other thread libraries, and direct access to the task scheduler. Additionally, TBB
is only aimed at shared-memory infrastructures, in particular multi-core.



20 Chapter 2. State of the Art

2.2.18 Others

Besides the previously mentioned frameworks, there are other works which have
drawn our attention for different reasons. We briefly describe them here.

Maude [CDE+05] is a high level, general purpose language and high per-
formance system supporting both equational and rewriting logic computations.
Maude is not solely dedicated to skeleton programming, as it can be used to spec-
ify and analyze a wider variety of systems and protocols. For example, Eden’s
semantics have been analyzed with Maude [HHVOM07]. Concerning skeletons,
Maude has implemented non nestable skeletons to show how distributed com-
putation can be achieved with Maude [RV07a]. These skeletons correspond to
farm, systolic, d&c, branch & bound, and pipeline [RV07b].

PLPP (Pattern Language for Parallel Programming) is a collection of pat-
terns which are structured to provide a design methodology [MMS00, MMS01].
The methodology helps programmers understand the parallelization opportuni-
ties of their problem, and then work through a series of patterns to finally arrive
at a solution for their application. Thus, contrary to other skeleton frameworks
discussed here, PLPP focuses mainly on the design methodology of the applica-
tion, rather than the specific parallelism patterns.

MapReduce is a library developed by Google, Inc. to perform computa-
tions on large amounts of data in parallel [DG08, Läm07]. MapReduce is not
a self proclaimed skeleton framework, and is quite different from other skele-
ton frameworks we have described. Nontheless, we mention it for two reasons.
First, because MapReduce is an industry developed tool, much like TBB, but
also because it is currently used in production environments extensively. The
second reason is that MapReduce is concerned with data intensive applications,
while most skeleton frameworks are focused mainly on computation intensive
applications.

MapReduce is strongly related with algorithmic skeleton programming be-
cause it provides a parametric pattern of parallelism. MapReduce provides a sin-
gle skeleton targetted for the division of large data sets, distribution of the data
blocks, computation of the blocks and then reduction of the results. Addition-
ally, MapReduces applies a set of particular features which are key to improve
performance on a production environment. First, fault tolerance for worker fail-
ures. Also locality awareness, which performs computations in machines where
a replica of the data already exists. Management of stragglers, towards the end
of the computation, with redundancy to decrease the time waiting for the last
task completion.

2.3 Discussion

2.3.1 Programming Models

It is evident from the descriptions outlined in Section 2.1 that each program-
ming model provides different abstractions. Ideally, one would like to order the
programming models from the least abstract to the most abstract, but this is
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unrealistic. An alternative would be to classify them into two groups: low level
and high level abstractions. Thus, in the low level abstractions group we could
find RPC, MPI and BSP; while on the higher level abstractions we could find
object-oriented, components, workflows, and algorithmic skeletons.

Of course this classification is completely arbitrary as it would depend on the
particular implementation of the programming model. Thus, instead of arguing
about the abstraction of the programming models, we are more interested in
pointing out how strongly they are intertwined.

Indeed, few implementations of a programming model are directly imple-
mented with sockets. More often we see that a particular implementation is
based on another programming model. For example, the reference implemen-
tation of the Grid Component Model (GCM) is built on top of ProActive which
implements a distributed object programming model: active objects.

With respect to algorithmic skeleton, we have found that they have be con-
structed on top of several programming models. For example, many frameworks
(e.g. eSkel) are implemented on top of MPI. Zavanella has studied the relation-
ship between skeletons and BSP [Zav01], and SBASCO uses a BSP like approach
as well. Other skeleton frameworks are constructed on top of distributed object
(e.g. Lithium).

Nevertheless, what is also interesting is that skeletons concepts have per-
meated into other programming models. For example, Alt [Alt07] has provided
a workflow language to compose skeletons (GWorkflowDL). Or in the case of
components Haskel# provides a mechanism to specify component bindings from
skeleton patterns [dCJL03]. Or in the case of Fractal components [BCL+06],
where in [BPP06] the master-slave pattern has been studied.

Therefore, it is our opinion that algorithmic skeletons are not meant to re-
place other programming models, but can ultimately be combined with other
models to facilitate parallel and distributed programming.

2.3.2 Algorithmic Skeletons

From Section 2.2, it is clear that algorithmic skeletons have evolved greatly since
their introduction by Cole [Col91]. Tables 2.1 and 2.2 provide a summary of the
skeleton frameworks. Table 2.1 shows classical non-object-oriented based skele-
ton frameworks, while Table 2.2 shows object-oriented skeleton frameworks.
Note that while ASSIST, SBASCO and SkiE are implemented on top of C++,
we have placed them in Table 2.1 because their programming languages do not
correspond to object-oriented languages.

The tables consider several characteristics such as: programming language,
execution language, distribution environment, type safety, pattern nesting, file
access, and skeleton set.

Programming Language is the interface with which programmers interact
to code their skeleton applications. These languages are diverse, encom-
passing paradigms such as: functional languages, coordination languages,
markup languages, imperative languages, object oriented languages, and
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Table 2.1: Non-Object-Oriented Algorithmic Skeleton Frameworks
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Table 2.2: Object-Oriented Algorithmic Skeleton Frameworks
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even graphical user interfaces. Inside the programming language, skele-
tons have been provided either as language constructs or libraries. Provid-
ing skeletons as language construct implies the development of a custom
domain specific language and its compiler. This was clearly the stronger
trend at the begging of skeleton research. The more recent trend is to
provide skeletons as libraries, in particular with object oriented languages
such as C++ and Java.

Execution Language is the language in which the skeleton applicatons are
run or compiled. It was recognized very early that the programming lan-
guages (specially in the functional cases), were not efficient enough to ex-
ecute the skeleton programs. Therefore, skeleton programming languages
were simplified by executing skeleton application on other languages. Trans-
formation processes were introduced to convert the skeleton applications
(defined in the programming language) into an equivalent application on
the target execution language. Different transformation processes were in-
troduced, such as code generation or instantiation of lowerlevel skeletons
(sometimes called operational skeletons) which where capable of interact-
ing with a library in the execution language. The transformed application
also gave the opportunity to introduce target architecture code, customized
for performance, into the transformed application. Table 2.1 shows that a
favorite for execution language has been the C language.

Distribution Library provides the functionality to achieve parallel/distributed
computations. The big favorite in this sense has been MPI, which is not
surprising since it integrates well with the C language, and is probably
the most used tool for parallelism in cluster computing. The dangers of
directly programming with the distribution library are, of course, safely
hidden away from the programmers who never interact with the distribu-
tion library. Recently, the trend has been to develop skeleton frameworks
capable of interacting with more than one distribution library. For exam-
ple, CO2P3S can use Threads, RMI or Sockets; Mallba can use Netstream
or MPI; or JaSkel which uses AspectJ to execute the skeleton applications
on different skeleton frameworks.

Type Safety refers to the capability of detecting type incompatibility errors in
skeleton program. Since the first skeleton frameworks were built on func-
tional languages such as Haskell, type safety was simply inherited from
the host language. Nevertheless, as custom languages where developed for
skeleton programming, compilers had to be written to take type checking
into consideration; which was not as difficult as skeleton nesting was not
fully supported. Recenlty however, as we begun to host skeleton frame-
works on object oriented languages with full nesting, the type safety issue
has resurfaced. Unfortunately, type checking has been mostly overlooked
(with the exception of QUAFF), and specially in Java based skeleton frame-
works.

Skeleton Nesting is the capability of hierarchical composition of skeleton pat-
terns. Skeleton Nesting was identified as an important feature in skeleton
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programming from the very beginning, because it allows the composition of
more complex patterns starting from a basic set of simpler patterns. Nev-
ertheless, it has taken the community a long time to fully support arbitrary
nesting of skeletons, mainly because of the scheduling and type verification
difficulties. The trend is clear that recent skeleton frameworks support full
nesting of skeletons.

File Access is the capability to access and manipulate files from an applica-
tion. In the past, skeleton programing has proven useful mostly for com-
putational intensive applications, where small amounts of data require big
amounts of computation time. Nevertheless, many distributed applications
require or produce large amounts of data during their computation. This
is the case for astrophysics, particle physics, bioinformatics, etc. Thus, pro-
viding file transfer tools that integrate with skeleton programming is a
key concern which has been completely overlooked with the exception of
ASSIST.

Skeleton Set is the list of supported skeleton patterns. Skeleton sets vary
greatly from one framework to the other, and more shocking, some skele-
tons with the same name have different semantics on different frame-
works. The most common skeleton patterns in the literature are probably
farm, pipe, and map.

2.3.2.1 Cole’s Manifesto Principles

Let us recall the goals of Cole’s four manifesto principles [Col04]:

Minimal Conceptual Disruption. “...we should build bridges to the de facto stan-
dards of the day, refining or constraining only where strictly necessary. We
should respect the conceptual models of these standards, offering skeletons
as enhancements rather than as competition....”

Integrate ad-hoc Parallelism. “...It is unrealistic to assume that skeletons can
provide all the parallelism we need. We must construct our systems to
allow the integration of skeletal and ad-hoc parallelism in a well defined
way.”

Accommodate Diversity.“...We must be careful to draw a balance between our
desire for abstract simplicity and the pragmatic need for flexibility....”

Show the pay-back. “...We must also be able to show that there are benefits
which outweigh the initial overheads and that it is possible to experience
these early on the learning curve... we should be able to show that skeletal
programs can be ported to new architectures, with little or no amendment
to the source...”

2.3.2.2 Characteristics vs Manifesto Principles

Table 2.3 shows how each of the skeleton framework characteristics can con-
tribute to the goal of each principle. In detail, we believe that an ideal skeleton
framework should resolve this concerns as follows:
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Characteristics
Minimal Integrate

conceptual ad-hoc Accommodate Show the
disruption parallelism diversity pay-back

Prog. Lang.
Exec. Lang.
Distrib. Lib.
Type Safety

Nesting
File Access

Skeleton Set

Table 2.3: Skeleton Frameworks Characteristics vs Manifesto Principles

Programming Language. Minimal conceptual disruption should be achieved
by providing a library in an already existant and popular language. Inte-
gration with ad-hoc parallelism in other libraries can also be achieved at
this level.

Execution Language: To show the pay-back, the execution language should
be multi-platform and even better support heterogeneous systems.

Distribution Library: Integration with ad-hoc parallelism can also be achieved
at the distribution library level. To show the pay-back, support for multiple
distribution libraries is needed, capable of executing the skeleton applica-
tion on different infrastructure and thus show the pay-back.

Type Safety: Programmers should not be forced to use Object or void* types,
which goes against minimal conceptual disruption. Additionally, a type
system for nestable skeletons increases programmers efficiency and thus
shows the pay-back.

Skeleton Nesting: To accommodate diversity, support of arbitrary skeleton
nesting must be available.

File Access: Must provide file data abstractions, preferably in a transparent
way, to minimize the conceptual disruption; and to empower skeletons for
data intensive applications. In addition, to show the pay-back, the file
access must be optimized for each type of infrastructure where the appli-
cation is run.

Skeleton Set: Must provide both task and data parallel skeleton patterns
which are intuitive, minimal conceptual disruption, and at the same time
capable of showing the pay-back.

To our knowledge, there is currently no algorithmic skeleton framework which
addresses all of this characteristics in a satisfactory manner. Therefore, this the-
sis is dedicated to the design and implementation of such a skeleton framework.
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2.4 Context: The ProActive Library

This sections provides a general background on ProActive. Its contents
have been adapted from [Mor06] with the author’s consent.

The ProActive library [CDdCL06, Pro] is a 100% Java middleware, which
aims for seamless programming for concurrent, parallel, distributed, and mobile
computing. Programming with ProActive does not require any modification of
the standard Java execution environment, nor does it make use of a special
compiler, pre-processor, or modified virtual machine.

2.4.1 Active Object Model

ProActive is based on the active object model. Active objects are a medium-
grained entity with their own configurable activity.

Sequential Multithreaded Distributed

Threaded object Passive object Java virtual machine

Figure 2.1: Seamless sequential to multithreaded to distributed objects

A distributed or concurrent application built with ProActive is composed of a
number of active objects (Figure 2.1). Each active object has one distinguished
element, the root, which is the only entry point to the active object. Each ac-
tive object has its own thread of control and is granted the ability to decide in
which order to serve the incoming method calls that are automatically stored in a
queue of pending requests. Method calls sent to active objects are asynchronous
with transparent future objects. Synchronization is data-based and handled by
a mechanism known as wait-by-necessity [Car93]. A future is a placeholder for
the result of an invocation on an active object. For the caller, futures are the
result of the method invocation since they are transparently updated when the
value of the invocation is actually computed. There is a short rendez-vous at the
beginning of each asynchronous remote call, which blocks the caller until the
call has reached the context of the callee, in order to ensure causal dependency.

The active object model of ProActive guaranties determinism properties and
is formalized in the ASP (Asynchronous Sequential Processes) calculus [CHS04].
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2.4.2 The ProActive library: principles, architecture and usages

The ProActive library provides an implementation of the active object model.

2.4.2.1 Implementation language

ProActive is developed in Java, a cross-platform language, and therefore ProAc-
tive application may run on any operating system proposing a compatible virtual
machine. Moreover, ProActive uses only standard APIs and does not use any
operating-system specific routine, other than to run daemons or to interact with
legacy applications. There are no modifications to the JVM nor to the seman-
tics of the Java language, and the bytecode of the application classes is never
modified.

2.4.2.2 Implementation techniques

ProActive uses an extensible meta-object protocol architecture (MOP), which
takes advantage of reflective techniques to abstract the distribution layer and
offer features such as asynchronism or group communications.

stub_B

proxy body

B

reified 
invocation

. . .

meta level

base level

network

features meta objects

passive objects

root objectA

service thread

Figure 2.2: Meta-object architecture

The architecture of the MOP is presented in Figure 2.2. An active object is
concretely built out of a root object (here of type B), with its graph of passive
objects. A body object is attached to the root object, and this body references
various features meta-objects, with different roles. An active object is always
indirectly referenced through a proxy and a stub which is a sub-type of the root
object. An invocation to the active object is actually an invocation on the stub ob-
ject, which creates a reified representation of the invocation: the method called
and the parameters. The reified representation is then given to a proxy object.
The proxy transfers the reified invocation to the body, possibly through the net-
work, and places the reified invocation in the request queue of the active object.
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// instantiate active object of class B on node (a possibly
remote location)

B b = (B) ProActive.newActive(’’B’’, new Object[] {
aConstructorParameter}, node);

// use active object as any object of type B
Result r = b.foo();

...

// possible wait-by-necessity
System.out.println(r.printResult());

The request queue is one of the meta-objects referenced by the body. If the re-
quest will return a result, a future object is created and returned to the proxy,
to the stub, then to the caller object.

The active object has it own activity thread, which is usually used to pick-up
reified invocations from the request queue and serve them, i.e. execute them
by reflection on the root object. Reification and interception of invocations, along
with ProActive’s customizable MOP architecture, provide both transparency and
the ground for adaptation of non-functional features of active objects to fit var-
ious needs. It is possible to add custom meta-objects which may act upon the
reified invocation, for instance to provide mobility features.

Active objects are instantiated using the ProActive API, by specifying the
class of the root object, the instantiation parameters, and an optional location
information:

Invoking the method foo() on b returns a future of type Result. The com-
putation can then continue until a wait-by-necessity is reached. The thread
accessing the future will be blocked only if the result is not yet available when
it is actually required.

2.4.2.3 Semantics of communications

In ProActive, the distribution is transparent: invoking methods on remote ob-
jects does not require the developer to design remote objects with explicit remote
mechanism (like Remote interfaces in Java RMI). Therefore, the developer can
concentrate on the business logic as the distribution is automatically handled
and transparent. Moreover, the ProActive library preserves polymorphism on
remote objects (through the reference stub, which is a subclass of the remote
root object).

Communications between active objects are realized through method invoca-
tions, which are reified and passed as messages. These messages are serializ-
able Java objects which may be compared to TCP packets. Indeed, one part of
the message contains routing information towards the different elements of the
library, and the other part contains the data to be communicated to the called
object.
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The MOP used in ProActive has some limitations. Therefore, although all
communications proceed through method invocations, the communication’s se-
mantics depends upon the method’s signature, and the resulting invocation may
not always be asynchronous.

Three cases are possible: synchronous invocation, one-way asynchronous in-
vocation, and asynchronous invocation with future result.

• Synchronous invocation:

– the method return a non reifiable object: primitive type or final class:
public boolean foo()

– the method declares throwing an exception:
public void bar() throws AnException

In this case, the caller thread is blocked until the reified invocation is pro-
cessed and the eventual result (or Exception) is returned. It is fundamental
to keep this case in mind, because some APIs define methods which throw
exceptions or return non-reifiable results.

• One-way asynchronous invocation: the method does not throw any excep-
tion and does not return any result:
public void gee()
The invocation is asynchronous and the process flow of the caller continues
once the reified invocation has been received by the active object (in other
words, once the rendez-vous is finished).

• Asynchronous invocation with future result: the return type is a reifiable
type, and the method does not throw any exception:
public MyReifiableType baz()
In this case, a future object is returned and the caller continues its execu-
tion flow. The active object will process the reified invocation according to
its serving policy, and the future object will then be updated with the value
of the result of the method execution.

If an invocation from an object A on an active object B triggers another in-
vocation on another active object C, the future result received by A may be up-
dated with another future object. In that case, when the result is available from
C, the future of B is automatically updated, and the future object in A is also
update with this result’s value, through a mechanism called automatic continu-
ation [CDHQ].

2.4.2.4 Library Features

As stated above, the MOP architecture of the ProActive library is flexible and
configurable; it allows the addition of meta-objects for managing new required
features. Moreover, the library also proposes a deployment framework, which
allows the deployment of active objects on various infrastructures.

The features of the library are represented in Figure 2.3.
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Figure 2.3: Layered features of the ProActive library

The active object model is formalized through the ASP calculus [CH05], and
ProActive may be seen as an implementation of ASP. The library may be de-
picted in three layers: programming models, middleware features and infras-
tructure/communication facilities.

The programming model consists of the active objects model which offers
asynchronous communications with wait-by-necessity [Car93] and exception man-
agement [CC05]; typed group communications [BBC02]; object-oriented SPMD
[BBC05]; branch and bound [CdCBM07]; and a grid component model (GCM)
[Cor06].

The middleware features include a transparent fault-tolerance mechanism
based on a communication-induced checkpointing protocol [BCDH05], a security
framework for communications between remote active objects [ACC05], migra-
tion capabilities for the mobility of active objects [BCHV00], and a mechanism
for wrapping legacy code, notably as a way to control and interact with MPI
applications.

The deployment layer includes: a deployment framework [BCM+02] which
allows the creation of remote active objects on various infrastructures (detailed
further in the next section); a peer-to-peer infrastructure [CdCM07] which al-
lows the acquisition of idle desktop resources; and a scheduler/resource manager
[RT+08] for dynamic scheduling of tasks and ProActive applications. Several
network protocols are supported for the communication between active objects:
Java RMI as the default protocol, HTTP, tunneled RMI. It is also possible to
export active objects as web services, which can then be accessed using the stan-
dard SOAP protocol.

2.4.2.5 Large scale experiments and usages

Large scale experiments have been conducted with ProActive to validate many
of its features: deployment on a large number of hosts from various organiza-
tions, on heterogeneous environments and using different communication, and
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Figure 2.4: Grid PlugTests Evolution

network protocols, etc...
We outline two series of events which illustrate the capabilities of ProActive

for large scale deployments.
First, the n-queens computational problem was solved for n=25 using a dis-

tributed peer-to-peer infrastructure on about 260 desktop machines in INRIA
Sophia Antipolis, with an idle cycle stealing approach. The n-queens problem
is a classical computational problem which consists of finding the placements
of n non-attacking queens on a n × n chessboard. It is an NP-hard problem,
which means that high values of n require years of computation time on a single
machine, making this problem ideal in the context of challenge for distributed
computing.

The peer-to-peer infrastructure was highly heterogeneous: Linux, Windows,
various JVMs, Pentium II to Xeon bi-pro from 450 Mhz to 3.2 GHz, etc, and the
total duration time was slightly over 6 months (4444h 54m 52s 854), starting
October 8th until June 11th, using the spare CPU cycles of about 260 machines.
The cumulative computing time was over 50 years.

Second, the Grid PlugTests events held at ETSI in 2004, 2005, 2006 and at
China in 2007, have demonstrated the capacity of the ProActive library to cre-
ate virtual organizations and to deploy applications on various clusters from
various locations world wide. The first Grid PlugTests event (2004) [TE05b]
gathered competing teams which had to solve the n-queens challenge by using
the Grid built by coordinating universities and laboratories of 20 different sites
in 12 different countries, resulting in 900 processors and a computing power of
100 Gigaflops (SciMark 2.0 benchmark for Java). In the second Grid PlugTests
(2005) [TE05a] event, a second computational challenge was added: the per-
mutation flow-shop, in which the deployment of an optimal schedule for N jobs
on M machines must be computed. Heterogeneous resources from 40 sites in
13 countries were federated, resulting in a 450 Gigaflops grid, with a total of
2700 processors. In 2006 [TE06] and 2007 [Pro07] both challenges remained the
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same and the number of total processors was 4130 and 4538 respectively. Nev-
ertheless, more interesting than the Grid size is the evolution on the maximum
number of simultaneous processors used by contestants to solve a problem: 560
in 2004, 1106 in 2005, 2193 in 2006 and 3888 in 2007. Figure 2.4 shows a sum-
mary, which clearly validates ProActive as a distributed computation library.

2.5 Conclusion

This chapter has provided a state of the art in algorithmic skeleton program-
ming. In the first section we began by describing related programming models.
Then we provided an outline of several algorithmic skeleton frameworks with a
description of each. In the following section we continued by discussing and com-
paring the different skeleton frameworks, and conclude that there is no frame-
work which currently satisfies our requirements. Then in the final section of the
chapter we provided a brief description of the underlying middleware which will
be used for implementations throughout this thesis: ProActive.

In the following chapter we provide a general description of our particular al-
gorithmic skeleton programming model and its implementation: Calcium. Cal-
cium was developed as part of this thesis and is used throughout the rest of the
chapters.
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Algorithmic skeletons (skeletons for short) are a high level programming model
for parallel and distributed computing, introduced by Cole in [Col91]. Skele-
tons take advantage of common programming patterns to hide the complexity
of parallel and distributed applications. Starting from a basic set of patterns
(skeletons), more complex patterns can be built by nesting the basic ones.

35
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To write an application, programmers must compose a skeleton pattern and
fill the skeleton pattern with the sequential blocks specific to the application.
The skeleton pattern implicitly defines the parallelization and distribution as-
pects, while the sequential blocks provide the application’s functional aspects
(i.e. business code). As a result, skeletons achieve a natural separation of paral-
lelization and functional concerns.

Traditionally skeletons have been classified into two groups: task and data
parallelism. For us, task parallel skeletons are those skeleton where each data
input triggers only one parallel activity. Parallelism is achieved by processing
several inputs simultaneously on the same skeleton. On the other hand data
parallel skeletons, beside processing several inputs simultaneously, achieve par-
allelism by executing several parallel activies for a single data input.

The task and data parallelism classification was once relevant since the skele-
ton nesting in some frameworks was limited on the type of skeletons. For exam-
ple, the two tier model on P3L and Skil (see 2.2.10 and 2.2.16). On recent frame-
works the relevance is less evident because arbitrary nestings are supported.

As a skeleton framework we developed Calcium, which is greatly inspired by
Lithium and its successor Muskel (see 2.2.8). Calcium is written in Java [Micc]
and is provided as a library. To achieve distributed computation Calcium uses
ProActive. ProActive is a Grid middleware [CDdCL06] providing, among others,
a deployment framework [BCM+02], and a programming model based on active
objects with transparent first class futures [Car93].

Hypotheses

We have adopted some hypotheses on the programming model with respect to
other frameworks. Their goal is to simplify the programming model, avoid pro-
gramming errors, and increase the parallelism degree/efficiency. We describe
them here as to clearly outline the context of skeleton programming in Calcium.

Single input/output Skeletons can only receive/produce scalar inputs/out-
puts. Therefore the proposed programming model does not provide skele-
ton such as reduce or split. Instead, these parallels behaviors are embed-
ded directly into higher level skeleton such as map, d&c, and fork. This
hypothesis is relevant to simplify skeleton nesting and avoid programming
errors. At the same time this hypothesis is not limiting, since inputs and
outputs are objects which can encapsulate multiple data.

Passive Skeletons Each skeleton output is directly related to a previously re-
ceived input. Therefore heartbeat like skeletons, where a skeleton can pro-
duce outputs without receiving an input, are not allowed. This hypothesis
is relevant to simplify termination detection of an application.

Stateless Skeletons Skeletons are stateless and therefore their sequential blocks
(muscles) are also stateless. Thus, the result produced for a parameter Pi

passed to a skeleton is independent of previous parameter that have passed
through the same skeleton Pj (∀j < i). In other words a parameter Pi can-
not communicate with the following parameters traversing a skeleton Pk
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(∀k > j). This hypothesis is relevant to improve the parallelism degree and
efficiency.

3.1 An Algorithmic Skeleton Language

In Calcium, skeletons are provided as a Java library. The library can nest task
and data parallel skeleton in the following way:

4 ::= seq(fe) | farm(4) | pipe(41,42) | while(fb,4) |
if(fb,4true,4false) | for(i,4) | map(fd,4, fc) |
fork(fd, {4i}, fc) | d&c(fd, fb,4, fc)

Each skeleton represents a different pattern of parallel computation. All
the communication details are implicit for each pattern, hidden away from the
programmer.

3.1.1 Muscle (Sequential) Blocks

The nested skeleton pattern (4) relies on sequential blocks of the application.
These blocks provide the business logic and transform a general skeleton pattern
into a specific application. We denominate these blocks muscles, as they provide
the real (non-parallel) functionality of the application.

In Calcium, muscles come in four flavors:

Execution fe : P → R

Division fd : P → {R}
Conquer fc : {P} → R

Condition fb : P → boolean

Where P is the parameter type, R the result type, and {X} a list of parame-
ters or results of type X.

For the skeleton language, muscles are black boxes invoked during the com-
putation of the skeleton program. Multiple muscles may be executed either se-
quentially or in parallel with respect to each other, in accordance with the de-
fined 4. The result of a muscle is passed as a parameter to other muscle(s).
When no further muscles need to be executed, the final result is delivered to the
user.

Since algorithmic skeleton originated from functional programming, it is not
surprising that muscles have been traditionally provided as functions. Func-
tions are naturally stateless, unless they modify global variables. Stateless
functions are very convenient for distributed computing as a higher degree of
parallelism can be achieved and because the scheduling complexity decreases.
In Calcium muscles are represented as objects which provide a function. Nev-
ertheless, in accordance with the hypotheses defined at the beginning of this
chapter, muscle objects cannot have mutable global variables.
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3.1.2 The Skeleton Patterns

The skeleton patterns supported in Calcium are described as follows.

SEQ terminates recursive nesting of other skeletons, and as result does not
really exploit parallelism. The seq skeleton wraps execution muscle which
are then nested into the skeleton program as terminal leafs of the skeleton
nesting tree.

FARM represents task replication and is also known as master-slave. Skele-
tons nested inside a farm are meant to be replicated for task parallelism.
Following the Lithium approach, Calcium’s reduction behavior is equiva-
lent to specifying a farm skeleton to each sub-skeleton. In other words, the
farm skeleton is automatically applied to all skeleton nestings. The redun-
dant farm skeleton is provided as part of the library, since the reduction
rules may change in future versions of the model.

PIPE is one of the most classical skeletons in the literature. The pipe skele-
ton represents staged computations, where parallelism can be achieved by
computing different stages simultaneously on different inputs. The num-
ber of stages provided by pipe skeletons can be variable or fixed, but it is
worth noting that fixed staged pipes can be nested inside other fixed staged
pipes to create a pipe with any number of stages.

IF provides conditional branching. Two sub-skeletons are provided as parame-
ters, along with a condition muscle. When an input arrives to the if skele-
ton, either one or the other sub-skeleton is executed, depending on the
result of the condition muscle.

FOR as in standard programming languages the for skeleton represents fixed
numbered iterations. The for skeleton receives a sub-skeleton and an inte-
ger as parameters. The semantics are simple, the sub-skeleton will be exe-
cuted the number of times specified by the integer parameter. The result of
one invocation of a sub-skeleton is passed as parameter to the following in-
vocation of the sub-skeleton. Eventually, the result of the last sub-skeleton
is provided as the for skeleton’s result.

WHILE skeleton is analogous to the for skeleton, but instead of iterating a
fixed number of times, a condition muscle decides wether the iteration
must continue or stop. On each iteration, the result of the previous exe-
cution of the sub-skeleton is passed as input to the same sub-skeleton.

MAP is the most classical skeleton representing data parallelism. Its origin is
closely related with lists and functional languages. The semantics behind
map specify that a function (or sub-skeleton) can be applied simultane-
ously to all the elements of a list to achieve parallelism. The concept of
data parallelism is reflected in the sense that a single data element can be
splitted into multiple data, then the sub-skeleton is executed on each data
element, and finally the results are united again into a single result. The
map skeleton thus represents single instruction multiple data parallelism
(SIMD).
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FORK is not a classical skeleton, but introduced in this thesis. The fork skele-
ton behaves like map. The difference is that instead of applying the same
function (sub-skeleton) to all elements of a list, a different function (sub-
skeleton) is applied to each list element. Thus fork represent multiple in-
struction multiple data parallelism (MIMD).

D&C is another classical skeleton in the literature. To put it simply, d&c is
a generalization of the map skeleton, where maps are recursively applied
when a condition is met. The semantics of d&c are as follows. When an
input arrives, a condition muscle is invoked on the input. Depending on
the result two things can happen. Either the parameter is passed onto the
sub-skeleton, or the input is divided with the custom divide muscle into a
list of data. Then, for each list element the same process is applied recur-
sively. When no further recursions are performed, the results obtained at
each level are merged using a conquer muscle. Eventually, the merging of
merged results yields one result which corresponds to the final result of the
d&c skeleton. Thus, in our case, the depth of the recursion and width of the
division are not fixed, but will depend on the muscles and data provided by
the user.

Readers familiar with other skeleton frameworks may be surprised by the
absence of some well known skeleton patterns, in particular split and reduce.
Nevertheless, the parallelism provided by these patterns is indeed present, em-
bedded directly into data parallel skeletons (map, fork, d&c). We have chosen
this approach to comply with the single output/input hypothesis. Furthermore,
by embedding these patterns into other skeletons we guarantee that whenever
a split is executed, the symmetric reduced is performed later on; thus reducing
programming errors.

Another family of skeletons which readers may miss are those which operate
over arrays, such as scan and stencil. These skeleton are relevant in frameworks
where arrays are used extensively. The relevance of arrays is less evident on
object oriented languages, and as such we believe these kind of skeletons are
not as crucial as is in other contexts.

3.1.3 Skeleton Instructions

There are many ways in which a skeleton pattern (4) can be transformed into
a parallel or distributed application. Some frameworks derive a process net-
work (e.g. Eden, QUAFF), others use techniques such as macro data flow (e.g.
Lithium, Muskel). We now describe the methodology used in Calcium.

Notation. The semantics in this section distinguish three types of reduc-
tions. The “⇒” arrow used for global reductions where the context of the execu-
tion (e.g. other parallel activities) is explicitly expressed; the “→” arrow used for
local reductions where the context of the program has been omitted for clarity;
and the “�” arrow used for transformations between languages (i.e. compiler).
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3.1.3.1 The Instruction Language

For almost every skeleton there is an internal representation called an instruc-
tion. Instructions are in charge of executing parallel activities, consolidating
results, and dynamically deciding the program’s execution flow. The full list of
instructions is as follows:

I ::= seqI(f) | whileI(fb, S) | ifI(fb, Strue, Sfalse) | forI(i, S) |
mapI(fd, S, fc) | forkI(fd, {S}, fc) | d&cI(fd, fb, S, fc)|
id(f) | choice(p, Strue, Sfalse) | divI({S}, fc) | conqI(fc)

Besides the homonymous instructions four utility instructions are presented.
The id which is the identity instruction, the choice which operates in combination
with if , and two instructions which harness data parallelism divI , conqI . The divI

instruction generates parallelism, while the conqI instruction merges the results
once they are available.

The structure of the homonymous instructions is very similar to that of the
corresponding skeletons, with the difference that instead of referencing sub-
skeletons (4) a stack is passed as parameter (S). A stack is defined as a sequence
(·) of instructions:

STACK-DEF

S ::= I1 · . . . · In

Several stacks can exist in parallel (‖), and we define this as:

CONTEX-DEF

Ω ::= p · S | S(p) | r | Ω‖Ω
Where p is a parameter, p ·S is the stack S having received p, S(p) is the stack

S processing the parameter p, and r is the result. There are no fundamental
differences between p and r, but for clarity we will use r to emphasize results.

Parallel activities are commutative, as the order in which stacks can be com-
puted in parallel is irrelevant:

COMMUTATIVITY

Ω‖Ω′ ≡ Ω′‖Ω
When a parameter is delivered it is processed by the stack as follows:

STACK-NEXT

p · S‖Ω ⇒ S(p)‖Ω
Its application to the stack is equivalent as giving the same parameter to the

first (or top most) instruction of the stack:

STACK-APP
S = I1 · . . . · In

S(p) = I1(p) · . . . · In

Finally, the computation of an instruction can yield a result and a new stack
of instructions. If this is the case, then the old stack (S) is appended to the new
stack (S ′), and the intermediate result (p′) is passed as parameter.
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INSTRUCTION-EVAL
I(p)→ S ′(p′)

I(p) · S‖Ω ⇒ (S ′ · S)(p′)‖Ω

3.1.3.2 From Skeletons to Instructions

The problem remains on how to transform the skeleton language constructs
into their corresponding instructions. This is straightforward with the follow-
ing transformation semantics, where 4 � S denotes the transformation of the
program 4 into the stack of instructions S:

SEQ-TRANS

seq(f) � seqI(f)

FARM-TRANS
4� S

farm(4) � S

PIPE-TRANS
41 � S1 42 � S2

pipe(41,42) � S1 · S2

WHILE-TRANS
4� S

while(fb,4) � whileI(fb, S)

IF-TRANS
4true � Strue 4false � Sfalse

if(fb,4true,4false) � ifI(fb, Strue, Sfalse)

FOR-TRANS
4� S

for(n,4) � forI(n, S)

MAP-TRANS
4� S

map(fd,4, fc) � mapI(fd, S, fc)

FORK-TRANS
∀4i ∈ {4} 4i � Si

fork(fd, {4}, fc) � forkI(fd, {S}, fc)

D&C-TRANS
4� S

d&c(fb, fd,4, fc) � d&cI(fb, fd, S, fc)

These transformation semantics are very straightforward, except for the farm
and pipe skeletons which do not require an instruction. The farm and pipe skele-
tons are directly transformed into their stack representations because their be-
haviors are known statically, as they do not depend on the results of muscle
invocations.

On the other hand, the rest of the skeletons can invoke muscles (except for)
and as such their behavior is only known at runtime. For example, consider the
if skeleton which invokes a muscle fb to decide between the execution of 4true

and4false. Since fb is a black box to the skeleton language, its result can only be
known at runtime, and therefore during the transformation process we cannot
know which sub-skeleton will be executed. Thus if requires an instruction to
dynamically evaluate the flow of the program.

It is worth noticing that, as farm and pipe, the for skeleton can also be ex-
panded statically without an instruction. Nevertheless, with a memory efficient
implementation in mind (for large values of n), we prefer to have an instruction
to unfold the for skeleton one step at a time.

A summary of the mappings between skeletons and instructions is shown in
Table 3.1.
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Skeleton Instruction
seq(f) seqI(f)

farm(4) —
pipe(41,42) —

if(fb,4true,4false)
ifI(fb, Strue, Sfalse)

choice(p, Strue, Sfalse)
for(n,4) forI(n, S)

while(fb,4) whileI(fb, S)
map(fd,4, fc) mapI(fd, S, fc)

fork(fd, {4}, fc) forkI(fd, {S}, fc)
d&c(fb, fd,4, fc) d&cI(fb, fd, S, fc)

— id(f)
— divI({S}, fc)
— conqI(fc)

Table 3.1: Theory: From Skeletons to Instructions

3.1.4 Instructions Reduction Rules

This section begins by introducing semantics which allow non-atomic execution
of the seqI instruction. Then, seqI is used as a basis to construct simpler reduc-
tion semantics for the rest of the instructions. Thus also rendering the other
instructions non-atomic. An alternative approach, and much closer to the imple-
mentation, would have been to define non-atomic semantics for each instruction,
but the result would have been a higher complexity of the semantics without an
increase of expressiveness.

Finally this section presents semantics which express task and data paral-
lelism. Task parallelism is straightforward given the stateless hypothesis de-
fined in Section 3, while data parallelism is harnessed through the divI and
conqI instructions.

3.1.4.1 Non-atomic Seq Instruction

Non-atomicity is important to allow concurrent executions. For simplicity, the
reduction rules presented in Figure 3.1 base all concurrent executions on the
non-atomicity of seqI as it is used to wrap the evaluation of muscles.

Therefore, for non-atomic execution of seqI we define the following rule:

NON-ATOMIC-SEQ-INST

f(p)→ f ′(p′)

seqI(f)(p)→ seqI(f
′)(p′)

RETURN-VALUE-SEQ-INST

f(p)→ r

seqI(f)(p)→ r

The non-atomic-seq-inst rule states that if muscles are non-atomic (f(p)→
f ′(p′)) the seqI instruction is also non-atomic. In other words, if a function f(p)
can be evaluated to an intermediate state f ′(p′), then the seqI(f)(p) instruction
can also be evaluated to an intermediate state seqI(f

′)(p′).
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The return-value-seq-inst rule states that once a result is available it is
delivered.

3.1.4.2 Reduction Rules

IF-INST

ifI(fb, Strue, Sfalse)(p)→ seqI(fb)(p) · choice(p, Strue, Sfalse)
ID-INST

id(p)→ p

CHOICE-INST-TRUE

choiceI(p, Strue, Sfalse)(true)→ Strue(p)
CHOICE-INST-FALSE

choiceI(p, Strue, Sfalse)(false)→ Sfalse(p)

WHILE-INST

whileI(fb, S)(p)→ ifI(fb, S · whileI(fb, S), id)(p)

FOR-INST-N
n > 0

forI(n, S)(p)→ S(p) · forI(n− 1, S)

FOR-INST-0
forI(0, S)(p)→ p

MAP-INST

mapI(fd, S, fc)(p)→
lenght k︷ ︸︸ ︷

seqI(fd)(p) ·divI(

k times︷ ︸︸ ︷
[S, . . . , S], fc)

FORK-INST

forkI(fd, {S}, fc)(p)→ seqI(fd)(p) · divI({S}, fc)

D&C-INST
I = d&cI(fb, fd, S, fc)

I(p)→ ifI(fb, seqI(fd) · divI([I, . . . , I], fc), S)(p)

Figure 3.1: Instructions Reduction Semantics

The rest of the reduction rules are defined in Figure 3.1. They are described
as follows:

• The if-inst reduces ifI to a sequence of seqI ·choice, where the seqI executes
the boolean condition and the choice stores a copy of p.

• The id-inst rule is a convenient tool which delivers the given paremeter.

• The choice-inst-true, and choice-inst-false rules evaluate to either Strue
or Sfalse depending on the value of their parameter. In each cases the stored
p is passed as parameter to Strue or Sfalse.

• The while-inst rule reduces the whileI into an ifI which decides (using fb)
between the iterative execution of S or the end of the iteration (id).

• The for-inst-n rule states that for n > 0 the forI instruction is reduced to
a sequence of S and itself. On the other hand, the for-inst-0 rule ends the
forI iteration when n = 0 and reduces the instruction to p.
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• The map-inst rule states that the mapI instruction is reduced to a se-
quence of seqI and divI . The seqI will perform the division of p (using fd)
into k parameters. Then, divI will take the splitted parameters and spread
them over k copies of S.

• The fork-inst rule is analogous to the map-inst rule but instead of copying
S, the given list of {S} is used.

• The d&c-inst rule reduces the d&cI into an ifI . The ifI will choose using
fb to either divide the parameter p and, for each element, evaluate a recur-
sive execution of the original d&cI instruction (I); or directly reduce to S
(terminal case of the recursion).

3.1.4.3 Task and Data Parallelism Rules

If a skeleton receives multiple parameters, and the instructions of a stack are
stateless, then they can be parallelized as follows:

TASK-‖
∀Ii ∈ S stateless(Ii)

S(p1, . . . , pm)→ S(p1)‖ . . . ‖ · S(pm)

This reduction is what we call task parallelism. The stack S is copied m
times, and each parameter is applied to one of the copies.

On the other hand, data parallelism is expressed with the divI and conqI

instructions. The divI instruction is reduced as follows:

DATA-‖
{S} = {S1, .., Sn}

divI({S}, fc)([p1, ..., pn])→ conqI(fc)(S1(p1)‖ . . . ‖Sn(pn))

The list of parameters ([p1, ..., pn]) is spread over the list of stacks ({S}) and
applied as Si(pi). Data parallelism is achieved since each stack application can
be computed in parallel with the others.

The progress of the parallel activities is reflected in the conq-inst-progress
rule. When the evaluation of the parallel activities is concluded, they are passed
as parameters to the conqI instruction and reduced by the conq-inst-reduce rule:

CONQ-INST-PROGRESS

Ω→ Ω′

conqI(fc)(Ω)→ conqI(fc)(Ω
′)

CONQ-INST-REDUCE

conqI(fc)(r1‖ . . . ‖rn)→ seq(fc)([r1, ..., rn])

3.1.5 Summary

This section has provided formal semantics which express the parallel evalu-
ation of a skeleton program. The skeleton programs was transformed into an
instruction level representation where reductions semantics where presented
capable of exploiting the parallelism offered by the different skeleton frame-
works.
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The following section takes a more practical approach by describing an im-
plementation of the theoretical concepts developed in this section.

3.2 A Java Implementation

3.2.1 The Skeleton Library

The language constructs are provided to programmers as a set of classes. Each
skeleton has a corresponding class which is part of Calcium’s public API. Unlike
other Java skeleton frameworks (e.g. JaSkel), skeletons are not specialized by
inheritance but using parametric constructors. Skeleton classes have no embed-
ded distributed behavior. Their sole objective is to allow type safe composition of
the skeleton pattern by holding references to sub-skeletons and muscle objects.
Skeleton instances are immutable and cannot be modified by the programmer
once instantiated. In Calcium, programmers never need to know or worry about
the implementation of a skeleton class.

There are several advantages of this approach. First, that muscles and skele-
tons can be shared. For example, it is possible to have something like

4 = pipe(pipe(seq(f1), seq(f2)), seq(f1)))

where the same instance of f1 can be present inside two skeletons. The second
is that parallel/distribution semantics are added later on, and therefore can be
customized without having to change the skeleton’s signature or generate new
code. This is akin with Eden’s implementation skeletons, P3L’s templates, or
SKiPPER’s operational skeletons.

Listing 3.1 shows an example for the map skeleton class. The first thing to no-
tice is that Map implements the Skeleton interface and is generic with respect
to P and R (the input and ouput types of the skeleton). The global variables
are two muscle objects and a skeleton object. The muscle objects correspond
to Divide and Conquer used for the division and reduction respectively. The
skeleton object corresponds to the nested skeleton which is executed after per-
forming the division.

As shown in the listing, multiple constructors can be used to instantiate
skeletons. Some may provide default parameters, or like in the Map case, they
can simplify the burden of using Seq skeleton to terminate the nesting recur-
sion. The objective of the constructors is to instantiate the global variables, and
type check the parameters1. Finally, an accept(...) method is provided to
navigate the skeleton nesting with the visitor pattern [GHJV95] and generate
the corresponding instruction stack.

3.2.2 Muscles

Muscles are the pieces of code which provide the functional (business) behavior
to a skeleton (see 3.1.1). In Calcium muscles are identified by Java interfaces.

1Type safety is discussed in detail in Chapter 5.
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public class Map<P, R > implements Skeleton<P, R> {
2

Divide<P, ?> div;
4 Skeleton<?, ?> subskelton;

Conquer<?, R> conq;
6

public <X,Y> Map(Divide<P,X> div, Skeleton<X,Y> nested,
Conquer<Y,R> conq) {

8 this.div = div;
this.subskelton = nested;

10 this.conq = conq;
}

12
public <X,Y> Map(Divide<P, X> div, Execute<X, Y> muscle,

Conquer<Y, R> conq) {
14 this(div, new Seq<X,Y>(muscle), conq);

}
16

void accept(SkeletonVisitor visitor) {
18 visitor.visit(this);

}
20 }

Listing 3.1: The Map skeleton in Calcium

public interface Condition<P> extends Muscle<P, Boolean> {
2 public boolean condition(P param, SkeletonSystem system)

throws Exception;
4 }

6 public interface Conquer<Y, R> extends Muscle<Y[], R> {
public R conquer(Y[] param, SkeletonSystem system)

8 throws Exception;
}

10
public interface Divide<P, X> extends Muscle<P, X[]> {

12 public X[] divide(P param, SkeletonSystem system)
throws Exception;

14 }

16 public interface Execute<P, R> extends Muscle<P, R> {
public R execute(P param, SkeletonSystem system)

18 throws Exception;
}

Listing 3.2: Muscles in Calcium
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There are four interfaces, each corresponding to a muscle flavor, as depicted on
Listing 3.2.

All of the interfaces inherit from the general abstract interface Muscle. Each
interface requires the programmer to implement a specific method. The method
uses generics to correctly type its input and output. Therefore, no casts are
imposed by the skeleton language inside the muscle’s method (see Chapter 5).

As can be seen in the listing, muscles can throw Exceptions. The exception
treatment is very basic. If an exception is raised by any muscle of the skeleton
program, the rest of the program’s computation (running in parallel) is stopped,
and the exception is shipped back to the user.

Muscles receive two parameters. The first is the default parameter of the
method, which will correspond to the result of some other muscle previously
computed. The second parameter is an abstraction to local dependent informa-
tion. For example, the current working directory. This second parameter is
relevant for the content of Chapter 6, but may be omitted in some examples
throughout this document for the sake of simplicity.

For an example of a muscle implementation refer to Section 3.4.

3.2.3 Instruction Stacks

Instructions are lower level representations that exploit the parallel behavior of
each skeleton pattern (see 3.1.3). Instructions are never seen by programmers.
Table 3.2 provides a mapping of the Skeleton API with the instructions. The
table is analogous to Table 3.1 but at the implementation level. It is worth
noticing that the instructions id and choice are not present as their semantics
are directly embedded into the implementations of other instructions.

Skeleton Instruction
Seq SeqInst

Farm —

Pipe —

If IfInst

For ForInst

While WhileInst

Map MapInst

DaC DacInst

Fork ForkInst

— DivideInst

— ConquerInst

Table 3.2: Practice: From Skeletons to Instructions
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As noted in section 3.1.3.2, Farm and Pipe skeletons do not require as-
sociated instructions. On the other hand, there are some instructions which
do not have an associated skeleton. This is the case with ConquerInst and
DivideInst. The parallel behavior provided by these instructions is accessible
through the data parallel skeletons (Map, DaC, Fork).

Using the visitor pattern, the skeleton nesting tree is transformed into an
instruction stack. Interpreters, available on the computation nodes, can con-
sume instructions from the top of the stack and perhaps generate new stacks in
accordance with the formal semantics introduced section 3.1.3.

Figure 3.2 shows a graphical representation of the formal semantics’ imple-
mentation. With optimization and simplification in mind, the implemented se-
mantics are somewhat different from the formal ones. The first difference is
that the seqI instruction wrapper is not used as extensively because invocations
of muscles f are made directly. The second is that the ifI instruction is not used
by whileI nor d&cI since its behavior is also directly implemented by them. A
side effect of this is that id is no longer required. Fortunately, the differences be-
tween the theory and implementation are not a concern, as the overall outcome
of the application remains the same.

At any given point, an interpreter will have a single instruction stack. To
perform the computation, the interpreter will pop the uppermost instruction
from the stack and execute the instruction with the semantics shown in Figure
3.2. The interpretation can yield a modification of the stack (e.g. ifI) and/or the
modification of P (e.g. seqI). When there are no further instructions in the stack
the final state of the parameter P (also noted as R) is delivered as the result of
the execution.

3.2.4 Tasks

Internally in Calcium, a task abstraction is used to distribute and keep track of
a program’s execution. As shown in Figure 3.4(a), a task is mainly composed of
an instruction stack and references to sub-tasks. Nevertheless, tasks can also
act as placeholders for information such as performance metrics, exceptions, file
dependencies, etc.

Sub-tasks are created when data parallelism is encountered. A sub-task can
also spawn its own sub-tasks, and thus a task tree as the one shown in Figure
3.4(b) can be generated. The root of the tree corresponds to a task inputted into
the framework by the user, while the rest of the nodes represent dynamically
generated tasks. In the task tree, leaf nodes are tasks ready for execution or
being processed, while the inner nodes represent tasks that are waiting for their
sub-tasks to finish.

When a task has no unfinished sub-tasks and the instruction stack is empty,
then the task is finished. When all brother tasks are finished they are returned
to their parent task for reduction. The parent may then continue with the ex-
ecution of its own instruction tasks and perhaps generate new sub-tasks later
on.

As shown in Figure 3.4, a task can be in either ready, processing, waiting or
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Figure 3.2: Stack Interpretation Semantics
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(a) Task Definition (b) Task Tree

Figure 3.3: Task Abstraction

Figure 3.4: Task State Diagram

finished state. A task in the ready state is ready for execution, but has not yet
been assigned to a resource. A task in the processing state has been assigned to
a resource for computation. A task in the waiting state is waiting for some event,
e.g. the completion of sub-tasks. The finish state is reached when a task has no
more instructions to compute (which implies that it has no sub-tasks). If it is
a finished sub-task then it is delivered back to the waiting parent task. On the
other hand, when a root task reaches the finished state, its result is delivered to
the user.

3.3 Execution Environments

Calcium is designed to support the execution of a skeleton program with differ-
ent environments, each targetted for a specific infrastructure. Currently three
environments are supported: Multithread, ProActive, and ProActive Scheduler.
A user can run her algorithmic skeleton application on a different environment
without modifying the skeleton program.

The motivation for different execution environments lies in the fact that each
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type of infrastructures has different requirements and advantages. Tailored en-
vironments are capable of addressing the specific requirements and advantages
of each type of infrastructure.

The three type of infrastructures we consider are the following ones.

SMP stands for Symmetric Multi-Processing, which is a multiprocessor com-
puter architecture where two or more uniform processors can connect to a
single shared memory. While other architectures exist for shared memory
processors, we will refer to all shared memory architectures as SMP. In the
past, SMP like infrastructures with many processing elements were the
privilege of custom made super computers. Now a days, with the advent
of multi-core programming, it is natural to have personal computers with
2 or 4 cores; with chips soon featuring from tens to hundreds of cores (eg:
Nvida GeForce 200, 10 cores; Intel Polaris, 80 cores; Plurality Hal, 16-256
cores; etc) [Wik]. Furthermore, we can envision many-core personal com-
puters which will soon have not hundreds, but possibly thousands of cores
on a single chip [Bor07]. In other words, SMP has finally arrived for the
masses, which justifies having a specific execution environment for SMP
like infrastructures.

Clusters are multi-computer architectures which are interconnected through a
network for parallel computations. Cluster architectures have, for a time
now, become the dominant architectures on the Top 500 ranking [top] by
displacing custom made super computers with their lower costs. Of the top
500 ranking machines in 2008, 80% correspond to Clusters, and 98% of the
machines have more than 1024 processors.

Grids are composed of interconnected cluster sites and loosely-couple nodes to
act like a virtual super computer. The advantages of Grids are that they
can be formed and dissolved as needed, and can provide a huge amount
of resources. On the other hand, their complexity makes them difficult to
exploit, and are mostly suited for loosly coupled applications. A few ex-
amples of existing Grid infrastructures are Grid5000 (France), NGS (UK),
INFN Grid (Italy), TeraGrid (US), NorduGrid (International), and OurGrid
(International).

Each one of these types of infrastructures is characterized by a set of prop-
erties. These properties correspond to requirements that the infrastructure en-
forces on applications. In other words, the infrastructure supposes that applica-
tions are capable of handling these requirements.

Scalability Take advantage of new resources when the number of processing
elements increases. The exact type of what corresponds to a processing
element is different for each infrastructure but can be, for example, some-
thing like: cores for SMP, nodes for Clusters, and sites for Grids. As the
number of processing elements increases for an infrastructure, the appli-
cation must cope and take advantage of the increased number of resources,
up to the applications maximum parallelism degree (Amdahl’s Law).
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Fault Tolerance Support system faults. An application must be able to cope
and continue its execution when a fault of the infrastructure takes place.
What exactly constitutes a fault differs for each infrastructure, but exam-
ples are: a processing element which crashes while computing part of the
application, or a node which may become disconnected from the network.

Deployment The capability of acquiring the processing elements; and then per-
forming environment setup before the actual computation takes place, such
as: code shipping and logic instantiation (objects, components, etc).

Distribution The capability of handling processing elements which are remote
with respect to each other. In other words, processing elements do not
share memory and must communicate by some other means such as mes-
sage passing, channels, etc. The application must therefore handle issues
such as deadlocks or latencies which arise from a remote communication
model.

Heterogeneity Support of non-uniform resources. The application must cope
with issues such as processing elements with different architecture, nodes
having different operating systems, different libraries or protocols.

Multiple Administrative Domains The capability of coordinating divers re-
source policies. Applications must be aware that parts of the infrastructure
may be maintained and operated by different organizations, each with its
own policies. For example, some resources may be available for students
only during the night.

Dynamicity The capability of adapting to infrastructure changes at runtime.
Applications must cope with runtime evolutions of the infrastructure. For
example, resource may be added or removed from the infrastructure as the
application is being executed.

Characteristics SMP Cluster Grid

Scalability

Fault Tolerance →
Deployment

Distribution

Heterogeneity

Mult. Adm. Domain

Dynamicity

Table 3.3: Infrastructure Characteristics

Table 3.3 provides a summary of which requirements are made by each in-
frastructure: SMP, Cluster, and Grids. We can see that SMP is by far the most
relaxed infrastructure and as such, an application running on SMP does not
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have to worry about deployment, distribution, heterogeneity, multiple admin-
istrative domains, and dynamicity. On the other hand, an application running
on an SMP infrastructure must be capable of handling scalability and fault tol-
erance as the number of processing elements becomes very large. In contrast,
Cluster infrastructures have to additionally consider deployment and distribu-
tion. Finally, Grids represent the most restrictive scenario where heterogeneity,
dynamicity and multiple administrative domains are added to the burden of the
application.

We believe that programmers should not have to change their application’s
code when running it on a differnet target infrastructure. The simplest, yet
inefficient solution is to program on the most restrictive scenario, where the
application has to handle everything. The drawback with this approach is that
performance opportunities offered by each infrastructure are not considered. For
example, fast communication via shared memory in SMP vs slow network com-
munication.

The standard way to achieve infrastructure abstraction is by providing a mid-
dleware layer between the application and the infrastructure. The middleware
is thus in charge of providing a uniform access to the application, and fullfilling
the requirements of each infrastructure. Environments in Calcium are aligned
with this idea. Each environments in Calcium represents an interface of the
skeleton framework with a middleware layer. The environment specifies how
the middleware is plugged into the skeleton framework.

3.3.1 General Principle

From a general perspective, parallelism or distribution of an application in Calicum
is a producer/consumer problem, where the shared buffer is a task pool and the
produced/consumed data are tasks. Nevertheless, since tasks have states, it is
more precise to identify three task pools: ready, finished and waiting; as depicted
in Figure 3.5.

A ready pool stores ready tasks. Root tasks are entered into the ready pool
by users, who provide the initial parameter and the skeleton program.

Interpreters on the computation nodes consume tasks from the ready pool
and compute tasks according to their skeleton instruction stack. When the inter-
preters cannot compute a task any further the task is either in the finished or in
the waiting state. If the task is in the finished state it is delivered to the finished
pool. If the task is in the waiting state, then it has generated new sub-tasks
(which represent data parallelism map, fork, d&c skeletons). The sub-tasks are
delivered to the ready pool while the parent task is stored in the waiting pool.

The execution of a skeleton program is thus reduced to the problem of schedul-
ing tasks in accordance with the producer/consumer problem.

3.3.2 Multithreaded Environment

The simplest way to compute an application with Calicum is using threads. Both
threads and processes are the standard way of exploiting SMP like infrastruc-
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Figure 3.5: Calcium Framework Task Flow

tures. In particular threads are lighter and oriented towards shared memory
programming, while processes are more expensive and use inter-process com-
munication. We have chosen threads for the previous reasons, and in particular
because our Multithreaded Environment is not fault tolerant. Nevertheless, as
the number of processing elements in a machine increase, along with the proba-
bility of failure, processes may become a more attractive alternative.

To use this environment, the only parameter that must be specified is the
maximum number of threads.

Environment env = new MultiThreadedEnvironment(10);
Calcium calcium = new Calcium(env);

Internally, a thread pool will be used with up to the specified maximum
threads. The computation of the application is performed in parallel on the same
machine. Tasks are consumed from the task-pool and assigned to interpreters
running on different threads. This environment is ideal for preliminary tests
and debugging of an application before using a distributed environment.

3.3.3 ProAcitve Environment

For distributed computing an environment based on ProActive active objects
and deployment descriptors is available. The ProActive middleware provides
fault tolerance, distribution via remote objects, and deployment via descriptors;
thus making it ideal for Cluster infrastructures.

The ProActive Environment is instantiated by specifying a ProActive deploy-
ment descriptor. The deployment descriptor contains a description of the re-
sources which will be used during the computation, and a virtualnode-name
which corresponds to the entry point to the resource description.
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Figure 3.6: Calcium interfaced with ProActive Scheduler

String desc = "/home/user/descriptor.xml";
Environment env = new ProActiveEnv(desc, "virtualnode-name");
Calcium calcium = new Calcium(env);

Once the resources specified in the deployment descriptor are acquired, a re-
motely accessible active object is instantiated on each node. The active object
consists of an interpreter capable of computing instructions in a task. Inter-
preters are fed with tasks from the task-pool and their results are collected and
stored back into the task-pool.

This environment is suitable for a controlled environment, such as a Cluster
infrastructures, where resources can be described in advanced via deployment
descriptors.

3.3.4 ProActive Scheduler Environment

The scheduler environment targets the execution of skeleton applications on
more complex infrastructures. As the ProActive Environment, the ProActive
Scheduler Environment provides support for fault tolerance, distribution, and
deployment. But in addition also supports heterogeneity of resources, as they can
be composed of desktop machines, shared clusters, etc; dynamicity by dynami-
cally acquiring and releasing resources; and multiple administrative domains as
resource may be harnessed from different organizations.

The usage of the ProActive scheduler environment is straightforward. A
scheduler front-end host name is required with a user name and a passwd.

Environment env = new PAScheduler("host","user","passwd");
Calcium calcium = new Calcium(env);

The integration between Calcium and the ProActive scheduler is shown in
Figure 3.6. A Dispatcher module, links the task-pool with the scheduler inter-
face. To enter the scheduler, Calcium tasks are wrapped in a Job abstraction
which can be submitted to the scheduler. A Listener module is in charge of wait-
ing for finished Job events from the scheduler. When a Job is finished, the Lis-
tener modules retrieves the Job Result and returns the result to the Calcium
task-pool. A Job Result can contain finished tasks or new sub-tasks (which
where dynamically generated). Using the Calcium back-end API, the Listener
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module stores the finished and new sub-tasks into the Calcium task-pool. Re-
sources management, scheduling and fault tolerance are handled directly by the
scheduler.

3.4 Example: Find Primes

This section illustrates the programming of a simple application with Calcium.
The application corresponds to a naive search of prime numbers on a given in-
terval. We have chosen this problem as an example because of its algorithmic
simplicity.

Using algorithmic skeletons, a parallel application for searching prime num-
bers can be written in less than a 100 lines of code. This is achieved with the d&c
skeleton. An interval is split into smaller intervals until a threshold is reached.
Then the sub-intervals are searched (in parallel) with a naive approach, and the
resulting primes are then merged back and delivered to the user.

3.4.1 Data Exchange Types

We begin by identifying two data types which are passed between the different
muscles. These are named Interval and Primes.

The Interval class holds the minimum (min) and maximum (max) bounds
for the interval, and a variable which indicates the threshold of a given problem
(threshold). An initial Interval object triggers the computation, and new
Interval objects can be dynamically created during the evaluation of the d&c
skeleton.

class Interval implements Serializable {
public int min;
public int max;
public int threshold;

public Interval(int min, int max, int threshold) {
this.min = min;
this.max = max;
this.threshold = threshold;

}
}

The Prime class is holds the output of the computation: a list of prime num-
bers. It contains a list of integers with the prime numbers, a method to add
a single number, a method to add a list of primes, and a method to sort the
internal list.

class Primes implements Serializable {
public Vector<Integer> list;

public Primes() {
list = new Vector<Integer>();
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}

public add(int i){ list.add(new Integer(i)); }

public add(Primes p){ list.addAll(p.list); }

public void sort(){ Collections.sort(list); }
}

Both classes, Interval and Primes, must implement the Serializable
interface, as they will be transferred through the network to the computation
nodes. Failure to do so results on a compilation error.

3.4.2 Muscles

Now the programmer must write the functional (business) code of the applica-
tion. For d&c this requires four muscles: fb, fd, fe, fc, which conceptually corre-
spond to Condition, Divide, Execute and Conquer types.

Condition (fb)

The fb type muscles are identified with the Condition interface. In this exam-
ple, this class corresponds to IntervalDivideCondition which evaluates if
an Interval should be subdivided or not. Since we are using a naive approach
the decision is really simple, the function returns true if the size of the interval
is above a given threshold and false otherwise.
class IntervalDivideCondition implements Condition<Interval> {

public boolean condition(Interval param) {
return (param.max - param.min) > param.threshold;

}
}

Divide (fd)

Then there are fd muscles which are identified with the Divide interface. In
the example, the class IntervalDivide implements the Divide interface and
provides the functional code on how an Interval is divided.
class IntervalDivide implements Divide<Interval, Interval> {
public Interval[] divide(Interval p) {

int middle = p.min + ((p.max - p.min) / 2);

Interval top = new Interval(middle + 1, p.max, p.threshold);
Interval bottom = new Interval(p.min, middle, p.threshold);

return new Interval[]{bottom, top};
}

}
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In the naive algorithm we simply divide the interval into two parts: top and
bottom. We begin by finding the middle of the interval. Then we create two
knew intervals, the top which goes from middle+1 to the maximum, and the
bottom interval which goes from the minimum to the middle. Once we have
the new sub-intervals we put them into a list and return it as the result.

Execute (fe)

The fe muscles are identified with the Execute interface. In our example, the
actual prime searching is done in the SearchInterval class which implements
the Execute interface.

class SearchInterval implements Execute<Interval, Primes> {

public Primes execute(Interval p) {
Primes primes = new Primes();

for (int i = p.min; i <= p.max; i++) {
if (isPrime(i)) {

primes.add(i);
}

}

return primes;
}

boolean isPrime(int i){...}

Again, the search algorithm is very naive. For a given interval p, it iterates
over every element of the interval and checks wether the element is a prime or
not. If an element is found to be prime, then it is added to a list of primes. Once
the iteration is over the list of primes is returned.

Conquer (fc)

The final type of muscles corresponds to fc which are identified with the Conquer
interface. In our example, the MergePrimes class implements the Conquer in-
terface.

class MergePrimes implements Conquer<Primes, Primes> {
public Primes conquer(Primes[] p) {

Primes conquered = new Primes();

for (Primes primes : p) {
conquered.add(primes);

}

conquered.sort();
return conquered;

}
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1 Environment env = new MultiThreadedEnvironment(10);
Calcium calcium = new Calcium(env);

3
calcium.boot();

5
Stream<Interval, Primes> stream = calcium.newStream(findprimes);

7
Future<Primes> f1 = stream.input(new Interval(1, 6400, 300)));

9 Future<Primes> f2 = stream.input(new Interval(1, 100, 20)));
Future<Primes> f3 = stream.input(new Interval(1, 640, 64)));

11
//do something here ...

13
Primes result1 = f1.get();

15 Primes result2 = f2.get();
Primes result3 = f3.get();

17
calcium.shutdown();

Listing 3.3: Calcium Usage Example

}

The objective of MergePrimes is to aggregate several list of primes into a
single one. First a new container is created (conquered), then the aggregation
is performed by iterating over all the lists. Finally, the conquered list of primes
is sorted.

3.4.3 Skeleton Definition and Execution

Once all the muscles have been defined with the application’s specific code, pro-
grammers can proceed with the definition of the skeleton program (4).

Skeleton<Interval,Primes> findprimes =
new DaC<Interval, Primes>( new IntervalDivide(),

new IntervalDivideCondition(),
new SearchInterval(),
new MergePrimes());

In this example we only require a single d&c skeleton so there is no nesting.
If the application had required nesting, the nested skeleton would have been
passed instead of the SearchInterval muscle.

Then, a Calcium instance can be created and the application executed as
shown in Listing 3.3. Lines 1-2 instantiate an execution environment (see 3.3),
which in this case corresponds to a MultiThreadedEnvironment with a max-
imum of 10 threads. A booting and shutdown process are required, as depicted
on lines 4 and 18, to instantiate and clean resources.

Afterwards, line 6 instantiates a Stream associated with the defined skele-
ton (findprimes). A Stream provides a mechanism to compute, with the same



60 Chapter 3. Algorithmic Skeletons in Calcium

skeleton, multiple input parameters. A single Calcium instance can have multi-
ple Streams which share the resources offered by the same environment. Thus,
different skeleton programs can be computed simultaneously in the same re-
source environment. In this simple example we only use one Stream.

Lines 8-10 show the input of the parameters, which for this example corre-
spond to three different intervals: [1, 6400], [1, 100], [1, 640]. Each parameter has
a different threshold: 300, 20, 64 respectively. For each input a Future con-
tainer is created. The Future allows for asynchronism and data synchroniza-
tion. When the program requires the result of the skeleton computation, the
Future.get() method can be invoked to block the application until the result
is available, as shown on lines 14-16.

3.5 Conclusion

This chapter has presented the Algorithmic Skeleton programming model used
in Calcium. The first section of this chapter described the programming model
from a theoretical point of view, and then the second section showed how this
theoretical model is applied to a a Java based skeleton framework: Calcium.
The third section provided a description of how Calcium can be used with differ-
ent execution environments. Then, the forth section provided a full example of
skeleton programming using a naive example: searching for primes on a given
interval.

In the following chapters we will address three pragmatic features for algo-
rithmic skeleton programming which are unique to Calcium. First in Chapter
4 we will address performance tuning of algorithmic skeleton programs. Then
in Chapter 5 we will formally define a type system and then show how it can be
implemented on top of Java Generics. Finally, in Chapter 6 we will show how
transparent file access can be added to algorithmic skeletons.
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Skeletons are considered a high level programming paradigm because lower
level details are hidden from the programmer. Achieving high performance for
an application becomes the responsibility of the skeleton framework by perform-
ing optimizations on the skeleton structure [AD99, ADD04], and adapting to the
environment’s dynamicity [Dan05]. However, while these techniques are known
to improve performance, by themselves they are not sufficient. The functional
aspects of the application (i.e. the muscle), which are provided by the program-
mer, can be inefficient or generate performance degradations inside the frame-
work.

The main motivations of this chapter are to detect the performance degrada-
tions, provide programmers with an explanation, and suggesting how to solve
the performance bugs. The challenge arises because skeleton programming is a
high-level programming model. All the complex details of the parallelism and
distribution are hidden from programmers. Therefore, programmers are un-
aware of how their muscle code will affect the performance of their applications.
Inversely, low level information of the framework has no meaning for program-
mers to fine tune their muscle blocks.

In this chapter we contribute by: (i) providing performance metrics that ap-
ply, not only to master-slave, but also to other common skeleton patterns; (ii)
taking into consideration the nesting of task and data parallel skeletons as a
producer/consumer problem; (iii) introducing the concept of muscle workout; and
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Figure 4.1: Finding the tunable muscle code

(iv) introducing a blaming phase that relates performance inefficiency causes
with the actual muscle code.

4.1 Muscle Tuning of Algorithmic Skeletons

A birds eye view of the methodology presented in this chapter is depicted in
Figure 4.1. After the execution of an application, the performance metrics are
used to determine the causes of the performance inefficiency. Once the causes
are identified, a blaming process takes places by considering the workout of the
muscle code. The result of the blaming process yields the blamed muscle code.
Programmers can then analyze the blamed code to fine tune their applications.

4.1.1 Performance Diagnosis

Figure 4.2 shows a generic inference tree, which can be used to diagnose the
performance of data parallelism in algorithmic skeletons. The diagnosis uses
the metrics identified in section 4.1.2 to find the causes of performance bugs.
Causes can correspond to two types. External causes, such as the framework
deployment overhead, or framework overload; and tunable causes, which are
related with the muscle code of the skeleton program. Since external causes are
unrelated with the application’s code, in this chapter we focus on the tunable
causes.

4.1.2 Performance Metrics

Task-Pool Number of tasks in each state: Nprocessing, Nready, Nwaiting, and Nfinished.

Time Time spent by a task in each state: Tprocessing, Tready, Twaiting, and Tfinished.
For Tprocessing and Tready this represents the accumulated time spent by all
the task’s subtree family members in the state. For the Twaiting and Tfinished,
this represents only the time spent by the root task in the waiting state.
There is also the Twallclock and Tcomputing. The overhead time is defined as:
Toverhead = Tprocessing − Tcomputing, and represents mainly the cost of commu-
nication time between the task-pool and the interpreters.

Granularity Provides a reference of the task granularity achieved during the
execution of data parallel skeletons by monitoring the task tree: size, span,
and depth (spandepth = size), and the granularity =

Tcomputing

Toverhead
.
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Figure 4.2: Generic Cause Inference Tree for Data Parallelism

4.1.3 Muscle Workout

Let m0, ...,mk be an indexed representation of all the muscle code inside a skele-
ton program 4. We will say that workout is a function that, given a skeleton
program and a state parameter, after the application is executed, returns a list
of all the executed muscle codes with the computation time for each instruction:

workout(4, p) = [(mi, t0), ..., (mj, tn)]

The skeleton workout represents a trace of how the muscle codes were executed
for this skeleton program. The same muscle code can appear more than once in
the workout having different execution times.

4.1.4 Code Blaming

Since algorithmic skeletons abstract lower layers of the infrastructure from the
programming of the application, low level causes have no meaning to the pro-
grammer. Therefore, we must link the causes with something that the program-
mer can relate to, and this corresponds to the muscle codes which have been
implemented by the programmer. The process of relating lower level causes
with the responsible code is what we refer to as code blaming.

A blaming mechanism must link each inferred cause with the relevant mus-
cle codes. Thus, the blaming must consider: lower level causes (the result of the
performance diagnosis), the skeleton program, and the muscle’s workout.

Let us recall that for any skeleton program, its muscle codes must belong to
one of the following types: fe, fb, fd, fc. Additionally, the semantics of the muscle
code depend on the skeleton pattern where it is used. A simple implementation
of a blaming algorithm is the following:

(C3) Underused resources Blame the most invoked fb ∈ {d&q} and
fd ∈ {map, d&q, fork}. Suggest incrementing the times fb returns true, and
suggest that fd divides into more parts.
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Figure 4.3: N-Queens Skeleton Program

(C4) Coarse subtasks Blame the least invoked fb ∈ {d&q}. Suggest incre-
menting the times fb returns true.

(C5) Fine grain subtasks Blame the most invoked fb ∈ {d&q}. Suggest reduc-
ing the number of times fb returns true.

(C6) Burst Bottlenecks Blame the fd ∈ {map, d&q, fork} which generated the
most number of subtasks. Suggest modifying fd to perform less divisions
per invocation.

While more sophisticated blaming mechanisms can be introduced, as we shall
see in the NQueens test case, even this simple blaming mechanism can provide
valuable information to the programmer.

4.2 NQueens Test Case

The experiments were conducted using the sophia and orsay sites of Grid5000
[Gri], a french national Grid infrastructure. The machines used AMD Opteron
CPU at 2Ghz, and 1 GB RAM. The task-pool was located on the sophia site,
while the interpreters where located on the orsay site. The communication link
between sophia and orsay was of 1[Mbit

sec
] with 20[ms] latency.

As a test case, we implemented a solution of the NQueens counting prob-
lem: How many ways can n non attacking queens be placed on a chessboard
of nxn? Our implementation is a skeleton approach of the Takaken algorithm
[Tak], which takes advantage of symmetries to count the solutions. The skele-
ton program is shown in Figure 4.3, where two d&c are forked to be executed
simultaneously. The first d&c uses the backtrack1 algorithm which counts so-
lutions with 8 symmetries, while the other d&c uses the backtrack2 algorithm
that counts solutions with 1, 2, and 4 symmetries.

We have chosen the NQueens problem because the fine tuning of the appli-
cation is centered in one parameter, and therefore represents a comprehensible
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Figure 4.4: N-Queens Chessboard Filling

(a) Performance Metrics

(b) Workout Summary

Table 4.1: Performance Metrics & Workout Summary for n = 20, w ∈ {16, 17, 18}

test case. As shown in Figure 4.4, task division is achieved by specifying the
first n − w queens on the board, where w is the number of queens that have to
be backtracked. The problem is thus known to be O(nn), with exponential in-
crease of the number of tasks as w decreases. Therefore, the programmer of the
NQueens problem must tune a proper value for w.

Since the output of the blaming phase corresponds to the blamed muscle code,
it is up to the user to identify the parameters that change the behavior of the
muscle code. Therefore, the same approach can be used for applications that
require tuning of multiple parameters.

We tested a problem instances for n = 20, w ∈ {16, 17, 18}, nodes = 100.
Relevant metrics are shown in Table 4.1(a), and a summary of the workout is
shown in Table 4.1(b). From the performance point of view, several guides can
be obtained by simple inspection of the workout summary. For example, that
the method DivideCondition must remain computationally lite because it is
called the most number of times, and that further optimizations of SolveBT2
will provide the most performance gain.

The result of the blaming process is shown in Figure 4.1, where the fb muscle
code (DivideCondition) appears as the main tuning point of the application.
For w = 16 the results suggest that the granularity of the subtasks is to fine,
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//(n = 20, w = 16)
Performance inefficiency found.
Cause: Subtask are too fine grain, overhead is significant.
Blamed Code: public boolean nqueens.DivideCondition.

evalCondition(nqueens.Board)
Suggested Action: This method should return true less often.

//(n = 20, w = 17)
No inefficiency found.

//(n = 20, w = 18)
Performance inefficiency found.
Cause: Subtask are too coarse, significant time spent waiting

for last subtasks.
Blamed Code: public boolean nqueens.DivideCondition.

evalCondition(nqueens.Board)
Suggested Action: This method should return true more often.

Listing 4.1: Fine Tuning Output for n = 20, w ∈ {16, 17, 18}

while for w = 18 the granularity is to coarse. To better understand why this
takes place Figures 4.6(a), 4.6(b), 4.6(c) show the number of subtasks in ready
and processing state during the computation. The figures concur with the fine
tuning output. As we can see, the fine tuning of a skeleton program can have
a big impact on the performance of the application. In the case of the NQueens
test case, the performance improves up to 4 times when choosing w = 17 instead
of w ∈ {16, 18}.

4.3 Conclusions and Future Work

Dynamic performance tuning tools have been designed to aid developers in the
process of detecting and explaining performance bugs. An example of such tools
is POETRIES [CMSL04], which proposes taking advantage of the knowledge
about the structure of the application to develop a performance model. Her-
cules [LM06] is another tool that has also suggested the use of pattern based
performance knowledge to locate and explain performance bugs. Both POET-
RIES and Hercules have focused on the master-slave pattern, and promoted the
idea of extending their models to other common patterns. Nevertheless, to our
knowledge, none have yet considered performance tuning of nestable patterns
(i.e. skeletons), nor have provided a mechanism to relate the performance bugs
with the responsible muscle codes of the program.

For skeletons, in [BCGH04] performance modeling is done using process al-
gebra for improving scheduling decisions. Contrary to the previously mentioned
approaches, this approach is static and mainly aimed at improving scheduling
decisions, not at providing performance tuning.

In this chapter we have presented a mechanism to perform fine tuning of al-
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Figure 4.5: Number of ready and processing subtasks for n = 20, with 100 nodes.
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gorithmic skeletons’ muscle code. The approach extends previous performance
diagnosis techniques that take advantage on pattern knowledge by: taking into
consideration netsable skeleton patterns, and relating the performance ineffi-
ciency causes with the skeleton’s responsible muscle code. This is necessary be-
cause skeleton programming is a higher-level programming model, and as such,
low level causes of performance inefficiencies have no meaning to the program-
mer.

The proposed approach can be applied to fine tune applications that are com-
posed of nestable skeleton patterns. To program such applications we used the
Calcium skeleton framework. The relation of inefficiency causes with the re-
sponsible muscle code is found by taking advantage of the skeleton structure,
which implicitly informs the role of each muscle code.

We have validated the approach with a test case of the NQueens counting
problem. The experiments where conducted on Grid5000 with up to a 100 nodes.
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From a general point of view, typing ensures safety properties of program-
ming languages. For instance, in object-oriented languages, typing ensures that
each field or method access will reach an existing field or method: “message not
understood” errors will not occur. Nevertheless, type systems are limited, that
is why in most object-oriented languages, type-casts have been introduced. In
exceptional cases, type-casts allow programmers to precise the type of a known
object, but this step is error-prone. Therefore, it is important to reduce the num-
ber of necessary type-casts to increase the type safety of a program; this is one
of the purposes of Java generics or C++ templates, for example.

Algorithmic skeletons (skeletons for short) are a high level programming model
for parallel and distributed computing, introduced by Cole in [Col91]. Skeletons
take advantage of common programming patterns to hide the complexity of par-
allel and distributed applications. Starting from a basic set of patterns (skele-
tons), more complex patterns can be built by nesting the basic ones. All the
non-functional aspects regarding parallelization and distribution are implicitly
defined by the composed parallel structure. Once the structure has been defined,
programmers complete the program by providing the application’s sequential
blocks, called muscle functions.

Let us recall that muscle functions correspond to the sequential functions of
the program (see Section 3.2.2). We classify muscle functions using the following

69
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Skeleton stage1= new Seq(new Execute1());
2 Skeleton stage2= new Seq(new Execute2());

Skeleton skeleton=new Pipe(stage1, stage2); //type error undetected during composition
4 ----------------------------------------------------------------------------------------

class Execute1 implements Execute{ | class Execute2 implements Execute{
6 public Object exec(Object o){ | public Object exec(Object o){

A a = (A)o; /* Runtime cast */ | B b = (B)o; /* Runtime cast */
8 ... | ...

return x; /* Unknown type */ | return y; /* Unknown type */
10 } | }

} | }

Listing 5.1: Motivation Example: Unsafe skeleton programming

categories: execution (fe), evaluation of conditions (fb), division of data (fd), and
conquer of results (fc). Each muscle function is a black box unit for the skeleton
language/framework, and while each may be error free on its own, an inadequate
combination with a skeleton pattern can yield runtime typing errors. This hap-
pens because, during the evaluation of the skeleton program, the result of one
muscle function is passed to “the next” muscle function as parameter. Where
“the next” is determined at runtime by the specific skeleton assembly. An in-
compatible type between the result of a muscle function and the parameter of
the next one yields runtime errors, which are difficult to detect and handle on
distributed environments.

Untyped skeleton programming forces the programmer to rely on type-casts
in the programming of muscle functions. Indeed, if the higher-level language
(skeletons) is not able to transmit types between muscle functions, then the
poorest assumption will be taken for typing muscle codes (e.g., in an untyped
skeleton implementation in Java, muscle functions accept only Object as type
for parameter/result). In that case, every object received by a muscle function
has to be casted into the right type, which is highly error-prone.

On the other hand, typed skeletons relieve the programmer from having to
type-cast every muscle function argument: basically, the type system will check
that the input type of a skeleton is equal to the declared output type of the pre-
ceding skeleton. Type-casts remain necessary only when it would be required by
the underlying language. To summarize, the type safety ensured by the underly-
ing language is transmitted by the skeletons: type safety is raised to the skeleton
level.

Let us consider the example shown in Listing 5.1, which exposes the dan-
gers of typeless skeleton programming. In the example two functions {f1, f2}
are executed sequentially the other using a pipe skeleton: pipe(seq(f1), seq(f2)).
During the evaluation of the skeleton program, the unknown return type of
Execute1.exec will be passed as parameter to Execute2.exec which is ex-
pecting a type B parameter. While Execute1.exec (f1) and Execute2.exec
(f2) may be correct on their own, there is no guarantee that piping them together
will not yield an error.

As shown in the example, type safe skeleton programming does not only re-
quire a method for expressing the types of muscle functions (parameters/return
values), but also an underlying type-system expressing how the typed muscle
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functions interact with the skeleton patterns.
Indeed, one of the original aspects of the proposed type system for algorith-

mic skeletons is that it transmits types between muscle functions. As a conse-
quence, the type preservation property has a greater impact than in usual type
systems: it also ensures that muscle functions will receive and produce correct
types relatively to the assembly.

Our contribution consists in detecting type errors in skeleton programs, thus
improving the safeness of algorithmic skeleton programming. From the theoret-
ical side, we contribute by providing type semantics rules for each of the skeleton
patterns in the language. Then, we prove that these typing rules indeed satisfy
type safety properties. On the practical side, we show how the proposed type
system can be implemented in a Java [Micc] skeleton library by taking advan-
tage of Java Generics [BOSW98]. As such, we show that no further type-casts
are imposed by the skeleton language inside muscle functions, and more impor-
tantly, that all the typing validations of skeleton compositions are performed at
compilation time.

Section 5.1 presents related works. In section 5.2 we formally define a type
system for skeletons and prove its correctness. Then, section 5.3 shows an im-
plementation of the type system in a skeleton framework based on Java.

5.1 Related Work

Besides the semantics introduced in Section 3.1.3, other works have also pro-
vided parallelism semantics for skeletons. For example, Aldinucci et al. have
provided semantics that can handle both task and data parallelism [AD04, AD07b].
The semantics describe both functional and parallel behavior of the skeleton lan-
guage using a labeled transition system. This is also the case for QUAFF where
the semantics are transformed into a process network.

Therefore, with generality in mind, in this chapter we do not focus on the
parallelism aspects of the reduction semantics, and instead use big-step reduc-
tion semantics. Thus this chapter can focuses exclusively on the typing rules,
which allows us to deal with type safety.

The Muesli skeleton library provides some of its skeletons as generics using
C++ templates. Nevertheless, no type system is enforced with the templates,
allowing type unsafe skeleton compositions. Concerning typing, the P3L skele-
ton language [BDO+95] provides type verification at the data flow level, which
must be explicitly handled by the programmer using intermediate variables.
Compared with Calcium, the type system proposed in Calcium enforces safe-
ness at a higher level of abstraction: the skeleton level, where the data flow is
implicit. In Skil typed skeletons are used as a mean to make skeletons polymor-
phic. Skil translates polymorphic high order functions into monomorphic first
order C functions. Nevertheless, the type system described in Skil is not a for-
mal type system, and hence does not prove type safety of skeleton composition.

QUAFF is the only other skeleton library which support nestable skeletons
and is concerned with type checking (through C++ templates). Nevertheless, to
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our knowledge the type checking used in QUAFF has not been formalized into a
type system nor has the subject reduction property been proven.

5.2 A typed algorithmic skeleton language

This section defines a type theory for skeleton programming. In order to present
such a theory, we first specify a syntax for algorithmic skeletons in a very classi-
cal way. Then section 5.2.2 defines a big-step reduction semantics for skeletons;
this semantics, though not as rich as the one presented in [AD04, AD07b] is
sufficient for proving the type properties that interest us. We then provide a
simple type system [Pie02], and prove that this type system provides the usual
property of type preservation: subject-reduction. Subject-reduction ensures that
skeleton compositions do not threaten typing, and that type information can be
passed by skeletons to be used in the programming of muscle function codes.
This property greatly improves the correctness of skeleton programs by allow-
ing the underlying language and the algorithmic skeletons to cooperate on this
aspect.

5.2.1 Skeleton Language Grammar

Let us recall the skeleton grammer introduced in Section 3.1. The task paral-
lel skeletons are: seq for wrapping execution functions; farm for task replica-
tion; pipe for staged computation; while/for for iteration; and if for conditional
branching. The data parallel skeletons are: map for single instruction multiple
data; fork which is like map but applies multiple instructions to multiple data;
and d&c for divide and conquer.

4 ::= seq(fe) | farm(4) | pipe(41,42) | while(fb,4) |
if(fb,4true,4false) | for(i,4) | map(fd,4, fc) |
fork(fd, {4i}, fc) | d&c(fd, fb,4, fc)

Notations In the following, fx denotes muscle functions, 4 denotes skeletons,
terms are lower case identifiers and types upper case ones. Also, brackets denote
lists (or sets) of elements, i.e., {pi} is the list consisting of the terms pi, and {Q}
is the type of a list of elements of type Q.

5.2.2 Reduction Semantics

Figure 5.1 presents a big-step operational semantics for skeletons. It relies on
the fact that semantics for muscle functions are defined externally. In other
words, for any function fx and for any term p we have a judgment of the form:
fx(p) ⇓ r.
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R-FARM
4(p) ⇓ r

farm(4)(p) ⇓ r

R-PIPE
41(p) ⇓ s 41(s) ⇓ r

pipe(41,42)(p) ⇓ r

R-SEQ
fe(p) ⇓ r

seq(fe)(p) ⇓ r

R-IF-TRUE
fb(p) ⇓ true 4true(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r

R-IF-FALSE
fb(p) ⇓ false 4false(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r

R-WHILE-TRUE
fb(p) ⇓ true 4(p) ⇓ s while(fb,4)(s) ⇓ r

while(fb,4)(p) ⇓ r

R-WHILE-FALSE
fb(p) ⇓ false

while(fb,4)(p) ⇓ p

R-FOR
∀i < n 4(pi) ⇓ pi+1

for(n,4)(p0) ⇓ pn

R-MAP
fd(p) ⇓ {pi} ∀i 4(pi) ⇓ ri fc({ri}) ⇓ r

map(fd,4, fc)(p) ⇓ r

R-FORK
fd(p) ⇓ {pi} ∀i 4i(pi) ⇓ ri fc({ri}) ⇓ r

fork(fd, {4i}, fc)(p) ⇓ r

R-D&C-FALSE
fb(p) ⇓ false 4(p) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r

R-D&C-TRUE
fb(p) ⇓ true fd(p) ⇓ {pi} ∀i d&c(fd, fb,4, fc)(pi) ⇓ ri fc({ri}) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r

Figure 5.1: Skeleton’s Reduction Semantics

For example, the pipe construct corresponds to the sequential composition of
two algorithmic skeletons. Thus R-PIPE states that if a skeleton 41 applied to
a parameter p (41(p)) can be reduced to s, and 42(s) can be reduced to r, then
pipe(41,42)(p) will be reduced to r. In other words, the result of 41 is used as
parameter for 42: 42(41(p)) ⇓ r.

The d&c construct performs recursive divide and conquer. It recursively
splits its input by the divide function fd until the condition fb is false, processes
each piece of the divided data, and merges the results by a conquer function fc.

5.2.3 Type System

Figure 5.2 defines a type system for skeletons. It assumes that each muscle
function is of the form: fx : P → R, and verifies the following classical typing
rule:

APP-F
p : P fx : P → R

fx(p) : R

We first define a typing rule for each of the skeleton constructs. These typing
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rules allow us to infer the type of an algorithmic skeleton based on the type of the
skeletons and muscle functions composing it. Typing judgments for skeletons
are of the form 4 : P → R. We explain below the typing of two representative
rules: T-PIPE and T-D&C.

T-PIPE Consider a pipe formed of skeletons 41 and 42. First, the input type of
pipe is the same as the input type of 41, and the output type of pipe is the same
as the output of 42. Moreover, the output type of 41 must match the input type
of 42. In other words, consider the typeless skeleton example shown in Listing
5.1, which would be equivalent to the following code:

Object a = ...; //previous result
Object b = Execute1.execute(a);
Object c = Execute2.execute(b);

Without a typing system, the pipe skeleton cannot ensure type safety. The
pipe typing ensures that types transmitted by the pipe parameters are compati-
ble; and the recursive nature of the typing system ensures the correct typing of
skeletons containing a pipe, but also of skeletons nested inside the pipe. Here,
type compatibility ensures that the type of b is compatible with the type of the
parameter for Execute2.execute. Also, that a is compatible with the parameter
of Execute1.execute, and the type of c is compatible with the following muscle
instruction (belonging to another skeleton construct).

With a typing system, the pipe skeleton yields a code equivalent to:

A a = ...; //previous muscle result
B b = Execute1.execute(a);
C c = Execute2.execute(b);

Where the types of a, b, and c are a :A, b :B, and c :C respectively.

T-D&C Consider now a d&c skeleton that accepts an input of type P and re-
turns an output of type R. Therefore, the choice function fb must also accept an
input of type P , and return a boolean. Secondly, the divide function fd produces
a list of elements of P . Then, each element is computed by a sub-skeleton of
type P → R. Finally, the conquering function fc must accept as input a list of
elements of R and return a single element of type R, which corresponds to the
return type of the d&c skeleton.

To summarize, the typing rules follow the execution principles of the skele-
tons, attaching a type to each intermediate result and transmitting types be-
tween skeletons.

Finally, a skeleton applied to a term follows the trivial typing rule:

APP-4
p : P 4 : P → R

4(p) : R
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T-FARM
4 : P → R

farm(4) : P → R

T-PIPE
41 : P → X 42 : X → R

pipe(41,42) : P → R

T-SEQ
fe : P → R

seq(fe) : P → R

T-IF
fb : P → boolean 4true : P → R 4false : P → R

if(fb,4true,4false) : P → R

T-WHILE
fb : P → boolean 4 : P → P

while(fb,4) : P → P

T-FOR
i : integer 4 : P → P

for(i,4) : P → P

T-MAP
fd : P → {Q} 4 : Q→ S fc : {S} → R

map(fd,4, fc) : P → R

T-FORK
fd : P → {Q} 4i : Q→ S fc : {S} → R

fork(fd, {4i}, fc) : P → R

T-D&C
fb : P → boolean fd : P → {P} 4 : P → R fc : {R} → R

d&c(fd, fb,4, fc) : P → R

Figure 5.2: Skeleton’s Type System

5.2.4 Typing Property: Subject Reduction

A crucial property of typing systems is subject reduction. It asserts the type
preservation by the reduction semantics; this means that a type inferred for an
expression will not change (or will only become more precise) during the exe-
cution: the type of an evaluated expression is compatible with the type of this
expression before evaluation. Without this property, none of the properties en-
sured by the type-system would be useful. For skeletons, subject-reduction can
be formalized as follows.

Theorem 1 (Subject Reduction). Provided muscle functions ensure application
and subject reduction, i.e.:

SR-F
fx(p) : Q f(p) ⇓ q

q : Q

The skeleton type system ensures subject reduction:
SR-4
4(p) : R 4(p) ⇓ r

r : R
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While the property should be proven for every single skeleton construct, with
conciseness in mind, we only illustrate here the proof in the representative cases
of: pipe, for, and d&c constructs. Please refer to Appendix A for the other con-
structs.

The general structure of the proof is straightforward. For each skeleton con-
struct we: particularize subject-reduction; decompose the inference that can lead
to the correct typing of the skeleton; and verify that, for each possible reduction
rule for the skeleton, the type is preserved by the reduction. The proof also
involves some double recursions in the most complex cases.

To prove this property, an alternative approach can be to design a type-
system closer to the one of λ-calculus (but with a fixed point operator). Nev-
ertheless, we have chosen the operational semantics approach because of its
simplicity, and direct meaning in terms of typed skeletons.

Pipe Preservation

Subject-reduction for pipe skeletons means:

SR-PIPE
pipe(41,42)(p) : R pipe(41,42)(p) ⇓ r

r : R

Proof. Let us decompose the inferences asserting that pipe(41,42)(p) : R and
pipe(41,42)(p)⇓r, necessarily:

p : P

41 : P → X 42 : X → R

pipe(41,42) : P → R
T-PIPE

pipe(41,42)(p) : R
APP-4

41(p) ⇓ x 42(x) ⇓ r

pipe(41,42)(p) ⇓ r
R-PIPE

Finally, we prove that r has the type R as follows:

SR-4
APP-4

SR-4
APP-4

p : P 41 : P → X

41(p) : X 41(p) ⇓ x

x : X 42 : X → R

42(x) : R 42(s) ⇓ r

r : R

To summarize, we proved the subject-reduction property for (T-PIPE) combined
with (APP-4), which is the only way to obtain a correctly typed and reducible
expression involving a pipe construct.

For Preservation

In the case of the for skeleton, we must prove:

SR-FOR
for(n,4)(p) : P for(n,4)(p) ⇓ r

r : P
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Proof. We decompose for(n,4)(p) :P and for(n,4)(p)⇓r, noting p0 =p, pn =r we
have:

p0 : P

n : integer 4 : P → P

for(n,4) : P → P
T-FOR

for(n,4)(p0) : P
APP-4

∀i < n 4(pi) ⇓ pi+1

for(n,4)(p0) ⇓ pn

R-FOR

We prove that ∀i ≤ n, pi : P using induction on i. The base case is true p0 : P , the
inductive hypothesis is that pi : P , and we must prove that pi+1 : P . Applying
the recurrence hypothesis SR-4, and APP-4 we have:

SR-4
APP-4

pi : P 4 : P → P

4(pi) : P 4(pi) ⇓ pi+1

pi+1 : P

Therefore, pn : P , and in the orginal notation r : P .

D&C Preservation

For d&c skeletons, subject-reduction becomes:

SR-d&c
d&c(fd, fb,4, fc)(p) : R d&c(fd, fb,4, fc)(p) ⇓ r

r : R

Proof. d&c(fd, fb,4, fc)(p) : R necessarily comes from

p : P

fb : P → boolean
fd : P → {P}
4 : P → R

fc : {R} → R

d&c(fd, fb,4, fc) : P → R
T-D&C

d&c(fd, fb,4, fc)(p) : R
APP-4

In addition to the skeleton based recurrence, we need to use another recurrence
on p for which the base case is fb(p) ⇓ false and the inductive case is fb(p) ⇓
true. This recursion is finite because the division of the problem must always
terminate (one can formalize the recurrence based on a size function such that
fd(p) ⇓ {pi} ⇒ size(pi) < size(p) and size(p) ≤ 0⇒ fb(p) ⇓ false).

CASE 1: if fb(p) ⇓ false

fb(p) ⇓ false 4(p) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r
R-D&C-FALSE
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by hypothesis, 4 : P → R and thus:

APP-4
4 : P → R p : P

4(p) : R

By the recurrence hypothesis (4 is sub-skeleton of d&c(fd, fb,4, fc)), 4 verifies
subject reduction:

4(p) : R 4(p) ⇓ r

r : R
SR-4

which ensures that r :R and the subject reduction for d&c.

CASE 2: if fb(p) ⇓ true

fb(p) ⇓ true fd(p) ⇓ {pi}
∀i d&c(fd, fb,4, fc)(pi) ⇓ ri

fc({ri}) ⇓ r

d&c(fd, fb,4, fc)(p) ⇓ r
R-D&C-TRUE

First, each pi is of type P :

SR-F

APP-F
fd : P → {P} p : P

fd(p) : {P} fd(p) ⇓ {pi}
{pi} : {P}

and thus, using the “sub”recurrence hypothesis, that is subject reduction on pi:

d&c(fd, fb,4, fc)(pi) : R d&c(fd, fb,4, fc)(pi) ⇓ ri

ri : R
SR-D&C

Therefore, ∀i, ri : R, and then {ri} : {R}. Finally r : R, because (by subject reduc-
tion on fc):

SR-F

APP-F
fc : {R} → R {ri} : {R}

fc({ri}) : R fc({ri}) ⇓ r

r : R

Note that the typing rule for d&c also ensures that fb(p) : boolean (and thus fb(p)
is necessarily true or false).

5.2.5 Sub-typing

This section briefly discusses how sub-typing rules can be safely added to the
type-system without major changes. Classically, if the underlying language sup-
ports sub-typing, see for example [Pie02], we allow the skeleton typing to reuse
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Figure 5.3: From theory to practice: T-PIPE rule.

the sub-typing relation of the language. Suppose a sub-typing relation (�) is de-
fined on the underlying language; then sub-typing can be raised to the skeleton
language level as specified by the rule:

T-SUB
4 : P → R P ′ � P R � R′

4 : P ′ → R′

The subject-reduction and most classical sub-typing properties can be proved
like in other languages.

5.3 Type safe skeletons in Java

In this section, we illustrate the type-system designed above in the context of a
skeleton library implemented over the Java programming language. We show
how the type-system of the Java language can be used at the skeleton level to
check the type-safety of the skeleton composition. We have chosen Java for an
implementation because Java provides a mechanism to communicate the type
of an object to the compiler: Generics. More precisely, we use Java Generics to
specify our skeleton API: constraints on type compatibility expressed as typing
rules in Figure 5.2 are translated into the fact that, in the skeleton API, several
parameters have the same (Generic) type.

Typing defined in Figure 5.2 is then ensured by the type system for Java
and Generics. Using Generics, we do not need to implement an independent
type system for algorithmic skeletons. Additionally, Generics provide an elegant
way to blend the type system of the skeleton language with the type system
of the underlying language. In other words, because skeletons interact with
muscle functions, the proposed skeleton type system also interacts with the Java
language type system.

In the Calcium skeleton framework, skeletons are represented by a corre-
sponding class, and muscle functions are identified through interfaces. A muscle
function must implement one of the following interfaces: Execute, Condition,
Divide, or Conquer. Instantiation of a skeleton requires as parameters the cor-
responding muscle functions, and/or other already instantiated skeletons.

As discussed in section 5.2.3, the idea behind the type semantics is that, if
it is possible to guarantee that the skeleton parameters have compatible types,
then the skeleton instance will be correctly typed.

Therefore, since the skeleton program is defined during the construction of
the skeleton objects, the proper place for performing type validation corresponds
to the constructor methods of the skeleton classes.
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1 Skeleton<A,B> stage1= new Seq<A,B>(new Execute1());
Skeleton<B,C> stage2= new Seq<B,C>(new Execute2());

3 Skeleton<A,C> skeleton = new Pipe<A,C>(stage1, stage2); //type safe composition
----------------------------------------------------------------------------------------

5 class Execute1 implements Execute<A,B>{ | class Execute2 implements Execute<B,C>{
public B exec(A param){ | public C exec(B param){

7 ... /* No cast required */ | ... /* No cast required */
return x; /* instanceof B */ | return y; /* instanceof C */

9 } | }
} | }

Listing 5.2: Example of a type safe skeleton program

Figure 5.3 shows the analogy between the type semantics and the Java im-
plementation with generics for the T-PIPE rule. The premises of the typing rules
are enforced in the signature of the skeleton constructor, and the conclusion of
the typing is reflected on the signature of the skeleton class.

A skeleton class is now identified as a skeleton that receives a Generic pa-
rameter of type <P> and returns a parameter of type <R>, where <P> and <R>
are specified by the programmer. Additionally, all parameters must be coher-
ently typed among themselves, and with the skeleton. This type coherence will
be specific for each skeleton, following the rules of the proposed typing system
5.2.3. The typing rules are enforced in Calcium as shown in Listing 5.3.

As a result, the unsafe skeleton composition shown in Listing 5.1 is trans-
formed into the type safe skeleton program shown in Figure 5.2. The construc-
tors of Pipe and Seq enforce that the return type of Execute1.exec must
be the same type as the parameter of Execute2.exec: B. If this is the case,
then the Pipe skeleton will be of type <A,C>, where A is the parameter type of
Execute1.exec and C is the return type of Execute2.exec.

The benefits of using a type system for skeletons with Java generics are clear:
no need to implement an additional type validation mechanism; no type-cast
are imposed by the skeleton language inside muscle functions; and most impor-
tantly, type safe validation when composing the skeletons.

5.4 Conclusions

This chapter has defined a type system for algorithmic skeletons. We have tack-
led this problem from both a theoretical and a practical approach. On the the-
oretical side we have contributed by: formally specifying a type system for al-
gorithmic skeletons, and proving that this type system guarantees that types
are preserved by reduction. Type preservation guarantees that skeletons can be
used to transmit types between muscle functions.

On the practical side, we have implemented the type system using Java and
Generics. The type enforcements are ensured by the Java type system, and re-
flect the typing rules introduced in the theoretical section. Globally, this ensures
the correct skeleton composition. As a result, no further type-casts are imposed
by the skeleton language inside muscle functions; and most importantly, type
errors can be detected when composing the skeleton program.



Section 5.4. Conclusions 81

interface Execute<P,R> extends Muscle<P,R> {
2 public R exec(P param);

}
4 interface Condition<P> extends Muscle<P,Boolean> {

public boolean evalCondition(P param);
6 }

interface Divide<P,X> extends Muscle<P,X[]> {
8 public X[] divide(P param);

}
10 interface Conquer<Y,R> extends Muscle<Y[],R> {

public R conquer(Y[] param);
12 }

14 class Farm<P,R> implements Skeleton<P,R> {
public Farm(Skeleton<P,R> child);

16 }
class Pipe<P,R> implements Skeleton<P,R> {

18 public <X> Pipe(Skeleton<P,X> s1, Skeleton<X,R> s2);
}

20 class If<P,R> implements Skeleton<P,R> {
public If(Condition<P> cond, Skeleton<P,R> ifsub, Skeleton<P,

R> elsesub);
22 }

class Seq<P,R> implements Skeleton<P,R> {
24 public Seq(Execute<P,R> secCode);

}
26 class While<P> implements Skeleton,P> {

public While(Condition<P> cond, Skeleton<P,P> child);
28 }

class For<P> implements Skeleton<P,P> {
30 public For(int times, Skeleton,P> sub);

}
32 class Map<P,R> implements Skeleton<P,R> {

public <X,Y> Map(Divide<P,X> div, Skeleton<X,Y> sub, Conquer<
Y,R> conq);

34 }
class Fork<P,R> implements Skeleton<P,R> {

36 public <X,Y> Fork(Divide<P,X> div, Skeleton<X,Y>... args,
Conquer<Y,R> conq);

}
38 class DaC<P,R> implements Skeleton<P,R> {

public DaC(Divide<P,P> div, Condition<P> cond, Skeleton<P,R>
sub, Conquer<R,R> conq);

40 }

Listing 5.3: Typed skeletons with Java Generics
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Scientific and engineering applications that require, handle, and generate
large amounts of data represent an important part of distributed applications.
For example, some of the areas that require handling large amounts of data are:
bioinformatics, high-energy physics, astronomy, etc.

The algorithmic skeleton model presented in Chapter 3 supposes that the
data passed between muscles is small enough to be encapsulated inside a task’s
state memory. This is suitable for transferring small amounts of data between
muscles, as would be done in regular non-parallel programming. Nevertheless,
when the size of the data is too big to hold in runtime memory, non-parallel
programming uses secondary memory storage abstraction: files.

Therefore, skeleton programming requires a mechanism that allows program-
mers to use their standard non-parallel way of reading/writing files inside mus-
cles (non-invasive). Which, at the same time, does not force programmers to
specify code for transferring files; i.e. enables transparent and efficient support
for transferring files between the execution of muscles.

Nevertheless, there is a surprising lack of support for file data management
in algorithmic skeleton programming models. The support of file data access

83
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has been overlooked in most skeleton frameworks (see Section 2.3). Most of
them could be enhanced with file data support by addressing file distribution
aspects from inside muscles, as is the case with ASSIST. Unfortunately, this
strategy leads to the tangling of non-functional code (data distribution) with the
functional code (business logic).

Therefore, in this chapter we focus on the integration of data abstractions
with an algorithmic skeletons programing model. We address the data problem
by considering usability and performance from the programming model perspec-
tive. We believe that the integration of data files with algorithmic skeletons
must be achieved in a transparent non-invasive manner, as not to tangle data
distribution with functional concerns, while also taking efficiency into consider-
ation.

Non-invasive transparency Programmers should not have to worry about
data location, movement, or storage. Furthermore, programmers should
not have to change their standard way of working with data. This means
that transparency should be non-invasive, i.e. without imposing an ad hoc
language nor library.

Efficiency is a double edged problem: computation and bandwidth. A suitable
approach must balance the tradeoff between idle computation time, and
bandwidth usage.

This chapter is organized as follows. We begin by describing how file trans-
fer can be achieved with active objects in section 6.1. Afterwords section 6.2
presents the file data model for algorithmic skeletons. Section 6.3 studies effi-
ciency concerns using BLAST as a case study. Finally, section 6.4 provides the
conclusions and future work.

6.1 File Transfer with Active Objects

Before describing the file transfer model for skeletons, we begin by showing how
file transfer can be achieved using an active object programming model. This is
necessary for the ProActive execution environment, as ProActive did not provide
file transfer tools.

This section shows how a message passing model, based on the active ob-
ject concept, can be used as the ground for a portable and efficient file transfer
service for large files, where large means bigger than available runtime mem-
ory. Additionally, by using active objects as transport layer for file transfer, file
transfer operations can benefit from automatic continuation to improve the file
transfer between peers, as can be confirmed by the benchmarks shown in section
6.1.2.

6.1.1 Asynchronous File Transfer with Futures

We have implemented file transfer between nodes as service methods available
in the ProActive library, as shown in Figure 6.1. Given a ProActive Node node,
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//Send file(s) to Node node
2 static public Boolean pushFile(Node node, File source, File destination);

static public Boolean[] pushFile(Node node, File[] source, File[] destination);
4

//Get file(s) from Node node
6 static public File pullFile(Node node, File source, File destination);

static public File[] pullFile(Node node, File[] source, File[] destination);

Listing 6.1: File Transfer API

Figure 6.1: Push Algorithm.

a File(s) called source, and a File(s) called destination, the source can be pushed
or pulled from a node using the API.

The push algorithm depicted in Figure 6.1 and detailed as follows:

1. Two File Transfer Service (FTS) active objects are created (or obtained
from a pool): a local FTS, and a remote FTS. The pushFile(. . .) function
is invoked by the caller on the local FTS.

2. The local FTS immediately returns a Boolean type future to the caller. The
calling thread can thus continue with its execution, and is subject to a
wait-by-necessity on the future in case the file transfer has not yet been
completed.

3. The file is read in parts by the local FTS, and up to (o − 1) simultaneous
overlapping parts are sent from the local node to the remote node by inter-
nally invoking savePartAsync(pi) on the remote FTS.

4. Then, a savePartSync(pi+o) invocation is sent to synchronize the param-
eter burst, as not to drown the remote node. This will make the sender
wait until all the parts pi, . . . , pi+o have been served (i.e. the savePartSync
method is executed).

5. The savePartSync(. . .) and savePartAsync(. . .) invocations are served
in FIFO order by the remote FTS. These methods will take the part pi and
save it on the disk.

6. When all parts have been sent or a failure is detected, the local FTS will
update the future, created in step 2, with the result of the file transfer
operation.
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Figure 6.2: Pull Algorithm.

The pullFile method is implemented using the pull algorithm shown in
Figure 6.2, and is detailed as follows:

1. Two FTS active objects are created (or obtained from a pool): a local FTS,
and a remote FTS. The pullFile(...) function is invoked by the caller
on the local FTS.

2. The local FTS immediately returns a File future, which corresponds to the
requested file. The calling thread can thus continue with its execution and
is subject to a wait-by-necessity on the future.

3. The getPart(i) method is internally invoked up to o overlapping times on
the remote FTS.

4. The local FTS will immediately create a future of a type representing a file
part for every invoked getPart(i).

5. The getPart(. . .) invocations are served in FIFO order by the remote
FTS. The function getPart consists on reading a file part on the remote
node, and as such, automatically updating the corresponding local future
created in step 4.

6. When all parts have been transferred, then the local FTS will update the
future created in step 2, unblocking any thread that was subject to a wait-
by-necessity on the future.

6.1.2 Push & Pull Benchmarks

A 100[Mbit] LAN network with a 0.25[ms] ping, and our laboratory desktop Intel
Pentium 4 (3.60[GHz]) machines were used. It was experimentally determined
that overlapping 8 parts of size 256[KB] provides a good performance and guar-
antees that at the most 2[MB] will be enqueued in the remote node. Since the
aim of the experiment was to evaluate the proposed file transfer model, and
not the lower level communication protocols between active objects, the default
protocol used for lower level communication was RMI.

Since peers usually have independent download and upload channels, the
network was configured at 10[Mbits

sec
] duplex. Figure 6.4(a) shows the performance

results of pull, push, and remote copy protocol (rcp) for different file sizes.
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Figure 6.3: Performance comparisons.

The performance achieved by pull and push approaches rcp, which can be
considered an ideal reference because of its wide adoption and usage.

More interestingly, Figure 6.4(b) shows the performance of getting a file from
a remote site, and then sending this file to a new site. This corresponds to a
recurrent scenario in data sharing peer to peer networks [Ora01], where a file
can be obtained from a peer instead of the original source.

6.1.3 Benchmarks Discussion

From Figure 6.4(a) we can see that pull and push perform as good as rcp in
the general file transfer case. Additionally, in the specific case of sharing files
between peers, Figure 6.4(b) shows that rcp is outperformed when using pull
and push algorithms. While rcp must wait for the complete file to arrive before
sending it to a peer, the pull algorithm can pass the future file parts (Figure 6.2)
to the push algorithm even before the actual data is received. Once the future
of the file parts are available, automatic continuation [CH05, EAC98] will take
care of transparently updating the parts that had been "virtually" transferred
to the concerned peers. The user can achieve this automatic continuation-based
behavior with the API shown in Figure 6.1, by simply passing the result of an
invocation as parameter to another.

Therefore, the proposed file transfer model during the application execution
achieves improved usability by integrating the abstractions of the programming
model into the file transfer operations. It also simplifies the infrastructure main-
tenance and configuration effort by construction the file transfer on top of mes-
sage passing protocol; and generally provides as good, and in some scenarios
better performance than third party tools.
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Figure 6.4: Proxy Pattern for Files

Figure 6.5: FileProxy Behavior Example

6.2 File Transfer Model for Skeletons

Now that we have clearly shown that file transfer operations are possible with
an active object programming model, we continue by discussing the proposed file
transfer model for algorithmic skeletons.

6.2.1 Transparency with FileProxy

The Proxy Pattern [GHJV95] is used to achieve transparent access to files. Files
are rendered accessible using the FileProxy object as shown in Figure 6.4. By
intercepting calls at the proxy level, the framework is able to determine when a
muscle is accessing a file. In a way, the FileProxy illuminates a specific aspect
inside black box muscles.

Figure 6.5 provides an example. When an interpreter thread invokes a mus-
cle, all File type references inside param are indeed FileProxy instances. A
FileProxy can transparently intercept a thread’s access to the actual File
object. A FileProxy can add new non-functional behavior such as caching
of metadata (file names, size, etc...), transparent file fetching on demand, and
blocking on a wait-by-necessity style [Car93]. Afterwards, the FileProxy can
resume the thread’s execution by delegating method calls to the real File object.
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6.2.2 Stage-in and Stage-out

Listing 6.2 provides an example on the usage of Calcium. Line 1 defines the
skeleton pattern, and is omitted here but detailed in Figure 6.7(a). Lines 3-
4 instantiates an execution environment, which in this case corresponds to a
ProActiveEnvironment, and creates the Calcium instance. The boot and
shutdown of the framework are done in lines 6 and 23 respectively. Then in
lines 8-9, a new input Stream is created with the blast skeleton pattern. Lines
12-15 illustrate the creation of a new BlastQuery paremeter, which receives
three File type arguments: blast binary, query, and database files on the client
machine.

The interesting part takes place in line 17. The BlastQuery is entered into
the framework, and a Future<File> is created to hold the result once it is
available. During the input process each file’s data is remotely stored; and all
File type objects are replaced by FileProxy instances, capable of fetching the
data when required by remote nodes during the computation. Once the result is
available, and before unblocking threads waiting on line 21, all remotely stored
data referenced by FileProxy instances are copied to the client machine, and
all FileProxy instances are replaced with regular File type instances. Hence,
the result in line 21 is a regular File with its data stored on the client machine.

6.2.2.1 Initial and Final Staging

In general, when a parameter P is submitted into the skeleton framework, as
shown in Listing 6.2 (line 17), a File stage-in takes place. First, all references
of type File in P ’s object graph are replaced with FileProxy references. Then,
the files’ data are stored in the data server. If a name clash occurs or a data
transfer error takes place, an exception is immediately raised to the user, before
the parameter is actually entered into the skeleton framework.

When the final result R has been computed, but before it is returned, a stage-
out process takes place. Every reference of type FileProxy in R’s object graph
is replaced by a regular File type pointing to a local file, and the remote data is
stored in the local file, before returning R to the user.

6.2.2.2 Intermediate Staging

Before an interpreter invokes a muscle, a staging process takes place on the
interpreter nodes. If not already present, a unique and independent workspace
is created. Then, depending on the desired behavior (see section 6.3) all, some, or
none of the FileProxy type objects in P ’s object graph are downloaded into the
workspace, and the FileProxy references are updated with the new location of
the file.

After the invocation of a muscle, new files referenced in R’s object graph, and
present in the workspace, are stored on the data server. Actually, files are only
stored on the data server if the file reference is passed on to other tasks, i.e.
returned to the task pool. Further details of how the references are updated are
discussed in Section 6.2.4.
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1 Skeleton skel = ...;

3 Environment env = new ProActiveEnvironment(...);
Calcium calcium = new Calcium(env);

5
calcium.boot();

7
Stream<BlastQuery,File> stream =

9 calcium.newStream(skel);

11 //Initial stage-in
BlastQuery blast = new BlastQuery(

13 new File("/home/user/blast.bin"),
new File("/home/user/query.dat"),

15 new File("/home/user/db.dat"));

17 Future<File> future = stream.input(blast);

19 ...
//Final stage-out, the file is locally available

21 File result = future.get();

23 calcium.shutdown();

Listing 6.2: Calcium Input and Output Example
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public File execute(WSpace wspace, BlastQuery blast){
2

//Get parameters
4 File command = blast.blastProg;

String arguments = blast.getArguments();
6

//Execute the native blast in the wspace
8 wspace.exec(command, arguments);

10 //Create a reference to a file in the wspace
File result = wspace.newFile("result.blast");

12
return result;

14 }

Listing 6.3: Muscle Function Example

6.2.3 The Workspace Abstraction

The workspace abstraction provides muscles with a local disk space on the com-
putation nodes. If several muscles are executed simultaneously on the same in-
terpreter node, each muscle is guaranteed to have its own independent workspace.

The workspace abstraction provides the following methods:

interface WSpace{
public File newFile(String name);
public void exec(File bin, String args);

}

Where the WSpace.newFile() factory can be used to create a file reference on
the workspace, and WSpace.exec(...) can be used to execute a native com-
mand with a properly configured execution environment (e.g. current working
directory).

Listing 6.3 provides an example. A muscle of type fe : BlastQuery→ File is
shown. Lines 4-5 get a reference on the native command and its arguments. For
the programmer, command is of type File, but is indeed a FileProxy instance.
The command’s data was stored somewhere else during the computation (Listing
6.2 line 17), and is transparently made available on the interpreter node. Line
8 invokes the native blast command which outputs its results to a file named
result.blast, located in some directory, specified by the workspace, on the
interpreter node. Then line 11 uses the workspace factory to get a reference
on the result.blast file. The workspace factory returns a reference object of
type File which is indeed an instance of type FileProxy. Finally, line 13 re-
turns the File object as a result. If the result is passed to another computation
node, or delivered as final result to the user, then the file will be transparently
transferred.

An alternative approach to providing a workspace factory method would have
been to use other aspect-oriented programming [KLM+97] methodologies that,
for example, manipulate Java bytecode to intercept calls on the File class con-
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structor. Nevertheless, as noted by Cohen et al. [CG07], factories provide several
benefits over traditional constructor anomalies.

After a File reference is created through the workspace abstraction, the
framework transparently handles reference passing; creation, modification and
deletion of file’s data; and remote data storage/fetching.

6.2.3.1 Data Division

When data parallelism is encountered, such as in {d&c, map, fork} skeletons,
new sub-tasks are spawned and assigned with a new workspace.

Instead of copying all of the original workspace’s files into each sub-task’s
workspace, only referenced files are copied. For example, if the muscle fd : P →
{R} assigns at some point

Ri.file← P.file1

Rj.file← P.file2

then only file1 will be copied into Ri’s workspace, while file2 will be copied into
Rj ’s workspace.

The advantage of this approach is that the mapping of files with workspaces
is transparent for the programmer. Contrary to what happens on workflow en-
vironments (see Section 2.1.6), there is no need for the programmer to explicitly
map which files are copied into which workspace. This is automatically inferred
from the FileProxy references.

6.2.3.2 Data Reduction

The symmetrical case is the reduction (conquer) case, where several sub-tasks
are reduced into a single one. This is done with a muscle of type fc : {P} → R,
which takes n object elements and returns a single one.

Before invoking the conquer muscle, a new workspace is created, and all
the files referenced in {P} are copied into the new workspace. Nevertheless, a
name space clash is likely to happen when two files originating from different
workspaces have the same name.

A simple solution is to have a renaming function which provides a unique
name when a name clash is detected. The clashing file is then renamed, and
the FileProxy reference is transparently updated with the new name. While
this solution can yield unexpected file renaming behavior for the programmer,
no problems will be encountered as long as the programmer consistently uses
the File references.

6.2.4 File References and Data

6.2.4.1 Storage Server

We assume the existence of a data storage server1, capable of storing data, re-
trieving data, and keeping track on the reference count of each data. The storage

1For an example of a scalable data storage system refer to [AADJ07].
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Figure 6.6: File Reference Passing Example

server provides the following operations:

• store(Fx, k)→ i, stores the data represented in file Fx, with an initial refer-
ence count k > 0. The function returns a unique identifier for this data on
the storage server.

• retrieve(i)→ Fx, retrieves data located on the server and identified by i.

• add(i, δ) → boolean, updates a reference count by δ. Returns true if the
reference count is equal to or smaller than zero, and false otherwise.

Once the reference count reaches zero for a file’s data, no further operations
will be performed on the data, and the server may delete the data at its own
discretion.

6.2.4.2 Reference Counting

During the execution of a skeleton program, data can be created, modified, and
deleted. Also, File references pointing to data can be created, deleted, and
passed (copied). Therefore, it is up to the skeleton framework to provide support
for these behaviors, by storing new/modified data; and keeping track of File
references to delete data when it is no longer accessible.

Consider the example shown in Figure 6.6 where P1, P2 are input param-
eters of a muscle f : {P} → {R}; R1, R2, R3 are the output results; and Fi are
FileProxy references. We are interested on knowing, for a given Fi, how many
Pj/Rk have a directed path from Pj/Rk to Fi, before/after the execution. We call
this the reference count, and we write it as [before,after].

In the example, the reference counts are:

F1 → [1, 3] F2 → [2, 0]

F3 → [0, 1] F4 → [0, 2]

Thus we know that F1 has incremented its reference count by 2; F2 is no
longer referenced and has decreased its reference count by 2; and F3, F4 are new
files created inside f .
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Case [Before,After] Action
New [b = 0, a > 0] store(Fx, a)→ i

Read-only
[b > 0, a > 0]

add(i, a− b)
Modified add(i, −b)

store(Fx, a)→ j
Dereferenced [b > 0, a = 0] add(i,−b)
Unreferenced [b = 0, a = 0] ———

Table 6.1: File Scenarios after muscle invocation

6.2.4.3 Update Cases

In general, after invoking a muscle f , a file Fx can be in one of the cases shown
in Table 6.1.

Where the cases are described as follows:

• New files are created during the execution of f . A new file’s data is up-
loaded to the storage server with its after reference count by invoking
store(Fx, k)→ i, with k = a.

• Read-only files only require an update on their reference count, since data
has not been modified. This is done by invoking add(i, δ) with δ = b− a.

• Modified files have been modified during the execution of f . Conceptually,
modified files are treated as new files. Therefore if i is the identifier of the
original file on the storage server, then add(i, δ) with δ = −b is invoked to
discount the before references on the original file. Then, the modified file
is treated as a new one, by uploading its data to the storage server and
obtaining a new file identifier: store(Fx, k)→ j with k = a.

• Dereferenced files have no references after the execution of f , and there-
fore it is irrelevant if the file was modified during the execution. Thus they
only require a add(δ) on the server, with δ = −b.

• Unreferenced files are temporary files used inside f , and can be locally
deleted from the workspace after the execution of f .

6.3 Efficiency

An efficient approach minimizes both bandwidth usage and CPU idle time (blocked
waiting for data). To minimize the CPU idle time, a file’s data should already
be locally available when a muscle wants to access it. On the other hand, to
minimize the bandwidth usage, a file’s data should only be transferred if it is
going to be used by the muscle. This presents a problem since muscles are black
boxes.

We suppose a three staged pipeline on each interpreters where: the first stage
is the prefetch, which downloads candidate files in advance; the compute stage
invokes the muscles; and the store stage uploads files’ data to the storage server.
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(a) BLAST Skeleton Program (b) Bandwidth / CPU Tradeoff

Figure 6.7: BLAST Case Study

Thus, in any given moment, three tasks can be present on an interpreter pipeline
performing different aspects: download, computation, and upload.

Two strategies are identified. A lazy strategy which transfers a file’s data
on demand using the FileProxy (bandwidth friendly), and an eager strategy
which transfers all the files’ data in advance (CPU friendly) using the interpreter
pipeline. Additionally, we propose a third hybrid strategy which uses annotated
muscles to decide which file’s data to transfer in advance.

For example, a muscle can be annotated to prefetch files matching a regular
expression pattern or files bigger/smaller than a specified size:

@PrefetchFilesMatching(name="db.*|query.*",
sizeMin=10000,
sizeMax=20000)

public File execute(WSpace wspace, BlastQuery param){
...

}

While the separation of concerns is kept using the proposed annotation, one
may argue that the transparency of the approach is hindered. Nevertheless, it
is important to emphasize that the annotation is not a file transfer definition
(source and destination are not specified), and as such does not fall back into
the non-transparent case. Furthermore, the presence of the annotation is not
mandatory, being its only objective the improvement of performance.

6.3.1 BLAST Case Study

BLAST [BLA] corresponds to Basic Local Alignment Search Tool. It is a popular
tool used in bioinformatics to perform sequence alignment of DNA and proteins.
In short, BLAST reads a query file and performs an alignment of this query
against a database file. The results of the alignment are then stored in an out-
put file. BLAST is a good case study because it performs intensive data access,
computation, and requires the execution of native code.

A BLAST parallelization using skeleton programming is shown in Figure
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6.7(a). The strategy is to divide the database until a suitable size is reached
and then merge the results of the BLAST alignment. The result of applying
lazy, hybrid and eager strategies are shown in Figure 6.7(b). The figure shows
that a lazy strategy performs the least amount of data transfers, but blocks the
application for the longest time waiting for the data. On the other hand, an
eager strategy performs the most data transfer, blocking the application for the
least time.

For BLAST, a good tradeoff can be reached using the proposed hybrid strat-
egy, which can transfer as few data bytes as the lazy strategy, and block the
application at least as the eager strategy. In general, the performance of the hy-
brid strategy may vary, depending on the application, but the hybrid strategy’s
performance is bounded by the lazy and eager strategies.

6.4 Conclusion

This chapter has proposed a file data access model for algorithmic skeletons by
focusing on transparency and efficiency.

Transparency is achieved using a workspace abstraction and the Proxy pat-
tern. A FileProxy type intercepts calls on the real File type objects, providing
transparent access to the workspace. Thus allowing programmers to continue
using their accustomed programming libraries, without having the burden of ex-
plicitly introducing non-functional code to deal with the distribution aspects of
their data.

From the efficiency perspective we have proposed a hybrid approach that
takes advantage of annotated muscle functions and pipelined interpreters to
transfer files in advance, but can also transfer the file’s data on-demand using
the FileProxy. We have experimentally shown with a BLAST skeleton, that
a hybrid approach provides a good tradeoff between bandwidth usage and CPU
idle time.
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7.1 Perspectives

We believe that research around algorithmic skeletons is a fertile area with
many possible directions. Nevertheless, we restrict this section to research di-
rections which we believe are aligned with the underlying goal of this thesis: the
adoption of skeleton libraries as a mainstream parallel programming model.

7.1.1 Performance Tuning Extensions

The performance tuning model introduced in Chapter 4 opens further research
perspectives. So far the choice of metrics has been somewhat arbitrary, and we
believe that other metrics may provide new insights on the execution of the pro-
gram. Also, the inference tree, used to derive a performance inefficiency cause,
can be further refined to provide newer and more precise causes. For exam-
ple, the current inference tree is very computation oriented. Nevertheless, with
the addition of file transfer support for skeletons presented in Chapter 6, data
distribution will have a significant influence on performance inefficiencies. Addi-
tionally, while the rudimentary blaming mechanism we presented was suitable
for our testcase, we believe that there is still significant room for improvement.

Another research perspective is that the performance tuning methodology is
postmortem. The analysis is performed after the execution of the application.
We believe that the performance tuning model would be a good starting point to
explore autonomic behavior of the skeleton program. Autonomicity would allow
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dynamic tuning of the skeleton applications while being executed. Indeed, we
can expect that some performance inefficiency causes may be dealt with auto-
matically, while others are reported back to the user.

7.1.2 Skeleton Stateness

One of the hypothesis in this thesis corresponds to having stateless algorith-
mic skeletons, as defined in Chapter 3, which in turn implies that muscles are
also stateless functions. If we recall, skeletons were conceived from the domain
of functional programming where this kind of reasoning seems natural and ac-
ceptable to achieve higher degrees of concurrency.

Indeed, while stateless muscles is a somewhat reasonable hypothesis in func-
tional programming, this is very unnatural when reasoning on an imperative,
and more precisely, in an object oriented programming paradigm. For non-
parallel programmers, it is intuitive to reason about algorithms where objects
are shared (referenced) by different parts of the program. These programmers
are thus bewildered by the fact that object sharing between different parts of a
skeleton program is not supported. Something as simple as counting the num-
ber of times a muscle f has been invoked is not possible with stateless skeletons.
The sequential way of solving this problem is very simple: with a counter vari-
able (i) and having f increment its value every time it is invoked (i← i + 1).

The simplest way to deal with a stateful muscles is to sequentialize all access
to it. The danger with this approach is that the lock is too coarse grain. All con-
current access to a muscle function are serialized, and thus parallelism gained
from the skeleton pattern may be lost. Consider for example the nesting of a
stateful muscle f inside a farm skeleton: farm(f). A correctly written sequen-
tial muscle f is now incorrect because concurrent evaluations of f can coexist,
all of them competing for the same variable i. The worst solution to this prob-
lem is acquiring a lock before the evaluation of f and releasing it once f is done,
since this sequentalizes the invocations on f and cancells out the parallelism
introduced by the farm skeleton.

A better approach is to reduce the span of the lock to the access on i. This re-
quires to write f differently, since now the programmer must be aware that the
evaluations of f can occur concurrently. In addition the programmer must have
access to some locking mechanism, which up to now was unnecessary. Unfortu-
nately, this approach brings back the complexities of regular parallel program-
ming to skeletons, which defeats the purpose of introducing skeletons: providing
higher abstractions for parallel programming.

7.1.3 AOP for Skeletons

Readers familiar with Aspect-Oriented Programming (AOP) [KLM+97] will have
noticed that many of the techniques used throughout this thesis, in particular
in Chapter 6, resemble those of AOP.

Indeed, the idea of weaving non-functional aspects using inheritance [CEF02],
in the same way that the FileProxy abstraction has been used to intercept calls
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on File type objects is not new. The dilemma of instantiating aspect augmented
objects has been addressed in AOP using factories [CG07] in similar fashion as
the workspace abstraction factory introduced in Section 6.2.3. And the transfor-
mation of File→ FileProxy→ File, can be framed in the domain of dynamic
aspects [Tan07] and object reclassification [DDDCG01, DDDCG02].

From the AOP perspective, Chapter 6 has provided a specific methodology for
weaving file transfer aspects with algorithmic skeletons, and as such has shown
that AOP like methodologies can be applied to algorithmic skeletons. More gen-
erally, the integration of AOP with distributed programming has already been
proposed for other middlewares such as JAC[PSD+04], J2EE [CG04], ReflexD
[TT06], etc.

Therefore, as [MAD07], we believe that the integration of AOP with algorith-
mic skeleton is a promissing mechanism to support other non-functional aspects
in skeleton programming.

As future work, we would like to generalize the methodologies presented in
this thesis to support other non-functional aspects in algorithmic skeletons. In-
deed, our goal is to provide an AOP model for algorithmic skeleton, which will
allow a tailored integration of other non-functional aspects into skeletons, such
as stateful muscles, statistics gathering, event dispatching, etc.

7.2 Conclusion

The complexity and difficulties of parallel programming have led to the devel-
opment of many parallel and distributed programming models, each having its
particular strengths. Only a few of these models have been embraced as main-
stream, while most remain confined in niches.

In this thesis, we have focused on one of this niche programming models: al-
gorithmic skeletons, which exploits concurrency through recurrent parallelism
patterns. The ambition begind this thesis is to transform algorithmic skeletons,
from a niche, into a mainstream parallel programming model. The idea behind
skeletons is to factor out recurrent parallel parts of applications and provide a
customizable way of using the pattern: a skeleton. The skeleton pattern implic-
itly defines the parallelization and distribution aspects, while sequential blocks
written by programmers provide the application’s functional aspects (i.e. busi-
ness code).

We have proposed a model for algorithmic skeleton programming and imple-
mented this model in Java as the Calcium library. Table 7.1 shows a profile
of Calcium’s characteristics as portrayed for other skeleton frameworks in Sec-
tion 2.3.

The table confirms that Calcium’s combination of characteristics is unique
among other known skeleton frameworks. To summarize, the contributions pre-
sented in this thesis are listed as follows:

• A survey on the state of the art of algorithmic skeleton programming.

• Calcium, a model and a framework for algorithmic skeleton programming
in Java featuring:
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Table 7.1: Calcium Summary

– A library for skeleton programming, with

– Nestable task and data parallel skeletons, and

– Parallel and distributed execution on multiple environments.

• A performance tuning model for algorithmic skeletons and its implementa-
tion in Calcium.

• A type system for nestable algorithmic skeleton and its implementation
using Java Generics in Calcium.

• A File access/transfer support with:

– An active object based file transfer model and its implementation in
ProActive.

– A transparent file access model for algorithmic skeletons and its im-
plementation in Calcium.

During this thesis we have made an effort to address issues both from the-
oretical and practical perspectives. Therefore, most of our results are indepen-
dent from our implementation, while at the same time Calcium is available for
practical experiences.

While we recognize the need for further research and work on the domain, it
is our hope that the issues we have addressed during this thesis will contribute
to help programmers embrace algorithmic skeletons as a main stream program-
ming model.
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Chapter 8

Introduction

De nos jours, la programmation parallèles s’est imposée comme une évidence.
Jamais existé nous avons eu plus de besoin des modèles de programmation par-
allèle pour exploiter la puissance, de plus en plus complexe, des systèmes par-
allèles [Yel08]. D’un côté, des systèmes informatiques a mémoire distribuée
à grande échelle tels que le cluster et le grid computing [FK99] et, de l’autre
des systèmes informatiques parallèles à mémoire partagée grâce à de nouveaux
processeurs multi-core [ABC+06].

Les difficultés de la programmation parallèle ont conduit au développement
de nombreux modèles de programmation parallèle, chacun ayant ses points forts.
Une chose qu’ils ont en commun est que les modèles de programmation par-
allèle cherchent un équilibre entre la simplicité (abstractions) et l’expressivité
(détails), mesuré par la performance.

Néanmoins, de tous les modèles de programmation, seuls quelques-uns ont
été accueillis comme dominants, alors que la plupart restent confinés dans des
créneaux. Dans cette thèse nous nous traitons à un tel modèle: les squelettes
algorithmiques.

8.1 Problematic

Comme l’a reconnu dans le manifeste Cole [Col04], les squelettes algorithmique
offre simplicité, portabilité, réutilisation, performances, et optimisation, mais
n’ont pas encore pas réussi à parvenir à intégrer dans la programmation par-
allèle. Avec cet objectif en tête, Cole du manifeste a proposé quatre grands
principes pour guider le développement de systèmes des squelettes algorith-
miques: minimal conceptual disruption, integrate ad-hoc parallelism, accom-
modate diversity, and show the pay-back.

Si nous regardons l’évolution de la programmation des squelettes algorith-
miques, nous pouvons voir qu’il a beaucoup varié depuis son invention par
Cole [Col91]. Peut-être que le changement le plus significatif a été de réaliser
que les squelettes algorithmiques devraient être fournis comme des bibliothèques
au lieu de langages. En effet, comme on le verra plus tard dans cette thèse, la
plupart des systèmes de squelettes ont été fournis comme des bibliothèques en
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langages orientés objet. Ceci est en accord avec le premier principe du manifeste
de Cole: minimal conceptual disruption.

Les implications d’avoir des squelettes fournis comme des bibliothèques a
changé la façon dont nous envisageons la conception et la mise en œuvre des
systèmes de squelettes, et surtout comment le programmeur interagit avec les
systèmes.

Nous pensons qu’en fournissant des squelettes algorithmiques comme des
bibliothèques, les systèmes de squelettes n’ont plus à fournir de support pour
tous les types d’applications parallèles, mais peuvent se concentrer sur le pre-
mier et quatrième principes de Cole: minimal conceptual disruption et show-
ing the pay-back. L’hypothèse est que les programmeurs utiliseront les biblio-
thèques des squelettes algorithmiques dans leur specialité pour ce dans quoi
ils sont bons: la programmation parallèle structurée, alors qu’ils choisiront un
autre modèle de programmation parallèle pour un domaine dans le quel ils ne
sont pas bons: applications parallèles irrégulières. Ainsi, pour des applications
complexes, un mélange de bibliothèques, chacun implementant un modèle de
programmation parallèle different, seront probablement utilisés.

Plusieurs ouvrages dans la littérature ont affirmé que les modèles de coût
sont une force de la programmation par des squelettes algorithmiques. Bien que
cette propriété soit bonne, d’autres modèles de programmation tels que MPI (qui
n’ont pas de modèles de coûts) se sont multipliés, et sont le utilisés de facto pour
la programmation distribuée. En effet, nous pensons que les modèles de coûts ne
vont pas être la caractéristique qui penchera la balance en faveur des squelettes
algorithmiques.

Par conséquent, dans cette thèse nous poursuivrons d’autres caractéristiques
qui pourraient aider les programmeurs à adopter la programmation avec des
squelette algorithmiques. Les caracteristiques sont la mise au point de la perfor-
mance, le systeme de typage et accès aux fichiers et les transferts transparents.

8.1.1 Objectifs et Contributions

L’objectif principal de cette thèse est la conception et la mise en œuvre d’une
bibliothèque de squelettes algorithmiques capable d’exécuter des applications
en parallèle et distribué sur plusiers infrastructures.

Les principales contributions de cette thèse sont les suivantes:

• Une enquête sur l’état de l’art de la programmation par squelettes algo-
rithmiques.

• Un modèle de programmation des squelettes algorithmiques et son implé-
mentation en Java, au sein de la une bibliothèque Calcium, comportant:
des squelettes composables parallèlisables sur les tâches et les données, et
l’exécution dans de multiples environnements parallèles et distribués.

• Un modèle d’ammélioration de la performance pour les squelettes algorith-
miques, et son implémentation dans Calcium [CL07]
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• Un système de typage pour squelettes algorithmiques composables et sa
implémentation en profitant de Java Generics dans Calcium [CHL08].

• L’accès au transfert de fichier transparent. Tout d’abord, un modèle basé
sur des objets actifs et son implémentation ProActive [BCLQ06, BCL07].
Deuxièmement, un modèle transparent d’accès aux fichiers pour les
squelettes algorithmiques et son implémentation dans Calcium [CL08].

8.2 Présentation

Ce document est organisé comme suit:

• Le Chapitre 2 fournit un état de l’art des squelettes algorithmiques. Le
chapitre commence par une description de modèles bien-connus pour la
programmation parallèle et distribuée. Ensuite, le chapitre fournit une
description de plusieurs systèmes des squelettes algorithmiques. Les de-
scriptions essayent de fournir un bref résumé et de distinguer les princi-
pales caractéristiques de chaque système. Le systèmes des squelettes sont
également comparés et le travail dans cette thèse est positionné par rap-
port à l’état de l’art.

• Le Chapitre 3 fournit une introduction et une description du système pro-
posé: Calcium. Le chapitre commence par une description des squelettes
fournis dans Calcium. Ensuite, le chapitre décrit l’hypothèse sur laque-
lle le modèle de programmation par squelettes de Calcium est construite.
Le chapitre se poursuit avec la formalisation du modèle de programmation
qui montre comment le parallélisme est atteint. Ensuite, le chapitre décrit
comment ce modèle est implémenté en Java, et aussi comment le système
peut supporter de multiples environnements d’exécution. Le chapitre se
termine par un exemple concret: une solution naïve pour trouver des nom-
bres premiers.

• Le Chapitre 4 présente un modèle d’amélioration de performances pour les
squelettes algorithmiques. Ce chapitre vise à rapprocher le performance
debugging au niveau d’abstraction de squelettes algorithmiques. Pour cela,
des mesures de performance sont recueillies et un arbre d’inférence est util-
isé pour trouver la cause possible du performances bug. La cause est alors
liée au squelette et au code qui sont soupçonnés de causer l’exécution du
performances bug. Validations expérimentales sont fait avec un application
des squelettes pour le problème des NQueens.

• Le Chapitre 5 définit un système de type théorique pour les squelettes et
prouve que ce type de système est safe car il garantit la propriété de subject
reduction. Le chapitre aborde ensuite l’implèmentation d’un tel système de
type en Java en utilisant des Generics.

• Le Chapitre 6 définit un modèle transparent et non-invasif pour l’accès
et le transfert des fichiers pour les squelettes algorithmiques. Le modèle
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Figure 8.1: Itinéraires de Lecture Suggérés

est implèmenté en Calcium et des expérimenttations sont faites avec une
application BLAST basée sur des squelettes.

• Le Chapitre 7 conclut cette thèse en fournissant des perspectives de recherche
à venir et en résumant les contributions.

8.3 Itinéraires de Lecture Suggérés

Cette thèse peut être lue de plusieurs manières selon les préférences du lecteur.
Les propositions d’itinéraires sont présentées dans la Figure 8.1 et se détaillent
comme suit:

• Résumé de la Contribution. Cela correspond à l’introduction et la con-
clusion de la thèse qui donnent un aperçu des principales contributions.
L’itinéraire proposé est: 1→7.

• Résumé de la Contribution et Contexte Met en évidence les principales
contributions et le contexte de cette thèse.
L’itinéraire proposé est: 1→2→7.

• Cœur de la Contribution Met en évidence la principale contribution de
cette thèse en profondeur. L’ordre dans lequel les chapitres 4, 5, et 6 sont
lus est indifférent.
L’itinéraire proposé est: 3→ (4 | 5 | 6)

• Complet C’est la lecture complète de cette thèse.
L’itinéraire proposé est: 1→2→ 3→ (4 | 5 | 6)→ 7.



Chapter 9

Résumé

Calcium prévoit trois caractéristiques principales qui élargissent le modèle de
programmation des squelettes algorithmiques: réglage des performances [CL07],
un système de type [CHL08], et un modèle d’accès aux fichiers transparent [CL08].
Cette chaptire les décrit brièvement. Les lecteurs intéressés devraient se référer
à leurs références pour de plus amples détails.

9.1 Réglage du Performance

Les squelettes sont considérés comme un paradigme de programmation de niveau
élevé parce que les détails de niveau inférieur sont cachés du programmeur.
La réalisation de haute performance pour une application est la responsabil-
ité du système des squelettes en effectuant des optimisations sur le structure
de le squelettes [AD99, ADD04], et l’adaptation dynamique à l’environnement
[Dan05]. Toutefois, si ces techniques sont connues pour améliorer les perfor-
mances, par eux-mêmes, ils ne sont pas suffisantes. Les aspects fonctionnels de
la demande (c’est-à-dire le muscle), qui sont fournis par le programmeur, peut
être inefficace ou générer des dégradations de performance dans le système.

Les objectifs principaux du réglage des performances sont les détection de
dégradations de performance, fournir une explication aux programmeurs, et en
suggérant des moyens de résoudre les performance bugs. Le défi se pose parce
que la programmation par squelettes est une modèle programmation de haut
niveau. Tous les détails complexes du parallélisme et de distribution sont cachés
des programmeurs. Par conséquent, les programmeurs ne savent pas comment
leurs muscles auront une incidence sur les performances des applications. In-
versement, le bas niveau d’information du système n’a pas de sens pour les pro-
grammeurs pour perfectionner les muscles de leurs applications.

Une vue global de la méthodologie est illustrée dans la Figure 9.1). Après
l’exécution d’une demande, les mesures de performance sont utilisés pour déter-
miner les causes de l’inefficacité de performance. Une fois les causes sont iden-
tifiées, un processus de blâmer a lieu en considerent le workout des muscles. Le
résultat du processus de blâmer rendre le code muscle suspecté. Les program-
meurs peuvent ensuite analyser les code suspecté, pour affiner leurs applica-
tions.
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Figure 9.1: Performance Tuning

9.1.1 Les Paramètres de Performance

Plusieurs mesures peuvent être obtenus auprès de l’exécution du squelette. Par
exemple, le temps passé par une tâche dans chaque état: Tprocessing, Tready, Twaiting,
et Tfinished. Il a aussi Twallclock, le temps wallclock de l’application; Tcomputing,
le temps accumulés du CPU; et les sur coût de temps: Toverhead = Tprocessing −
Tcomputing, ce qui représente essentiellement le coût des temps de communication
entre le task-pool et les interprèteurs.

De nombreux autres mesures peuvent également être collectées, comme les
granularité des tâches qui peuvent être définies en fonction de la taille, de portée
et la profondeur de l’arbre de sous-tâche (spandepth = size), ou en utilisant le
mesures de temps granularity =

Tcomputing

Toverhead
.

9.1.2 Diagnostic de Performance

Un arbre d’inférence est utilisé pour diagnostiquer les inefficacités de perfor-
mance des squelettes algorithmique. Le diagnostic utilise les mesures de per-
formance pour trouver les causes des performance bugs. Les causes peuvent
correspondre à deux types. Les causes externes, telles que le sur coût du sys-
tème de déploiement, de surcharge du système et les causes réglables telles que
la souscharge des ressources, très grand tâches, très petite tâches, et les bottle-
necks.

9.1.3 Workout des Muscles

Soit m0, ...,mk être une représentation indexé de tous les muscles de code dans
un programme avec des squelettes 4. On dira que le workout est une fonction
qui, étant donné un programme des squelettes et un paramètre d’entrée, après
l’application est exécutée, renvoie une liste de tous les muscles exécutés avec le
temps de calcul pour chaque un:

workout(4, p) = [(mi, t0), ..., (mj, tn)]

Le workout du squelette représente une trace de la façon dont le muscle ont
été exécutés pour ce squelette. Le même muscle peut apparaître plusiers fois
dans le workout avec des différents temps d’exécution.
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9.1.4 Blâmer de Code

Comme les squelettes algorithmiques font des abstractions pour la programma-
tion des couches plus bas de l’infrastructure, le causes des niveau plus bas n’ont
pas de signification pour le programmeur. Par conséquent, nous devons lier les
causes avec quelque chose que le programmeur peut se rapportent, ce qui corre-
spond au muscles qui ont été mis en place par le programmeur. Le processus de
lier de causes de bas niveau avec les code est ce que nous appelons blâmer.

Un mécanisme pour blâmer doit lier chaque cause avec les codes du muscle
suspecté. Ainsi, le blâme doit prendre en considération: les causes de bas niveau
(le résultat du diagnostic de performance), le programme des squelettes, et le
workout des muscles.

9.2 System de Typage

Les muscles sont des boîtes noires pour le bibliothèque des squelettes, et même si
chaque un est exempt d’erreurs, une combinaison inapproprié avec un squelette
peut donner d’erreurs de typage a l’exécution. Cela se produit parce que, au
cours de l’évaluation du programme de squelettes, le résultat d’un muscle est
donné à le prochain muscle comme paramètre. Lorsque le prochain est déter-
miné au moment de l’exécution par le assemblage de squelettes. Un type incom-
patibles entre le résultat d’un muscle et le paramètre du prochaine donne des
erreurs pendant l’exécution, qui sont difficiles à détecter et maîtriser, spéciale-
ment sur les environnements distribués.

Des squelettes non types amènent le programmeur à utiliser des type casts
dans la programmation des muscles. En effet, si le langue de plus haut niveau
des (squelettes) n’est pas capable de transmettre les types entre les muscles,
alors les plus pauvres hypothèse seront prises pour le typage des muscles (par
exemple, dans un langage des squelette non types en Java, les fonctions muscu-
laires accepteron Object comme le type des paramètre et résultats). Dans ce
cas, chaque objet reçu par un muscle doit être type casts dans le bon type, qui est
très senible aux erreurs.

D’autre part, les squelettes types soulage le programmeur de gérer le trasnty-
page de tous les argument des muscles: le système typage vérifié que le type
d’entrée d’un muscle est égal à celui qui a été déclaré comme le type de sortie du
muscle précédent. Les transtypages restent nécessaires lorsque celle-ci serait
exigé par le langage sous’jacent. Pour résumer, le sécurité du type assurée par la
langage sous-jacente est transmis par les squelettes: le sécurité de type est élevé
au niveau du squelette.

Notre contribution consiste à détecter les erreurs de typage des programmes
avec des squelettes, ce qui améliore le safeness de la programmation avec des
squelettes algorithmiques. Despuis l’aspect théorique, nous contribuons en four-
nissant des règles de typage sémantique pour chacun des squelettes dans la lan-
gage. Ensuite, nous prouvons que ces règles de typage en effet satisfont la sureté
du typage. Sur le plan pratique, nous montrons comment le système de typage
proposé peut être implemente dans un bibliothèque des squelettes Java [Micc]
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en prenant l’avantage de Java Generics [BOSW98]. À ce titre, nous montrons
qu’il n’y a plus de transtypages qui sont imposées par le langage des squelettes
dans le muscles et, plus important encore, que toutes les validations de typage
des composition des squelette sont réalisées lors compilation.

Par souci de clarté, nous ne montrerons que le squelette pipe, se référer à
[CHL08] pour les autres squelettes. Pour généralité, nous supposons que les
squelettes sont réduits aux big step sémantiques telles que:

R-PIPE
41(p) ⇓ s 41(s) ⇓ r

pipe(41,42)(p) ⇓ r

9.2.1 Règle de Typage

Pour chaque squelette de la bibliothèque, nous définissons une règle de typage,
comme ce qui suit pour le squelette pipe:

T-PIPE
41 : P → X 42 : X → R

pipe(41,42) : P → R

La règle stipule que si la première étape (41) peut transformer un paramètre
de type P en un résultat de type X, et la deuxième étape (42) peut prendre un
paramètre de type X et rendre un résultat de type R, alors le pipe est typé pour
recevoir un paramètre de type P et rendre un résultat de type R.

9.2.2 Réduction de Sujet

Néanmoins, la règle de typage n’est pas suffisante pour assurer la sécurité du
type. La propriété de réduction de sujet exprime la préservation de type par la
réduction sémantique, ce qui signifie que un type déduire pour une expression ne
changera pas (ou deviendra plus précise) au cours de l’exécution: le type d’une
expression est compatible avec le type de cette expression avant l’évaluation.
Sans cette propriété, aucune des propriétés assurées par le système de typage
est utile. Pour les squelettes, la propriété de réduction de sujet peut prendre la
forme suivante.

SR-4
4(p) : R 4(p) ⇓ r

r : R

Cette propriété doit être prouvée pour toutes les règles du système de typage.
Nous ilustrate ici l’exemple de le squelette pipe.

La propriété de réduction de sujet pourle squelette pipe est:
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Figure 9.2: From theory to practice: T-PIPE rule.

SR-PIPE
pipe(41,42)(p) : R pipe(41,42)(p) ⇓ r

r : R

Proof. Décomposons maintenant ces conclusions en affirmant que pipe(41,42)(p) :
R et pipe(41,42)(p)⇓r, nécessairement:

p : P

41 : P → X 42 : X → R

pipe(41,42) : P → R
T-PIPE

pipe(41,42)(p) : R
APP-4

41(p) ⇓ x 42(x) ⇓ r

pipe(41,42)(p) ⇓ r
R-PIPE

Enfin, nous prouvons que r a le type R comme suit:

p : P 41 : P → X

41(p) : X 41(p) ⇓ x

x : X 42 : X → R

42(x) : R 42(s) ⇓ r

r : R

9.2.3 Squelettes avec Type Sûr en Java

Nous allons maintenant illustrer le système de typage dans le cadre d’un biblio-
thèque des squelettes en Java. Plus précisément, nous utilisons Java Generics
pour préciser notre API des squelettes: les contraintes sur la compatibilité des
types exprimés comme des règles de typage sont traduits par le fait que, dans
l’API des squelettes, plusieurs paramètres ont les mêmes types (générique).

L’idée derrière la sémantique de typage est que, s’il est possible de garan-
tir la compatibilité des types des paramètres, alors le squelette sera correcte-
ment typé. Par conséquent, puisque le programme des squelettes est défini lors
de la construction du objets des squelettes, la validation des types eu effectué
au niveau des constructéurs des classes de squelette. La Figure 9.2 montre
l’analogie entre la sémantique de type et l’implémentation avec Java Generics
pour la règle T-PIPE.

Les premises de les règles du typage sont appliquées à la signature du méth-
ode constructeur du squelette, et la conclusion de les règles de typage se reflète
sur la signature du classes de squelette.



112 Chapter 9. Résumé

Figure 9.3: Proxy Pattern for Files

class Pipe<P,R> implements Skeleton<P,R> {
public <X> Pipe(Skeleton<P,X> a, Skeleton<X,R> b);
}

Les avantages d’utiliser un système de typage pour skeletons avec Java Gener-
ics sont clairs: il n’est pas nécessaire d’implémenter un mécanisme de validation
du typage supplémentaire; les squelettes n’imposent aucun transtypage dans le
code des muscles et, plus important encore, la validation du typage est assurée
lors de la composition des squelettes.

9.3 Transfert de Fichiers

Une grande partie des applications scientifiques distribuées génèrent et manip-
ulent de grandes quantités d’information. On trouve de telles applications dans,
par exemple, les domaines de la bio-informatique, de la physique des hautes
énergies ou encore l’astronomie.

La programmation à squelettes rend nécessaire un mécanisme permettant
aux programmeurs d’utiliser leurs méthodes habituelles (non parallèles) de lecture-
écriture de fichiers dans les muscles. Ce mécanisme ne doit pas forcer l’écriture
de code spécifique pour le transfert de fichiers. Il doit fournir un support efficace
et transparent pour le transfert de fichiers entre l’exécution de muscles.

Malgré l’importance de ce mécanisme, il y a étonnament peu de mécanismes
pour la gestion des fichiers dans les modèles de programmation à squelettes.
La plupart d’entre eux pourrait être amélioré en traitant les aspects de dis-
tribution des fichiers à l’intérieur des muscles, comme par exemple dans AS-
SIST [ACD+06]. Malheureusement, cette stratégie conduit à un mélange de
code non fonctionnel (distribution de données) avec le code fonctionnel.

Par conséquent, nous nous sommes concentré sur l’intégration des abstrac-
tions des données avec un modèles de programmation à squelettes. Nous abor-
dons ce problème en considérant la facilité d’utilisation et la performance du
modèle de programmation. Nous pensons que l’intégration des fichiers de don-
nées avec les squelettes doit se faire de manière transparente et non intrusive,
pour préserver la séparation entre le code fonctionnel et le code non-fonctionnel.
Les programmeurs ne devraient pas avoir à se préoccuper de l’emplacement, de
la circulation ou du stockage des données. En outre, ils ne devraient pas avoir à
modifier leur façon de travailler avec les données. Cela signifie que le mécanisme
ne doit pas imposer de language ou de bibliothèque particulière.
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9.3.1 Transparence avec FileProxy

The Proxy Pattern [GHJV95] is used to achieve transparent access to files. Files
are rendered accessible using the FileProxy object as shown in Figure 9.3. By
intercepting calls at the proxy level, the library is able to detect when a muscle
is accessing a file. In a way, the FileProxy illuminates a specific aspect inside
black box muscles.

9.3.2 Stage-in & Stage-out

Lorsque un paramètre P est soumis à l’environnement du squelette, un Phase-
Soumission (stage-in) des fichiers est effectuée. Tout d’abord, toutes les références
de type File dans P sont remplacées par des références vers des FileProxy. En-
suite, les données de ces fichiers sont stockées dans le serveur de données. Si
une collision de nom se produit ou qu’une erreur de transmission de donnée a
lieu, une exception est immédiatement levée, avant que le paramètre soumis ne
soit effectivement soumis à l’environnement du squelette.

Lorsque le résultat final R a été calculé, une phase-résultat (stage-out) précède
le retour de ce résultat à l’utilisateur. Toutes les références vers des FileProxy
présents dans R sont ainsi remplacées par un objet de type File standard
pointant vers un fichier local qui contient les données distantes.

De même, au cours de l’exécution, et avant qu’un interpréteur n’invoque
un muscle, une phase-soumission est effectuée sur les nœuds de l’interpréteur.
S’il n’est pas déjà présent, un espace de travail (workspace) unique et indépen-
dant est créé. Tout, partie ou aucun des objets FileProxy présents dans le
graphe d’objets de P y seront alors téléchargés, et les possibles références vers
ces FileProxy seront mises à jour avec le nouvel emplacement du fichier.

9.3.3 L’abstraction Workspace

L’abstraction de workspace permet aux muscles de disposer sur le nœud de calcul
d’un espace disque local. Dans le cas ou plusieurs muscles sont exécutés simul-
tanément sur un même nœud, chacun des muscles aura la garantie de disposer
de son propre workspace indépendant.

Le workspace fournit les méthodes suivantes :

interface WSpace{
public File newFile(String name);
public void exec(File bin, String args);

}

La fabrique WSpace.newFile() pourra être utilisée pour créer une référence
de type File dans le workspace. La méthode WSpace.exec(...) pourra être
utilisée pour exécuter une commande native avec des environnements d’exécution
correctement configurés (par exemple le répertoire de travail courant).
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9.3.4 Stockage de Données & Compteur de Références

Nous supposons l’existence d’un serveur de stockage de données, capable de
stocker des données, la récupération des données, et de garder une trace sur
la référence de chaque donné. Le serveur de stockage fournit les opérations
suivantes:

• store(Fx, k) → i. Stocke les données représentées dans le fichier Fx, avec
une compte initial des références k > 0. La fonction retourne un identifiant
unique pour ces données sur le serveur de stockage.

• retrieve(i) → Fx. Récupère les données situé sur le serveur et identifié par
i.

• count(i, δ)→ boolean. Mises à jour le compter de références par δ. Retourne
true si les références est inférieur ou égal à zéro, et false autrement.

Une fois que le compteur de références à atteint zéro pour un fichier, aucune
opération ne sera plus effectuée sur ses données, et la suppression de celles-ci
sera alors laissée à la discrétion du serveur de données.

Au cours de l’exécution d’un programme avec des squelette, les données peu-
vent être créés, modifiés et supprimés. Aussi, le références de type File pointant
vers des données peut être créé, supprimé, et copiés. Par conséquent, il c’est à
la bibliothèque squelette de fournir un appui pour ces comportements par: le
stockage de fichiers nouvelles et modifiées et de garder une compte sur le nom-
bre de reference vers un fichier pour supprimer les données lorsqu’elle n’est plus
accessible.

Au cours de l’exécution d’un programmes avec des squelettes, des données
peuvent être créées, modifiées et supprimées. De même, des références vers des
objets de type File pointant vers ces données peuvent être créées, copiées et
supprimées. Par conséquent, c’est à l’environnement des squelettes de fournir
un support pour ces comportements par: le stockage de données nouvelles ou
modifiées, et la conservation du nombre de références vers un fichier pour per-
mettre la suppression de données lorsqu’elles ne sont plus accessibles.
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Perspectives et Conclusions

10.1 Perspectives

Nous pensons que la recherche autour des squelettes algorithmiques est une ré-
gion fertile avec des nombreuses directions possibles. Néanmoins, nous limitons
cette section sur de recherche qui, selon nous, est alignés avec l’objectif sous-
jacent de cette thèse: l’adoption du squelette bibliothèques comme un modèle de
programmation dominant.

10.1.1 Squelettes sans état

L’une des hypothèse de cette thèse correspond à avoir des squelettes algorith-
miques sans état, tel que défini au Chapitre 3, ce qui implique que les muscles
n’ont pas d’état également. Si nous nous rappelons, les squelettes sont issus du
domaine de la programmation fonctionnelle où ce type de raisonnement semble
naturel et acceptable pour obtenir un plus grand degré de parallélisation.

En effet, alors que l’utilisation de muscles sans état est une hypothèse
raisonnable dans la programmation fonctionnelle, elle n’est pas naturelle quand
on raisone sur un model impératif, et plus particulierment, dans une program-
mation orientée objet. Pour les programmeurs non-parallèle, il est intuitif de
raisonner sur des algorithmes où les objets sont partagés (par référence) par les
différentes parties de l’application. Ces programmeurs sont donc étonnés par le
fait que le partage d’objets entre les différentes parties du squelette sont inter-
dit. Quelque chose simple comme compter le nombre de fois qu’un muscle f a été
invoquée n’est pas possible avec les squelettes sans état. Le moyen de résoudre
ce problème dans le monde séquentiel est très simple: avec un compteur (i) et
ayant f incrementant la valeur de i chaque fois qu’il est invoqué (i← i + 1).

La façon la plus simple de gérér des muscles avec état est de séquencer tout
accès à celui-ci. Le danger avec cette approche est que la serrure est trop gros.
Tous les accès simultané à une fonction musculaire sont séquencés, et donc le
parallélisme acquis dans le squelette peut être perdu. Considérez par exemple la
composition d’un muscle f avec état a l’intérieur d’un squelette farm: farm(f).
Un muscle séquentiel f correctement écrit est maintenant incorrect parce que
plusiuers évaluations concurrentes de f peuvent coexister, toutes pouvant etre
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en train de modifier la même variable i. La pire solution à ce problème est
d’acquérir un verrou avant l’évaluation de f et le relâcher une fois f terminé,
parce que cette solution séquence toutes les invocations de f et annule le paral-
lélisme mis en place par le squelette farm.

Une meilleure approche est de réduire la taille du verrou pour permettant
d’acceder á i. Cela nécessite d’écrire f différemment, car maintenant le program-
meur doit être conscient que les évaluations de f se peuvent produire simultané-
ment. En outre, le programmeur doit avoir accès à un mécanisme de verrouil-
lage, qui, jusqu’à présent, était inutile. Malheureusement, cette approche met
en evidence a complexité bien connue de la programmation parallèle, ce qui va
á l;encontre du but de l’introduction de squelettes: fournir des abstractions plus
élevé pour la programmation parallèle.

10.1.2 AOP pour les squelettes

Les lecteurs familiers avec Aspect-Oriented Programming (AOP) [KLM+97] au-
rez remarqué qu’un bon nombre des techniques utilisées tout au long de cette
thèse, en particulier dans le Chapitre 6, ressemblent à celles de l’AOP.

En effet, l’idée de ne pas melanger les aspects fonctionnels en utilisant
l’héritage [CEF02], de la même façon que l’abstraction FileProxy a été util-
isé pour intercepter des appels des objets de type File n’est pas nouveau. Le
dilemme de l’instanciation des objets augmentée par des aspects a été resolu en
utilisant des methods factory [CG07] de la même manière que la method factory
a été utilisé pour l’abstraction le workspace présenté dans la section 9.3.3. Et les
transformations de File → FileProxy → File, peuvent être encadrées dans
le domaine des aspects dynamiques [DDDCG01, DDDCG02] et de la reclassifi-
cation d’objet.

De la perspective AOP, le Chapitre 6 a fourni une méthodologie spécifique
pour le tissage des aspects transfert de fichiers et squelettes algorithmiques, et
a montré méthodologie comme l’AOP peut être appliquée aux squelettes algo-
rithmiques. Plus généralement, l’intégration de l’AOP avec la programmation
distribuée a déjà été proposé pour d’autres bibliotheques paralleles tels que la
JAC[PSD+04], J2EE [CG04], ReflexD [TT06], etc.

Par conséquent, comme [MAD07], nous pensons que l’intégration de l’AOP
avec les squelettes algorithmiques est un mécanisme prometeur pour soutenir
d’autres aspects non-fonctionnels dans la programmation par squelettes.

Comme travaux futurs, nous souhaitons généraliser les méthodes présen-
tées dans cette thèse pour supporter d’autres aspects non-fonctionnels dans les
squelettes algorithmiques. En effet, notre objectif est de fournir un modèle AOP
pour les squelettes algorithmiques, ce qui permettra une intégration sur mesure
des autres aspects non-fonctionnels dans les squelettes, tels que les état des
muscles, la collecte de statistiques, l’envoi d’événement, etc.
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10.2 Conclusions

La complexité et les difficultés de la programmation parallèle ont conduit au
développement de nombreux modèles de programmation parallèles et distribués,
chacun ayant ses points forts. Seuls quelques-uns de ces modèles sont devenus
dominant, alors que la plupart restent confinés dans des niches.

Dans cette thèse, nous avons mis l’accent sur l’un de ces modèles de program-
mation de niche: les squelettes algorithmiques, qui exploitent la concurrence
par des schémas de parallélisme récurrent. L’idée sous-jacente des squelettes
est de factoriser les parties récurrentes des applications parallèles et de fournir
un moyen de personnaliser les schemas: un squelette. Le squelette définit im-
plicitement les aspects de parallélisation et de distribution, alors que les blocs
séquentiels écrit par les programmeurs fournissent les aspects fonctionnels de
l’application.

Nous avons proposé un modèle pour les squelettes algorithmiques et nous
avons fait un implémentation en Java sous fomre d’une bibliothèque: Calcium.
Le Tableau 10.1 montre un profil des caractéristiques de Calcium comme décrit
pour d’autres bibliothèques de squelettes dans la Section 2.3.

Table 10.1: Calcium Summary

Le tableau confirme que la combinaison de caractéristiques dans Calcium est
unique parmi les autres bibliothèques de squelettes connus.

Au cours de cette thèse, nous avons fait un effort pour aborder des questions
tant du côté théorique que du côté pratique. Par conséquent, la plupart de nos
résultats sont indépendants de notre implémentation , cependent Calcium est
disponible pour des expériences pratiques.

Pour résumer, les contributions présentées dans cette thèse sont les suiv-
antes:
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• Une enquête sur l’état de l’art de la programmation avec des squelettes
algorithmiques.

• Calcium, une bibliothèque de programmation avec des squelettes algorith-
miques en Java avec:

– Une bibliothèque pour la programmation squelette, proposant

– Des squelettes de type tâche et de données parallèle composables, et

– Multiples environnements parallèles et distribués pour l’exécution.

• Un modèle de réglage des performances pour les squelettes algorithmiques
et son implémentation dans Calcium.

• Un système de typage pour les squelettes algorithmiques composables et
son implémentation en profitant du Java Generics dans Calcium.

• Support pour l’accès et transfert des fichiers:

– Un modèle de transfert de fichier basé sur les objets actifs et sa mise
en oeuvre dans ProActive.

– Un modèle transparent d’accès aux fichiers pour les squelettes algo-
rithmiques et son implémentation en Calcium.

Bien que nous reconnaissions la nécessité de poursuivre les recherches et
travaux dans ce domaine, il est de notre espoir que les questions que nous
avons abordées au cours de cette thèse contribuerons à aider les programmeurs
à adopter les squelettes algorithmiques comme l’un des principaux modèles de
programmation.
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Appendix A: Subject Reduction
Proofs

This appendix details the subject reduction proofs that were not given in Sec-
tion 5.2.4.

Seq Preservation

We must prove:

SR-SEQ

seq(fe)(p) : R seq(fe)(p) ⇓ r

r : R

Proof. By decomposing seq(fe)(p) : R and seq(fe)(p) ⇓ r we obtain:

APP-4
SEQ-T

fe : P → R

seq(fe) : P → R p : P

seq(fe)(p) : R

fe(p) ⇓ r

seq(fe)(p) ⇓ r
R-SEQ

Applying APP-F and SR-F we obtain the following inference:

SR-F

APP-F
p : P fe : P → R

fe(p) : R fe(p) ⇓ r

r : R

Farm Preservation

We must prove:

SR-FARM
farm(4)(p) : R farm(4)(p) ⇓ r

r : R

which is done similarly to the case Seq above, except that it uses APP-4 and
SR-4 instead of APP-F and SR-F.
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If Preservation

We must prove:

SR-IF
if(fb,4true,4false)(p) : R if(fb,4true,4false)(p) ⇓ r

r : R

Proof. By decomposing if(fb,4true,4false)(p) : R and if(fb,4true,4false)(p) ⇓ r
we obtain:

p : P

fb : P → boolean 4true : P → R 4false : P → R

if(fb,4true,4false) : P → R
T-IF

if(fb,4true,4false)(p) : R
APP-IF

fb(p) ⇓ {true|false} 4{true|false}(p) ⇓ r

if(fb,4true,4false)(p) ⇓ r
R-IF

Applying app-4 and SR-4 on the right skeleton (∆true or ∆false), we obtain the
following inference:

p : P 4{true|false} : P → R

4{true|false}(p) : R
APP-4
4{true|false}(p) ⇓ r

r : R
SR-4

While Preservation

We must prove:

SR-WHILE
while(fb,4)(p) : P while(fb,4)(p) ⇓ r

r : P

Proof. By decomposing while(fb,4)(p) : P , and while(fb,4)(p) ⇓ r we obtain:

p : P

fb : P → boolean 4 : P → P

while(fb,4) : P → P
T-WHILE

while(fb,4)(p) : P
APP-4

fb(p) ⇓ false

while(fb,4)(p) ⇓ p
R-WHILE-FALSE

fb(p) ⇓ true 4(p) ⇓ s while(fb,4)(s) ⇓ r

while(fb,4)(p) ⇓ r
R-WHILE-TRUE

This is done again by a sub-recurrence on the number of times the skeleton ∆
is executed. The case where fb(p) ⇓ false is trivial because p : P . For the case
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where fb(p) ⇓ true, we must first determine that s : P . Using the recurrence
hypothesis (SR-4) and app-4:

APP-4
p : P 4 : P → P

4(p) : P 4(p) ⇓ s

s : P
SR-4

Now, by applying the sub-recurrence hypothesis on s we have:

SR-WHILE

APP-WHILE
s : P while(fb,4) : P → P

while(fb,4)(s) : P while(fb,4)(s) ⇓ r

r : P

Map Preservation

We must prove:

SR-MAP
map(fd,4, fc)(p) : R map(fd,4, fc)(p) ⇓ r

r : R

Proof. By decomposing map(fd,4, fc)(p) : R and map(fd,4, fc)(p) ⇓ r we obtain:

p : P

fd : P → {Q} 4 : Q→ S fc : {S} → R

map(fd,4, fc) : P → R
T-MAP

map(fd,4, fc)(p) : R
APP-4

fd(p) ⇓ {pi} ∀i 4(pi) ⇓ ri fc({ri}) ⇓ r

map(fd,4, fc)(p) ⇓ r
R-MAP

Applying APP-F and SR-F:

SR-F

APP-F
p : P fd : P → {Q}

fd(p) : {Q} fd(p) ⇓ {pi}
{pi} : {Q}

Therefore pi : Q, and applying APP-4 SR-4:

SR-4
APP-4

pi : Q 4 : Q→ S

4(pi) : S 4(pi) ⇓ ri

ri : S

Thus, {ri} : {S}, and by APP-F and SR-F:

SR-F

APP-F
{ri} : {S} fc : {S} → R

fc({ri}) : R fc({ri}) ⇓ r

r : R
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Fork Preservation

We must prove:

SR-FORK
fork(fd, {4i}, fc)(p) : R fork(fd, {4i}, fc)(p) ⇓ r

r : R

Proof. By decomposing fork(fd, {4i}, fc) : R and fork(fd, {4i}, fc) ⇓ r we obtain:

p : P

fd : P → {Q} 4i : Q→ S fc : {S} → R

fork(fd, {4i}, fc) : P → R
T-FORK

fork(fd, {4i}, fc)(p) : R
APP-4

fd(p) ⇓ {pi} ∀i 4i(pi) ⇓ ri fc({ri}) ⇓ r

fork(fd, {4i}, fc)(p) ⇓ r
R-FORK

Applying APP-F and SR-F:

SR-F

APP-F
p : P fd : P → {Q}

fd(p) : {Q} fd(p) ⇓ {pi}
{pi} : {Q}

Then pi : Q, and applying APP-4 SR-4, we have for all i:

SR-4
APP-4

pi : Q 4i : Q→ S

4i(pi) : S 4i(pi) ⇓ ri

ri : S

Therefore, {ri} : {S}, and from APP-F and SR-F:

SR-F

APP-F
{ri} : {S} fc : {S} → R

fc({ri}) : R fc({ri}) ⇓ r

r : R



Appendix B: The Skeleton Kitchen

This appendix provides a simplified and reader-friendly overview of the concepts
in Chapter 5.

The Skeleton Kitchen is the only kitchen in the world where the preparation
of dishes is organized with skeletons. For example, a breakfast could be prepared
with skeleton in the following way:

The Chef and his apprentices

The Chef is the boss of the kitchen. He decides which skeletons are used to
prepare a dish. Formerly a computer science professor, the Chef decided many
years ago to retire and pursue tastier interests in the domain of gastronomy.
Since then, he has become knowledgeable and skilled in many cooking recipes,
to which he refers as algorithms.

To help the Chef, the kitchen has an army of apprentices (students) who
aspire to learn the ways of the kitchen. Their limited abilities are restricted
mostly to menial tasks such as dish washing, but at least each apprentice is
known to be capable of performing one basic cooking task.

Since the apprentices are so numerous, the Chef actually has a hard time
telling them appart. Most of the time this is not a problem, except when their
basic skill is called upon to handle the most simple and tedious cooking tasks.
On such days the absentminded Chef tends to assign the wrong apprentice to
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the wrong job. Which, unfortunately for the apprentices, results on the Chef
scolding them later on, and of course cleaning up the kitchen mess.

The Omelette Pipe

On the second Friday of October, the Chef likes to celebrates Egg Day by cooking
a tasty omelette. The job is fairly simple and composed of two stages. First the
eggs must be broken and mixed, and then the mix has to be cooked into a tasty
omelette.

After careful thought, the Chef decides, using his vast experience, that pipe
is the best skeleton for the job. He then lectures his students, like every other
year, on how the pipe skeleton works.

“The gray pot is passed to the pipe, taken by an apprentice in the first stage
and cooked. The result contained in the blue pot is then passed to me (the Chef)
waiting on the second stage. I then put my glasses on, check that the contents of
the blue pot are what is expected, cook it, and provide the final result of the pipe
in a red pot.”

As in every year, the Chef decides to assign an apprentice for the first tedious
task of preparing the mix, while he takes responsibility of cooking the mix into
an omelette.

The Chef knows he has three egg skilled apprentices. The first apprentice is
skilled in extracting the yellow from the eggs, the second the white, and the third
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the mix. Since he is unable to distinguish them appart, the only alternative is to
choose one of them at random and assign him to the task. Then, before the Chef
begins the second stage of the pipe, he must put his glasses on and inspect the
blue pot to see if its contents are indeed a mix. If not, the kitchen must stopped,
cleaned up and restarted. This time with another apprentice on the first pipe
stage.

Ofcourse this manual verification process is very tedious for the Chef, as he
never remembers where his glasses are. For the students it is very annoying as
well. First, because the Chef is very secretive and makes them work on a need to
know basis. Thus they cannot tell the Chef when their skill is not suited for the
dish. Second, because its up to them to clean the mess and restart the cooking
from scratch.

Name Tags

The apprentices tired of the situation propose a typing system to the Chef. Their
idea is to wear name tags with their cooking skills.

The students present their idea to the Chef and argue that as long as name
tags are used extensively in the kitchen, there will never be cooking pots with
wrong contents. Furthermore, as a consequence, the Chef will no longer need to
put his glasses on to verify the contens of the pot before cooking.

After careful thought, the Chef tells the apprentices that he is not completely
convinced by their proposal. So he tells them that before financing the manufac-
ture of the name tags, they must prove to him that they will indeed work.
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Taking The Glasses Off

The students, encouraged by the challenge, decide to prove to the Chef that he
no longer requires his glasses to cook. Nevertheless, before they begin they need
to define what cooking is. They use the following rule:

Which states that, when a pipe is cooking, if the contents of the gray pot are
eggs and the pipe can transform eggs into an omelette, then the pipe is cooking
an omelette.

Subject Reduction

Now that everything is ready, the students identify the property which they
want to prove. This property corresponds to subject reduction:

Which states that if the pipe is cooking an omelette, and the pipe does pro-
duce a result (cooking is successful), then this result is indeed and omelette. To
prove this property the students must be able to derive the conclusion of the rule
from the identified premises.

Therefore, the students expand the premises of the property using the reduc-
tion, type, and cooking rules:
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Now they prove the property by restructuring the premises and arriving to
the conclusion of the subject reduction property:

If a gray pot containing eggs is given to an apprentice capable of transform-
ing eggs into mix, then when the student cooks the pot he is cooking a mix. If
the student does produce a result in a blue pot, the contents of the blue pot will
indeed be a mix. If the blue put is then given to the Chef who can transform a
mix into an omelette, then when the chef cooks the blue pot he will indeed cook
an omelette. Finally, when the Chef is finished cooking and produces a result in
the red pot, we can then be sure that the contents of the red pot is an omelette,
and thus the output of the pipe is indeed an omelette.

Which proves that the Chef no longer requires his glasses for cooking an
omelette.
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ADVANCED FEATURES FOR ALGORITHMIC SKELETON
PROGRAMMING

Abstract

This thesis proposes a model for algorithmic skeleton programming. The model fo-
cuses on programming abstractions which offer minimal conceptual disruption for non-
parallel programmers and showing the pay-back. The model aims towards a library
implementation, and therefore focuses on problems and opportunities which arise by
having skeletons as libraries instead of languages.

In summary, this thesis presents a model for algorithmic skeleton programming and
its implementation in Java: Calcium. Among others, Calcium features nestable task
and data parallel skeletons, and supports the execution of skeleton applications on sev-
eral parallel and distributed infrastructures. In other words, Calcium provides a single
way of writing skeleton programs which can be deployed and executed on different par-
allel and distributed infrastructures.

Calcium provides three main contributions to algorithmic skeleton programming.
First, a performance tuning model which helps programmers identify code responsible
for performance bugs. Second, a type system for nestable skeletons which is proven to
guaranty subject reduction properties and is implemented using Java Generics. Third,
a transparent algorithmic skeleton file access model which enables skeletons for data
intensive applications.
Keywords: Algorithmic Skeletons, Performance Tuning, Type Systems, File Transfer

CARACTÉRISTIQUES AVANCÉES POUR LA PROGRAMMATION AVEC
DES SQUELETTES ALGORITHMIQUES

Résumé

Cette thèse propose un modèle de programmation basé sur le concept de squelettes
algorithmiques. Ce modèle se concentre sur les abstractions de programmation parallèle
qui offrent une conception proche de celle des application non-parallèles permettant de
simplifier leur développment. Ce modèle est destiné à être implémenté sous forme de
librairie, et par conséquent se concentre sur les problèmes et les opportunités qu’offre
cette approche plutôt qu’une approche orienté langage.

En résumé, cette thèse présente un modèle de programmation basé sur les squelettes
algorithmiques et son implémentation en Java, nommé Calcium. Calcium supporte
entre autre l’utilisation de squelettes hiérarchiques, les squelettes exploitant le par-
allélisme de données ainsi que l’exécution de ces applications sur différentes infrastruc-
tures parallèles et distribuées. En d’autres termes, Calcium unifie la façon d’écrire les
programmes basés sur les squelettes et permet le déploiement et l’exécution de ceux-ci
sur différentes infrastructures parallèles et distribuées.

Calcium apporte trois contributions principales dans le domaine de la programma-
tion basé sur les squelettes. Premièrement, un modèle d’optimisation des performances
qui permet aux programmeurs d’identifier les parties de codes responsables d’une dégra-
dation des performances. Deuxièmement, un système de typage prouvé, pour squelettes
hiérarchiques, qui garantie les propriétés de réduction et est implémenté a l’aide du
typage générique de Java. Troisièmement, un modèle d’accès aux fichiers qui permet
l’utilisation de squelettes dans les applications traitant des données de façon intense.
Mots-clefs : Squelettes Algorithmiques, Réglage de Performance, Système de Typage,
Transfert de Fichiers
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