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Part I. What is binocular rivalry?
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AMBIGUOUS FIGURES - BISTABLE PERCEPTION
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BINOCULAR RIVALRY
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@ Binocular rivalry: perception switches back and forth between
different images presented to the two eyes

e Two images compete for perceptual dominance; one dominates
for a few seconds before switching to the other
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CHARACTERISTICS OF RIVALRY I
@ Increasing the strength of one rival figure (brighter, moving
rather than stationary, densely contoured) increases the
percentage of time that it is dominant.

@ Periods of suppression are decreased rather than period of
dominance increased - Levelts propositions

@ Fluctuations in dominance and suppression are irregular:
switching times given by a Gamma distribution (Logethetis et al

1996)
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CHARACTERISTICS OF RIVALRY II

@ Perceptual dominance can take on a “patchy” appearance when
the inducing figures are relatively large (Kovacs et al 1996)




CHARACTERISTICS OF RIVALRY III

e Attending to one of the rivalry figures can increase its
dominance - not possible to suppress other image completely

@ Perceptual dominace transitions are not instantaneous.

o Instead, dominance emerges in a wave-like fashion, originating

at one region of a figure and spreading from there throughout
the rest of the figure (Wilson et al 2001)




NEURAL CORRELATES OF BINOCUAR RIVALRY

@ Visual evoked potentials recorded from scalp electrodes on
occipital cortex

@ Functional magnetic resonace imaging (fMRI) - used to identify
brain regions in which blood oxygen level dependent (BOLD)
signals fluctuate in synchrony with binocular rivalry

o Flutuating BOLD signals that are highly correlated with
observers’ perceptual reports have been found in primary visual
cortex (grating stimuli) and higher-order visual areas (faces,
buildings)



WAVES MEASURED BY FMRI (LEE ET AL 2005)
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SINGLE UNIT RECORDINGS IN AWAKE PRIMATES

o Primate trained to operate a lever to indicate which of two
competing monocular stimuli is dominant over time

@ Activity recorded in single cells correlated with animal’s
perceptual reports.

@ Experiments showed that inhibition of reponses is evident as
early as primary visual cortex (Leopold and Logethetis 1996).
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Part II. Models of binocular ri-
valry



COMPETITIVE NETWORK MODEL (NO SPACE)

m recurrent excitation m

fast activity u(t) cross fast activity v(t)
inhibition )
slow adaptation qu(t) slow adaptation qv(t)

left eye T T right eye

@ Two populations of cells driven by left and right eye stimuli,
respectively

@ Recurrent excitatory connections within a population, mutual
inhibition between populations

o Each population exhibits some form of slow adaptation - spike
frequency adaptation or synaptic depression



COMPETITIVE NETWORKS 11

Many studies of rivalry in competitive networks
o Laing and Chow (2002)
@ Taylor, Cottrell and Kristan (2002)
e Wilson (2003)
@ Shpiro et al (2007,2009)
@ Moreno-Bote, Rubin and Rinzel (2007)
o Kilpatrick and Bressloff (2010)
@ Seely and Chow (2011)
@ Diekman et al (2012)
Issues include
@ noise vs. adaptation
@ type of adaptation
@ Levelt’s propositions
@ escape vs. release



COMPETITIVE NETWORK WITH SYNAPTIC DEPRESSION

@ Population activity variables u, v (current,voltage)

u(t) = —u(t) + aequ(t)F(u(t)) — aigo(H)F(v(t)) + I
o(t) = —ov(t) +a.q.(H)F(v(t)) — aiqu(H)F(u(t)) + Ir

@ Depression variables g, g, represent the short-term depletion of
presynaptic resources (slow recovery 7, > 1)

7sdj(#)

(1—q;(t)) — Baj(t)F(u(t)), j=u,v,

’ 0.6mVv
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FIXED POINTS FOR HEAVISIDE RATE FUNCTION
o Offstate U =V*=land Q; =Q} =1

@ On-state or fusion state
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o Left eye dominant state:
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@ Right eye dominant state
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BIFURCATION DIAGRAM (KILPATRICK/PCB 2010)
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o Coexistence of rivalry oscillations and the fusion state
(s = 500,83 =5,a, = 0.4,a; = 1.0, k = 0.05)



DOMINANCE TIMES
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@ Oscillations arise through an escape rather than a release

TL and TR .

mechanism — suppressed population’s activity crosses threshold
before dominant population ceases firing
@ Can construct explicit solution and determine dominance times
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1D RIVALRY WAVES (KANG ET AL 2009)

High contrast trigger
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SPATIALLY EXTENDED COMPETITIVE NETWORK (1D)
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SPATIALLY EXTENDED COMPETITIVE NETWORK (1D)

® [we]mun is the strength of excitation from the nth to the mth
population with the same eye preference

® [Wi]yy is the strength of cross-inhibition between populations
with opposite eye preferences.

@ The weights are assumed to decrease with distance of separation
|m — n| according to an exponential or Gaussian distribution.

@ Sigmoidal firing rate function

Fo

F(H) = 71 n e_n(”_ﬁ)

@ Discrete model useful for simulations. For analytical insights
take a continuum limit = neural field model



NEURAL FIELD MODEL (PCB AND WEBBER 2012)
Left eye network:

70”(6’;’ ) —u(x,t) + /_ z We(x — ¥)qu (¥, HE(u(x', 1)))dx’

- /OC wi(x — x')gy (X', )F(v(x', 1)))dx" + L, (x, )

- 8’1“(;;" Ho_oq_ qu(x, 1) — Bqu(x, t)F(u(x, t))
Right eye network:
P = o+ [ e g DR D)
- /OC wi(x — x')qu(x', )F(u(x', 1)))dx’ + Ly(x, t)
TSW = 1—g,(x,t) — Bgolx, )F(v(x,t)).
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Part III. Traveling fronts



TRAVELING FRONT WITH SLOW ADAPTATION I

@ Suppose system is initially in a right dominated WTA state.

o Perturbation of system initiates a propagating front that
generates a switch from right to left eye dominance

e Adiabatic approximation (7; > 1): If L is size of domain and c is
wavespeed then L/c < 75 so that gj(x,t) ~ Q;,j = u,v

o Consider a traveling wave front solution of the form
u(x,t) = U(E), o(x,t) = V(E), €=x—ct
(U(f) V(E)) — Xy = (Quae + 11— Q’uai) as § — —oo,

(U(£), V(€)) = Xr = (I = Quai, Quae + 1) ,as § = 00



TRAVELING FRONT WITH SLOW ADAPTATION II

@ Threshold conditions

@ If ¢ > 0 then the front represents a solution in which activity
invades a suppressed left eye network and retreats from a
dominant right eye network.

advancing suppressed

percept =———3 retreating dominant
percept =g
u©
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ANALYTICAL SOLUTION I

@ Substitute the traveling wave solution into NF equations for
fixed Qy, Qy and F(u) = H(u — k):

au
—CE +U = Qu f ZUC(é 5 d£/ QZ’ fX Wi 5 5 )dgl +1
dV de el / / -0 !/ !
7Cd7§ +V = QU jX wz’(fff )df 7Ql¢ /—:x: wl(€7€>d£ +1

@ Rewrite equations in integral form

1 /¢
uE) = e8/° [K . / e/ Ux(z)dz — I(1 — ef/f)] ,E>0
0
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ANALYTICAL SOLUTION II

o Uy and ®x defined by

00 z—X
(z) Qu/ ( )dy Qv/_ wz(y)d]/
@X(Z) =

o [“wi-o. [

wi(y)dy.
@ Boundedness of solution as £ — oo (assuming ¢ > 0) implies the
threshold conditions

K

= / e Wx(cs)ds + 1
Jo
H p—

/ e "Ox(—cs)ds + 1
0



SYMMETRY BREAKING
o If Q, = Q, = 1 (no synaptic depression) then

k= / e *Wx(cs)ds + I, /4,:/\ e *WUx(—cs)ds + 1.
0 0

@ Subtracting equations shows that

/OC e ¥ [Ux(cs) — Ux(—cs)]ds =0
0

@ No traveling wave solution, since if ¢ # 0 then

~CS rcs—X

Ux(cs) — Ux(—cs) = — / w,(y)dy — wi(y)dy < 0

J —cs J—cs—X
foralls € [0, 00).
@ Slow synaptic depression (Q, # Q,) breaks the symmetry of the

threshold crossing conditions, leading to a unique (stable)
solution for ¢, X as a function of the network parameters.



WAVESPEED COVARIES WITH ALTERNATION RATE 1/T
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@ Default parameters: a; = 1,4, = 04,0i=1,0, =2, =5,k =

0.05,1 = 0.24,Q, = 0.42,Q, = 0.25
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NUMERICS

@ Fix units by setting 0, = 2,7 = 1. Wavespeed c = 1 in
dimensionless units corresponds to ¢ = ¢,/27 in physical units.

e Kang et. al. (2009) find speeds of order 10 mm/sec. This is
consistent with ¢ = 1 if we take o, ~ 200pum and 7 ~ 10msec.

o Trigger stimulus switched on at time t; and has duration
At = 10, corresponding to 200ms as in Kang et. al. (2009)

@ Size of the excited region Ax ~ ¢,. This is consistent with the size
of perturbation used in the experiments by Kang et. al., which
was of size 0.2 degrees, corresponding to 0.8mm of cortical tissue.



SOLITARY BINOCULAR RIVALRY WAVE

spontaneous oscillations
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WAVESPEED DEPENDS ON PHASE OF STIMULUS ONSET

Kang et al. (2009) used periodic trigger stimuli and averaged over
multiple cycles so lost phase information. Also need to take into
account the effects of noise.



PERIODIC TRIGGER STIMULI AND ADDITIVE NOISE

Introduce additive white noise to the depression dynamics

Tgw =1- q“(x7 t) — ﬁqll(xv t)f(u(x., t)) +olu(x,t)
D g g ) — B o, 6) + ol )
with
<f”(x, t)> = <£v(xv t)> =0
and
(&ilx, t)f](x "))y =d6(x —x')o(t —t')d; i,j=u,v

Consider alternating, periodic trigger stimuli



SWITCHING

SPONTANEOUS VS. PERIODICALLY FORCED

time t

Spontaneous switching

Noise strengthc = 1

600

Periodically forced switching
To=100

Noise strengthc = 1
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BREAKDOWN OF MODE-LOCKING AS NOISE
INCREASES

- power spectrum of U
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RIVALRY WAVES PERSIST FOR SIGMOIDAL FIRING RATE

FUNCTION
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Part IV. Moving stimuli
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ROTATING STIMULI

@ The left (right) eye is presented with a low (high) contrast carrier
(mask) stimulus rotating in an anti-clockwise (clockwise)
direction.

@ A transient increase in the contrast of the carrier stimulus
induces a pair of counter propagating waves.

@ The wave traveling in the same direction as the stimulus reaches
the top first, indicating that it has a higher speed

Left Eye Right Eye Left Eye Right Eye

stimulus Motion sy wave propagation ----3 >



NETWORK MODEL OF DIRECTION SELECTIVITY

o Simplified stimuli: The left (right) eye is shown an oriented
grating moving rightwards (leftwards).

@ Pair of 1D neural fields that represent the activity of neurons
responding maximally to the orientation and motion of the
corresponding grating.

o Gaussian excitatory recurrent connections, cross-inhibition and
slow synaptic depression.

o Introduce an asymmetric shift in excitation of size xj in the left
network and a shift of —xg in the right network.

X0
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— Inhibition
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TRIGGERING STIMULUS

@ Induction of a wave moving in (i) the opposite direction to
stimulus motions and (ii) the same direction as stimulus motion.

@ For annuli stimuli, a local increase in the contrast of the carrier
can induce both waves

@ For linear gratings, a local increase in contrast has to be induced
separately at either one end or the other of the stimulus

carrier mask
(i) e (i) ----9 >
[11/1]1/ i1/

L1\ LL LB VAL

Right Eye

stimulus Motion  eegp- wave propagation ----3 >



TRAVELING WAVEFRONTS (PCB AND SAM CARROLL)

@ Plot of profiles in the co-moving frame £ = x — ct for wave fronts
A
10

traveling in the positive (left) and negative (right) direction
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DIRECTIONAL SYMMETRY BREAKING I

A Space-time plot of traveling fronts with positive wave speed
(left) and negative wave speed (right) with xo = 3

@ Note that U_(x, t) has been reflected about the x = 0 axis for
visual comparison against U (x, t).

B Plot of analytically computed positive and negative wave speeds

against xg
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DIRECTIONAL SYMMETRY BREAKING 1

o Introducing asymmetric shift in cross-inhibition rather than
excitation does not generate observed directional symmetry
breaking

@ Same result holds if a different form of asymmetry is introduced
eg. an asymmetric shift in the spatial rate of decay in the
weights.

@ Sensitive to source of slow adaptation - asymmetric
cross-inhibition works in the case of spike frequency adaptation



Part V. Stochastic rivalry waves
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STOCHASTIC MODEL I (PCB AND WEBBER 2012)

@ Langevin equation (or stochastic PDE) for the stochastic activity
variables U(x, t) and V(x, f):

dau

{u +Qu [ e - yFU )y

av =

—Qv/ wi(x —y)F(V(y, t))derlu} dt+e%dWL,

v Q [l 0y

—Qu / wi(x —y)F(U(y,t))dy + L,] dt + e2dW,
with Q,, Q, fixed.



STOCHASTIC MODEL II

e W,, W, represent independent Wiener processes

0:
26;;jC([x — x'] /A)o(t — t')dtdt’

<dw{uvv} (X, t)>
(dW;(x, HAW; (X', )

where i,j = u,v and (-) denotes averaging with respect to the
Wiener processes.

@ ) is the spatial correlation length of the noise such that
C(x/A) — d(x) in the limit A — 0, and e determines the strength
of the noise, which is assumed to be weak



SEPARATION OF TIME-SCALES I

@ Fluctuations generate two distinct phenomena that occur on
different time—scales (Geier et al 1983,Sagues, Sancho and
Garcia-Ojalvo 2007)

[A] Diffusive-like displacement of the wave from its uniformly
translating position at long time scales

[B] Fast fluctuations in the wave profile around its instantaneous
position at short time scales

@ Decompose solution as (§ = x — ct)
U(x,t) = Uo(& — A(E) + €U (E — At), 1),

V(x,t) = Vo(&— At) + €/2Vi(€ — A(t), t).

where (U, Vp) is deterministic wave solution



SEPARATION OF TIME-SCALES II
@ Substitute into NF equations and expand to O(e'/?)

UL (€, 1) — Lu(Un (€, 1), Vi, 1)) = € 2UG(€)dA(E) + g(Uo)dW,

AV1(€,1) — Lo(Ui (&,1), Vi(&, 1) = € 2V (€)AA(E) + g(Vo)dW,
with Uy = Uy (€,t) and A(t) = O(€/?).

e L,, L, are non-self-adjoint linear operators

L(ALA) = %+A1+Qu / wWalE — EF (Un(€)) Ar(€)de
~0u [ W€~ )P (Va(€)Ax(€)d¢
Lo(ArAy) = d22+A2+Q / W€ — € (Vo(€'))Anl€)de’

~Qu [ wle— )P (e A€



SEPARATION OF TIME-SCALES III

o Let L denote the vector-valued operator with components Ly, L.

That, is
L < Aq > _ ( Ly(A1,Az) )
A Ly(A1, A7)
@ L has a 1D null space spanned by (U}j(€), V§(€))T

@ Solvability condition for the existence of a nontrivial solution:
the inhomogeneous part is orthogonal to all elements of the null
space of the adjoint operator L*.

@ The latter is defined with respect to the inner product

[ B LA - [ B A



SEPARATION OF TIME-SCALES IV

@ Find that
L* < By > _ ( Ly (B1,B) )
B, L;(B1,B2),
where
Li(B1.By) — —cdd% FB U [ e - €)Bi(e)de
P (V)Q / wi(€ — €)Ba(€')de’
and
L*(B1,By) = cizz +B2+F/(V0)Qv/ we(§ — €)Ba(&)de’

F(U)Q, / i — By (€)de

=] =3 = = = DA



SDE FOR A(t)

o The adjoint operator L* also has a one-dimensional null-space
spanned by V(§).
@ Obtain solvability condition

0 = [ v [upeant + 2w, c.n) de

+ [ v [V©da) + a6, .
@ Thus A(t) is a Brownian process with

(A1) =0, (A(H?) =2D(e)t

[ T e+ Va(e)?) LE(€)de

U (EU(E) +Va(€)VH(€)) de

— (=3



RESULTS I: HEAVISIDE F(u) = H(u — k)

@ Snapshots of a stochastic composite wave
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RESULTS 11

@ Determine the stochastic positions X,(f) such that U(X,(t),t) =4,
for various level set values a € (0.5x,1.3k)

@ Mean and variance
X(t) =EX: (1], ox(t) = E[(Xa(t) — X(1))’]
averaged with respect to a and over N trials.

@ X(t) ~ c.t and o%(t) ~ 2D(e)t (after initial transients)
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REsULTS III

o Let T} denote the first passage time (FPT) for the wave to travel a
distance L: cTy, + A(T.) = L given A(0) = 0.

@ FIP density is given by an inverse Gaussian or Wald

distribution:
L I?
f(TL) = F(Ty; ’E D)"
where
1/2 5
F(Tsp,A) = [W} exp (_/\(izruzj/:b) >

u(x,0) f(T)

04 @ 40 (b)
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Part VI. Future directions
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OVERSIMPLIFIED MODEL OF V1

@ The model only represents neurons that fire maximally with
respect to the given monocular image

@ For example, in the case of a vertical grating, we only consider
neurons that fire maximally to vertical orientations

@ Neglects orientation tuning due to recurrent connections
between neurons with different orientation preferences.

@ 1D model cannot handle annulus experiment of Wilson et al
(2001) with varying orientations

@ Speed of wave depends on colinearity of image -
orientation-dependence of long-range horizontal connections



ORIENTATION-DEPENDENCE OF WAVESPEED (WILSON
ET AL 2001)

1

1

Distance
(visual angle around annulus)

162 degnjes s
L 1
5 6
Distance
(visual angle around annulus)

o 30

[m]



REFERENCES AND ACKNOWLEDGEMENTS

@ D C. Bressloff and S. Carroll. Binocular Rivalry Waves in a Directionally Selective
Neural Field Model. Physica D . In press (2014).

© D C. Bressloff and M. Webber. The effects of noise on binocular rivalry waves: a
stochastic neural field model. J. Stat. Mech: special issue (2012).

@ P. C. Bressloff and M. Webber. Front propagation in stochastic neural fields.
SIAM ]. Appl. Dyn. Syst. (2012).

© P. C. Bressloff and M. Webber. Neural field model of binocular rivalry waves. J.
Comput. Neurosci. (2012).

@ P. C. Bressloff. Spatiotemporal dynamics of continuum neural fields: Invited
topical review. J. Phys. A 45033001 (109pp.) (2012).

@ Z. P Kilpatrick and P. C. Bressloff. Binocular rivalry in a competitive neural
network with synaptic depression. SIAM J. Appl. Dyn. Syst. 9, 1303-1347 (2010).

[l THE ROYAL
OCCAM @ ®]& SOCIETY

OXFORD CENTRE FOR COLLABORATIVE APPLIED MATHEMATICS



