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I. Stochastic Fronts



DETERMINISTIC NEURAL FIELD EQUATION
Deterministic neural field equation (Amari 1977)

τ
∂u(x, t)
∂t

= −u(x, t) +

∫ ∞
−∞

w(x− x′)F(u(x′, t))dx′.

u(x, t) is local population activity (voltage or current)
τ is a synaptic or membrane time constant (of order 10 msec),
w(x) denotes the spatial distribution of excitatory synaptic connections
(positive, even function, monotonically decreasing function of |x|)

w(x) =
1

2σ
e−|x|/σ,

where σ determines the range of synaptic connections.

ξ

U(ξ)

κ



DETERMINISTIC NEURAL FIELD EQUATION

F(u) is a nonlinear firing rate function:

F(u) =
1

1 + e−γ(u−κ)

In the high–gain limit γ →∞, this reduces to a Heaviside

F(u)→ H(u− κ) =

{
1 if u > κ
0 if u ≤ κ

Homogeneous fixed point solution U∗:

U∗ = W0F(U∗), W0 =

∫ ∞
−∞

w(y)dy.

F(u)
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TRAVELING FRONT SOLUTION (Heavisides)
Assume front solution of speed c

u(x, t) = U(ξ), lim
ξ→−∞

U(ξ) = U+ > 0, lim
ξ→∞

U(ξ) = 0.

with ξ = x− ct, and

U(0) = κ, U(ξ) < κ for ξ > 0, U(ξ) > κ for ξ < 0

For F(u) = H(u− κ) we have

−cU′(ξ) + U(ξ) =

∫ ∞
ξ

w(x)dx ≡ W(ξ),

Integration yields

U(ξ) = eξ/c
[
κ− 1

c

∫ ξ

0
e−y/cW(y)dy

]
.

Boundedness in limit ξ →∞ for c > 0 implies

κ =
1
c

∫ ∞
0

e−y/cW(y)dy,



TRAVELING FRONT SOLUTION (Sigmoids)

Can extend analysis to a sigmoid using a continuation method
(Ermentrout and McLeod 93).

Suppose that F̃(u) = −u + F(u) has precisely three zeros at u = U±,U0

with U− < U0 < U+ and F̃′(U±) < 0.

There exists a unique traveling front solution with U(ξ)→ U± as
ξ → ∓∞ and speed

c =
Γ∫∞

−∞U′(ξ)2F′(U(ξ))dξ
, Γ =

∫ U+

U−

F̃(U)dU

The sign of c is determined by the sign of the coefficient Γ.
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STOCHASTIC NEURAL FIELD EQUATION

Neural field with additive noise

dU(x, t) =

[
−U(x, t) +

∫ ∞
−∞

w(x− y)F(U(y, t))dy
]

dt + ε1/2dW(x, t).

dW(x, t) is an independent Wiener process

〈dW(x, t)〉 = 0,

〈dW(x, t)dW(x′, t′)〉 = 2C([x− x′]/λ)δ(t− t′)dtdt′

λ is the spatial correlation length of the noise



SEPARATION OF TIMESCALES

Fluctuating term generates two distinct phenomena that occur on
different time–scales (Geier et al 1993,Sagues, Sancho and Garcia-Ojalvo
2007)

A diffusive–like displacement ∆(t) of the front from its uniformly
translating position at long time scales, and fluctuations in the front
profile around its instantaneous position at short time scales .

Decompose solution in moving frame as

U(x, t) = U0(ξ −∆(t)) + ε1/2Φ(ξ −∆(t), t)

where U0 and wave speed c are obtained from the deterministic equation

−c
dU0

dξ
+ U0(ξ) =

∫ ∞
−∞

w(ξ − ξ′)F(U0(ξ
′))dξ′

and d∆(t) = O(ε1/2).



SEPARATION OF TIMESCALES

Substitute decomposition into NF equation and expand to O(ε1/2):

dΦ(ξ −∆(t), t) = L̂ ◦ Φ(ξ −∆(t), t)dt + ε−1/2U′0(ξ −∆(t))d∆(t)

+dW̃(ξ −∆(t), t) +O(ε1/2),

where L̂ is the non–self–adjoint linear operator

L̂ ◦ A(ξ) = c
dA(ξ)

dξ
− A(ξ) +

∫ ∞
−∞

w(ξ − ξ′)F′(U0(ξ
′))A(ξ′)dξ′

for any function A(ξ) ∈ L2(R).

W̃ is a Wiener process with W̃(ξ, t) = W(ξ + ct + ∆(t), t).

The linear operator L̂ has a 1D null space spanned by U′0(ξ) (Ermentrout
and McLeod 1993)



SEPARATION OF TIMESCALES

In terms of the inner product∫ ∞
−∞

B(ξ)L̂A(ξ)dξ =

∫ ∞
−∞

[
L̂∗B(ξ)

]
A(ξ)dξ

the adjoint operator is

L̂∗B(ξ) = −c
dB(ξ)

dξ
− B(ξ) + F′(U0(ξ))

∫ ∞
−∞

w(ξ − ξ′)B(ξ′)dξ′

L̂∗ also has a one-dimensional null-space spanned by some function
V(ξ).

Boundedness of Φ implies solvability condition∫ ∞
−∞
V(ξ)

[
U′0(ξ)d∆(t) + ε1/2dW̃(ξ, t)

]
dξ = 0.



SEPARATION OF TIMESCALES

Thus ∆(t) satisfies the stochastic differential equation (SDE)

d∆(t) = −ε1/2

∫ ∞
−∞
V(ξ)dW̃(ξ, t)dξ∫ ∞

−∞
V(ξ)U′0(ξ)dξ

.

Assuming that ∆(0) = 0, we have

〈∆(t)〉 = 0, 〈∆(t)2〉 = 2D(ε)t

D(ε) is the effective diffusivity

D(ε) = ε

∫ ∞
−∞
V(ξ)2dξ[∫ ∞

−∞
V(ξ)U′0(ξ)dξ

]2 .



EXPLICIT RESULTS FOR HEAVISIDE RATE FUNCTION

Null vector V satisfies the equation

cV ′(ξ) + V(ξ) = − δ(ξ)

U′0(0)

∫ ∞
−∞

w(ξ′)V(ξ′)dξ′.

Has explicit solution (Bressloff 2001)

V(ξ) = −H(ξ) exp (−ξ/c) , c =
σ

2κ
(1− 2κ).

Diffusivity is

D(ε) = ε

∫ ∞
0

e−2ξ/cU0(ξ)
2dξ[∫ ∞

0
e−ξ/cU′0(ξ)dξ

]2 =
1
2
εσ(1 + σ/c)



NUMERICAL RESULTS

Snapshots of stochastic front
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NUMERICAL RESULTS

Time evolution of mean and variance averaged over N = 4000 trials -
use level sets.

Determine the positions Xa(t) such that U(Xa(t), t) = a, for various level
set values a ∈ (0.5κ, 1.3κ) and then define

X(t) = E[Xa(t)], σ2
X(t) = E[(Xa(t)− X̄(t))2]
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NUMERICAL RESULTS

Plot of (a) wave speed c and (b) diffusion coefficient D(ε) as a function of
threshold κ
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II. Simulus-locked Fronts



EXISTENCE OF STIMULUS-LOCKED FRONTS

Moving front stimulus with speed v and amplitude I0 = I(−∞)− I(∞)

∂u(x, t)
∂t

= −u(x, t) +

∫ ∞
−∞

w(x− x′)F(u(x′, t))dx′ + I(x− vt)

Seek a traveling front solution u(x, t) = U(ξ) where ξ = x− vt and
U(ξ0) = κ for some ξ0 ∈ R.

−v
dU(ξ)

dξ
= −U(ξ) +

∫ ξ0

−∞
w(ξ − ξ′)dξ′ + I(ξ).

The threshold crossing condition U(ξ0) = κ determines the position ξ0 of
the front relative to the input as a function of speed v, input amplitude I0

and threshold κ.



EXISTENCE OF STIMULUS-LOCKED FRONTS
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EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

Incorporate an external input into the stochastic NF equation

dU(x, t) =

[
−U(x, t) +

∫ ∞
−∞

w(x− y)F(U(y, t))dy
]

dt

ε1/2I(x− vt)dt + ε1/2dW(x, t)

Separation of time-scales with ξ = x− vt:

U(x, t) = U0(ξ −∆(t)) + ε1/2Φ(ξ −∆(t), t).

Here U0 satisfies the deterministic equation

−c
dU0

dξ
+ U0(ξ) =

∫ ∞
−∞

w(ξ − ξ′)F(U0(ξ
′))dξ′.

where c is the natural speed. Assume v = c +
√
εv1.



EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

Perturbation analysis yields inhomogeneous equation

dΦ(ξ, t) = L̂ ◦ Φ(ξ, t)dt + ε−1/2U′0(ξ)d∆(t) + dW̃(ξ, t) + I(ξ + ∆(t))dt
+v1U′0(ξ)dt

where L̂ is the non–self–adjoint linear operator

L̂ ◦ A(ξ) = v
dA(ξ)

dξ
− A(ξ) +

∫ ∞
−∞

w(ξ − ξ′)F′(U0(ξ
′))A(ξ′)dξ′

for any function A(ξ) ∈ L2(R).

Let V(ξ) span the nullspace of the adjoint operator L̂∗



EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

The solvability condition shows that ∆(t) satisfies the SDE

d∆(t) + G(∆(t)))dt = dŴ(t),

where

G(∆) = ε1/2

∫ ∞
−∞
V(ξ)[I(ξ + ∆) + v1U′0(ξ)]dξ∫ ∞
−∞
V(ξ)U′0(ξ)dξ

and

Ŵ(t) = −ε1/2

∫ ∞
−∞
V(ξ)W̃(ξ, t)dξ∫ ∞

−∞
V(ξ)U′0(ξ)dξ

.



EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

Suppose that there exists a unique shift ∆ = ξ0 for which G(ξ0) = 0 and
G′(ξ0) > 0. This repressnts a stable stimulus-locked state in the absence
of noise.

Taylor expanding about the fixed point by setting Y(t) = ∆(t)− ξ0 with
Y(t) = O(ε1/2) yields the OU process

dY(t) + AY(t)dt = dŴ(t),

where

A =
√
ε

∫ ∞
−∞
V(ξ)I′(ξ + ξ0)dξ∫ ∞

−∞
V(ξ)U′0(ξ)dξ



EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

Have

〈dŴ(t)〉 = 0, 〈dŴ(t)dŴ(t′)〉 = 2D(ε)dtdt′δ(t− t′)

with D(ε) is the same as the zero stimulus case

Using standard properties of an Ornstein–Uhlenbeck process

〈∆(t)〉 = ξ0

[
1− e−At

]
+ ∆(0)e−At,

〈∆(t)2〉 − 〈∆(t)〉2 =
D(ε)

A

[
1− e−2At

]
.

Hence, 〈∆(t)〉 → ξ0 as t→∞. Predicted shift ξ0 relative to the input

The variance approaches a constant D(ε)/A in the large t limit.



HEAVISIDE EXAMPLE

Propagation of stochastic stimulus-locked fronts
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HEAVISIDE EXAMPLE

Mean and variance
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III. Pulled Fronts



FISHER-LIKE NEURAL FIELD MODEL

Consider activity-based NF equation

τ
∂a(x, t)
∂t

= −a(x, t) + F
(∫ ∞
−∞

w(x− x′)a(x′, t)dx′
)
.

Consider piecewise rate function

F(a) = 0 for a ≤ 0, F(a) = a for 0 < a ≤ κ, F(a) = κ for a > κ.

activity a

κ

F(W0a)
a

κ/W0

W0 > 1

(a)

activity a

F(W0a)

(b)

W0 > 1

κ/W0



PULLED FRONTS

Consider a traveling front propagating into an unstable state
Analogous to invading fronts in a nonlocal version of the F-KPP equation

τ
∂p(x, t)
∂t

= D
∂2p(x, t)
∂x2 + µp(x, t)

(
1−

∫ ∞
−∞

K(x− x′)p(x′, t)dx′
)
.

Continuum of front velocities - pulled fronts.
Linear spreading velocity v∗: asymptotic rate at which an initial
localized perturbation spreads into an unstable state

u(x,t)

x

u = a
t0

t1

t2

t3

xa(t3)xa(t2)xa(t1)

speed c*



LINEAR SPREADING VELOCITY

Consider a traveling wave solution A(x− ct) with A(ξ)→ κ as ξ → −∞
and A(ξ)→ 0 as ξ →∞.

Assume that A(ξ) ≈ e−λξ for sufficiently large ξ. Linearized in traveling
wave coordinates (with τ = 1) takes the form

−c
dA(ξ)

dξ
= −A(ξ) +

∫ ∞
−∞

w(ξ − ξ′)A(ξ′)dξ′.

Need to restrict the integration domain of ξ′ to the leading edge of the
front. Suppose, for example that w(x) is given by the Gaussian
distribution

w(x) =
W0√
2πσ2

e−x2/2σ2
.

Introduce a cut-off X with σ � X� ξ, so that

−c
dA(ξ)

dξ
= −A(ξ) +

∫ ξ+X

ξ−X
w(ξ − ξ′)A(ξ′)dξ′.



LINEAR SPREADING VELOCITY

Substituting the exponential solution A(ξ) ≈ e−λξ into (1) then yields
the dispersion relation c = c(λ) with

c(λ) =
1
λ

[∫ X

−X
w(y)e−λydy− 1

]
.

Take the limit X→∞with w(y) an even function

c(λ) =
1
λ

[
Ŵ(λ) + Ŵ(−λ)− 1

]
,

where Ŵ(λ) is the Laplace transform of w(x):

Ŵ(λ) =

∫ ∞
0

w(y)e−λydy.

If W0 > 1 (necessary for the zero activity state to be unstable) then c(λ) is
a positive unimodal function with c(λ)→∞ as λ→ 0 or λ→∞ and a
unique minimum at λ = λ∗.



DISPERSION CURVE

A sufficiently localized initial perturbation (one that decays faster than
e−λ

∗x) will asymptotically approach the traveling front solution with the
minimum wave speed c∗ = c(λ∗). Note that c∗ ∼ σ and λ∗ ∼ σ−1.
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STOCHASTIC MODEL

Stochastic activity-based NF equation

dA(x, t) =

[
−A(x, t) + F

(∫ ∞
−∞

w(x− y)A(y, t)dy
)]

dt + ε1/2dW(x, t)

Introduce slow/fast decomposition

A(x, t) = A0(ξ −∆(t)) + ε1/2Φ(ξ −∆(t), t)

Perturbative analysis breaks down. Find wandering of front is sub
diffusive
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IV. Hamilton-Jacobi theory of sharp fronts



SLOWLY VARYING HETEROGENEITY

Consider the heterogeneous neural field equation

∂a(x, t)
∂t

= −a(x, t) + F
(∫ ∞
−∞

w(x− x′)J(εx′)a(x′, t)dx′
)
.

Slow (non–periodic) spatial modulation J(εx) of the synaptic weight
distribution with ε� 1.

Rescale space and time according to t→ t/ε and x→ x/ε

ε
∂a(x, t)
∂t

= −a(x, t) + F
(

1
ε

∫ ∞
−∞

w([x− x′]/ε)J(x′)a(x′, t)dx′
)
.

Under the hyperbolic rescaling, the front region where the activity a(x, t)
rapidly increases as x decreases from infinity becomes a step as ε→ 0



WKB APPROXIMATION

Introduce the WKB approximation

a(x, t) ∼ e−G(x,t)/ε

with G(x, t) > 0 for all x > x(t) and G(x(t), t) = 0.

The point x(t) determines the location of the front and c = ẋ.

Substituting into NF equation gives

−∂tG(x, t) = −1 +
1
ε

∫ ∞
−∞

w([x− x′]/ε)J(x′)e−[G(x′,t)−G(x,t)]/εdx′.

We have used the fact that for x > x(t) and ε� 1, the solution is in the
leading edge of the front so that we can take F to be linear.

Evaluating integral using steepest descents

−∂tG(x, t) = −1 + w̃(i∂xG(x, t))J(x).

where w̃ is Fourier transform of w.



HAMILTON-JACOBI EQUATION

Equivalent to the Hamilton–Jacobi equation

∂tG + H(∂xG, x) = 0

The Hamiltonian is

H(p, x) = −1 + w̃(ip)J(x)

where

w̃(ip) = Ŵ(p) + Ŵ(−p) ≡ W(p)

with Ŵ(p) the Laplace transform of w(x).

Hamilton–Jacobi equation can be solved in terms of the Hamilton
equations

dx
ds

=
∂H
∂p

= J(x)W ′(p) = J(x)[Ŵ′(p)− Ŵ′(−p)]

dp
ds

= −∂H
∂x

= −J′(x)W(p).



HAMILTON-JACOBI EQUATION

Let X(s; x, t),P(s; x, t) denote the solution with x(0) = 0 and x(t) = x. We
can then determine G(x, t) according to

G(x, t) = −E(x, t)t +

∫ t

0
P(s; x, t)Ẋ(s; x, t)ds.

Here

E(x, t) = H(P(s; x, t),X(s; x, t)),

which is independent of s due to conservation of “energy,” that is, the
Hamiltonian is not an explicit function of time.



CALCULATION OF WAVE SPEED

Suppose that there exists a small amplitude, slow modulation of the
synaptic weights J(x) = 1 + βf (x) with β � 1.

Introduce the perturbation expansions

x(s) = x0(s) + βx1(s) +O(β2), p(s) = p0(s) + βp1(s) +O(β2)

Taylor expand f (x) about x0 andW(p) = Ŵ(p) + Ŵ(−p) about p0

Obtain a hierarchy of equations, the first two of which are

ṗ0(s) = 0, ẋ0(s) =W ′(p0),

and

ṗ1(s) = −f ′(x0)W(p0), ẋ1(s) =W ′′(p0)p1(s) + f (x0)W ′(p0),

These are supplemented by the Cauchy conditions x0(0) = 0, x0(t) = x
and xn(0) = xn(t) = 0 for all integers n ≥ 1.



CALCULATION OF WAVE SPEED II

Lowest order equations have solutions of the form

p0(s) = λ, x0(s) =W ′(λ)s + B0

with λ,B0 independent of s. Imposing the Cauchy data then implies that
B0 = 0 and λ satisfies the equation

W ′(λ) = x/t.

At the next order we have the solutions

p1(s) = −W(λ)
t
x

f (xs/t) + A1,

x1(s) = −W ′′(λ)W(λ)
t2

x2

∫ xs/t

0
f (y)dy +

∫ xs/t

0
f (y)dy +W ′′(λ)A1s + B1,

with A1,B1 independent of s.

Imposing the Cauchy data then implies that B1 = 0 and

A1 = A1(x, t) =W(λ)
t

x2

∫ x

0
f (y)dy− 1

tW ′′(λ)

∫ x

0
f (y)dy.



CALCULATION OF WAVE SPEED III
Given these solutions, the energy function E(x, t) is

E(x, t) = −1 + [1 + βf (x0 + βx1 + ...)]W(λ+ βp1 + . . .)

= −1 +W(λ) + β[W ′(λ)p1(s) + f (x0(s))W(λ)] +O(β2).

Substituting for x0(s) and p1(s) and using the conditionW ′(λ) = x/t, we
find that

E(x, t) = −1 +W(λ) + β
x
t

A1(x, t) +O(β2),

which is independent of s as expected.
Similarly,

∫ t

0
p(s)ẋ(s)ds = λx + βW ′(λ)

∫ t

0
p1(s)ds +O(β2)

= λx + β
W ′(λ)

W ′′(λ)

∫ t

0

[
ẋ1(s)−W ′(λ)f (W ′(λ)s)

]
ds +O(β2)

= λx− β W
′(λ)

W ′′(λ)

∫ x

0
f (y)dy +O(β2).



CALCULATION OF WAVE SPEED IV

Hence, to first order in β,

G(x, t) = t−W(λ)t + λx− βW(λ)
t
x

∫ x

0
f (y)dy.

Determine the wave speed c by imposing G(x(t), t) = 0 and performing
the perturbation expansions x(t) = x0(t) + βx1(t) +O(β2) and
λ = λ0 + βλ1 +O(β2).

Leads to the following result:

x(t) = c0t +
βW(λ0)

c0λ0

∫ c0t

0
f (y)dy +O(β2).

Here c0 is the wave speed of the homogeneous neural field (β = 0).

Finally, differentiating both sides with respect to t and inverting the
hyperbolic scaling yields

c ≡ ẋ(t) = c0 +
βW(λ0)

λ0
f (εc0t) +O(β2).



NUMERICAL RESULTS

Propagating front in a network with a linear heterogeneity in the
synaptic weights, J(x) = 1 + ε(x− l), l = 10, and ε2 = 0.005
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