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Abstract - This paper aims to provide an overview
and a performance comparison of some parallel and
distributed algorithms for Bermudian-American option
pricing. We use two Monte Carlo based methods to ad-
dress such pricing in the case of a high number of assets
(high-dimension) through continuation values classifi-
cation and optimal exercise boundary computation. Our
implementations are supported by a Java based technol-
ogy grid-aware software framework offering fault tol-
erance, dynamic and aggressive load balancing. This
master-workers grid software framework and the dis-
tributed pricing algorithms have been designed to serve
in the context of financial applications.
Keywords : Grid computing, Bermudian-American op-
tion, optimal exercise boundary, parallel distributed
Monte Carlo simulation.

1 Introduction

The PicsouGrid project was started in 2006 to investi-
gate the application of grid computing techniques to fi-
nancial option pricing. The project has been funded by
the French national research agency (ANR) and has had
industry partners from banks (BNP, Calyon and EDF),
financial software companies (Pricing Partners Paris),
and two groups from INRIA (OASIS and TOSCA). The
work to date has focused on fault tolerance and load
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balancing of parallel European option pricing (see [1],
[2]). European option pricing consists of fairly stan-
dard Monte Carlo (MC) simulations of the trajectories
of an asset price, with the option exercise date fixed in
advance. The latest work has moved on to parallel im-
plementions of Bermudian-American (BA) option pric-
ing algorithms, and is discussed here. American option
pricing, with a variable exercise date (and its discrete
time version, Bermudian options with a fixed set of
equally spaced exercise dates) are much more compu-
tationally intensive, and therefore various approxima-
tion methods exist to improve the tractability of the MC
pricing simulation.

Recent work has explored parametrization MC meth-
ods for the state space or the optimal exercise bound-
ary (for short boundary) for sequential calculation of
BA option pricing. However the computational inten-
sity of these approaches, particulaly in the case of high-
dimension, is an significant barrier to adoption. We ad-
dress this problem by using a parallel approach. For
instance, there are already some parallel algorithm for
BA option pricing, such as Huang (2005) [6] or Thu-
lasiram (2002) [9], which are based on the binomial
lattice model and Muni Toke (2006) [10] which uses
a MC approach but with a very limited number of pro-
cessor. In this paper we examine on two approaches,
the first one from Ibanez and Zapatero (2004) [7] which
computes the optimal exercise boundaries and the sec-
ond from Picazo (2002) [5] which uses the classification
of continuation values. These two methods are similar
in the recursive time programming so that at a given
exercise opportunity we use many small independent
packages of MC simulation to compute the continua-
tion values. Next, they classify these values or use them
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to compute the boundary then in the final phase they
use a standard, but large, MC simulation to pricing the
option with the parameters calculated ealier. The MC
method is often used in option pricing but still results
in long computaion times for in high-dimensional prob-
lems. Ibanez and Zapatero (2004) state that the bound-
ary calculation for 5 assets takes two days [7], which
is clearly too long for modern financial markets. The
use of grid computing to achieve practical run times
has been gaining in computational finance. Luckily, the
standard MC simulation is easily for parallelized so we
can profit from this to decrease the computational time
by using the grid.

In this paper, we have implemented a client - server
architecture and exercised the distributed algorithms on
it with a large number of processors. For the perfor-
mance comparison, we validated the accuracy of our al-
gorithms for pricing the option on one asset. We then
also demonstrated the parallel efficiency of our algo-
rithms for the case of multiple assets.

2 The Classification - MC ap-
proach

The MC approachs for BA option pricing is largely
based on the continuation value estimation. For exem-
ple the popular Least Square method of Longstaff and
Schwartz [8] uses the regression method to estimate the
continuation value at a given time then compares this
value to the exercise value. We have implemented also
his method for refrence. Here we are interested in de-
scribing the Classification - Monte Carlo approach (for
short CMC) which was introduced by Picazo [5]. This
approach is based on the observation that at a given ex-
ercise time the option holder makes his decision in view
of (exercise value− continuation value) is positive
or negative. Picazo also uesd a classificantion algorithm
to do this instead of a regression algorithm of higher
complexity.

We describe here the algorithm that is used to char-
acterize the boundary at each opportunity. Denote x a
variable in an input space Ω ⊂ Rd and y = β(x, ε) for
some k − dimensional random vector ε. We focus to
find the regions of the input space Ω where E(y|x) > 0
as well as where E(y|x) < 0. In case of option pric-
ing where the underlying’s price S follows a geometric
Brownian motion (GBM) with risk free rate, the vari-
able y = β(x, ε) would be the difference between the

value of continuation and the exercise value at a given
time step t where ε ∼ N(0, 1) and x = St. The prob-
lem becomes to find the function F (x) having the same
sign with E(y|x) using the AdaBoost algorithm [5].

In the second step the option is priced by standard
MC simulation taking the advantages of the characteri-
zation of F (x), so for the ith we get the optimal stop-
ping time τi = min {t ∈ {t1, t2, ..., tM}|Ft(Si

t) > 0}.

3 The MC - optimal exercise
boundary computation ap-
proach

Ibanez and Zapatero focused on building a full bound-
ary in a form of a polynomial curve with the dimension
depends on the number of underlying assets. At a given
exercise opportunity, they do a linear-interpolation or
regress a quadratic or cubic function, and get a parame-
terization of this boundary. In the last phase, a MC sim-
ulation is run until the price trajectory reaches the dy-
namic barrier (boundary). Following Broadie and De-
temple (1997) [3], Ibanez and Zapatero comment that
for an option on maximum of M assets there are M
separate exercise regions, characterized by M bound-
aries which are monotonic and smooth curves ∈ space
R(M−1). However, for the problems where these prop-
erties can not be easily established (e.g. pricing swap-
tions in a general enough multi-factor term-structure
model),the algorithm would have to be revisited. The
main advantages of this method is that it provides to
the option holder a full parameterization of the bound-
ary and the exercise rule. The another convenience is
the greeks hedging but this work will not be involved in
this paper.

4 The parallel distributed imple-
mentations

4.1 The Classification - MC approach

4.1.1 The complexity of the algorithm

Let O() denote the complexity of the algorithm. In
the classification phase we have to simulate N1 paths
with a finite number of exercise opportunities m =
1, ..., NT . At a given opportunity, we simulate an-
other N2 paths to compute the continuation values. In
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this step we repeat a non-parametric regression on N2

points to get the classification of the characterization
of the boundary at this given date and this computation
takes n iterations to converge. The complexity will be
O(N1×m×N2×n). Then we go to the second phase
to compute the option value by simulating N a large
number of standard Monte Carlo with m exercise op-
portunities. The complexity of the final phase will be
O(N × m). In total, we have the complexity of the
method is: O(N1 ×m×N2 × n + N ×m). It can be
observed that :

• Each point of the set N1 points will be a seed
which we use to simulate an independent package
of N2 simulation paths.

• From the exercise opportunity m backward to m−
1 we use the Brownian motion bridge to simulate
the price of the underlying.

• The complexity of the method is linear in the case
of multiple assets option.

With these observations, we present our parallel ap-
proach in the next section.

4.1.2 The parallel algorithm

At m = NT we generate N1 paths of the price of the
underlying Si

m, i = 1, .., N1 then apply the Brownian
motion bridge to get the price at time m = m− 1. De-
note xi = Si

m, we then divide the N1 paths by nb tasks
then distribute them to a number of workers, each task
has N1

nb paths. On receipt of a task, each worker simu-
lates N2 paths from each point in the task to compute
the corresponding continuation value, then calculate the
value yj = (exercise value − continuation value),
j = 1, .., N1

nb . The server collects the yj from the work-
ers until it has sufficient nb tasks. It then does a non-
parametric regression with the set (xi, yi)N1

i=1 to get the
signature of the function Fm(x) mentioned above in
section (2). After having the signature of Fm(x) at time
m, we repeat the same procedure in a recursive way for
all earlier time intervals [m−1, 1], then go to the second
phase which uses a standard MC simulation to find the
value of the option. We try also to figure out a parallel
approach for the non-parametric regression.

4.2 The MC - optimal exercise boundary
computation approach

4.2.1 The complexity of the algorithm

It can be seen that the two methods have the same
construction for the recursive time programming as-
pect. With a finite number of exercise opportunities
m = 1, ..., NT , at a given opportunity, we simulate only
J independent packages instead of N1 in case of Picazo
to compute the option value at this times in order to
get J optimal boundary points. This procedure requires
n iterations of Newton’s method to converge. In case
of a basket option (d underlyings) each underlying has
its own boundary so the procedure must be repeated d
times. The complexity of the boundary computation is:
O(d× J ×m×N2 × n).
After having all the boundaries at all m exercise op-
potunities weor can go to the second phase to do a
standard Monte Carlo of N paths to compute the price
of the basket option (basket of d underlyings). The
complexity of this phase would be O(d × N × m).
Finally, we have the complexity for the method is:
O(d× J ×m×N2 × n + d×N ×m)

4.2.2 The parallel algorithm

In fact, we can compute separately d boundaries and on
each boundary, the computation of J optimal boundary
points at a given exercise date can be simulated inde-
pendently. Based on these observations, we present our
parallel and distributed approach using the same archi-
tecture as in the case of Picazo.

We discuss here the computation of one boundary.
At m = NT , the boundary is definitively the strike
value. Backward to m = NT − 1, we have to esti-
mate J optimal points from J initial good lattice points
(see [7], [4]) to regress the boundary at this time. We
distribute the J jobs to the workers, on receipt of a
job, each worker simulates N2 paths to compute the
approximate points then use Newton’s method to con-
verge to the optimal point. The server collects J points
to regress the boundary then repeats the same proce-
dure at every point m, in a recursive way, until we reach
m = 1. This is then repeated to calculate the optimal
exercise boundary for all d assets in the basket. To find
the price of the option, we can now compute it by using
standard MC simulation.
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5 Conclusion
We achieved good performances with these two paral-
lel and distributed algorithms for BA option pricing us-
ing a large number of processors in a grid environment.
Future work will add greeks hedging for BA options
with the optimal exercise boundary and further scaling
to large grid environment.
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