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I. Stochastic Fronts
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DETERMINISTIC NEURAL FIELD EQUATION
Deterministic neural field equation (Amari 1977)

Ou(x,t o
T ugf ) —u(x,t) + / w(x — x"VF(u(x', t))dx’.
@ u(x,t) is local population activity (voltage or current)
@ 7 is a synaptic or membrane time constant (of order 10 msec),
@ w(x) denotes the spatial distribution of excitatory synaptic connections
(positive, even function, monotonically decreasing function of |x|)
1

w(x) = 75°¢

where o determines the range of synaptic connections.
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DETERMINISTIC NEURAL FIELD EQUATION

@ F(u) is a nonlinear firing rate function:

F(u) = !

1 + e—(u—r)
@ In the high-gain limit v — oo, this reduces to a Heaviside

F(u)%H(ll—l{):{ !

ifu>r
0
e Homogeneous fixed point solution U":

ifu<ek

u* = WoF(U™),

Woz/ w(y)dy.
1
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TRAVELING FRONT SOLUTION (Heavisides)

@ Assume front solution of speed ¢

u(x, t) = U(), lim U(¢) =Us >0, Eliﬁm ue) =0o.

§——o0

with £ = x — ct, and

Uuo)=~r, UE) <kforE>0, U >k for<0

@ For F(u) = H(u — k) we have

—eu© +ue) = [  w()dx = W(e),
£

@ Integration yields

U(e) = /¢ {K _ % | /OIE e*WfW(y)dy] .

@ Boundedness in limit £ — oo for ¢ > 0 implies

K= 1/ e W(y)dy,
0
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TRAVELING FRONT SOLUTION (Sigmoids)

@ Can extend analysis to a sigmoid using a continuation method
(Ermentrout and McLeod 93).

e Suppose that F(i) = —u + F(i) has precisely three zeros at u = U, Uy
with U_ < Up < Uy and F'(U+) < 0.
@ There exists a unique traveling front solution with U(¢) — U+ as

& — Foo and speed

r

c= [SS) 2
S U©F

u@Ede :/

Uy
F(u)du

@ The sign of c is determined by the sign of the coefficient I'.
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STOCHASTIC NEURAL FIELD EQUATION

@ Neural field with additive noise

dUu(x,t)

[—U(x, t) + / - w(x —y)F(U(y, t))dy| dt + £'*dW (x, t)

@ dW(x, t) is an independent Wiener process

(@dW(x,t)) = 0,
(dW (x, )dW (x', "))

2C([x — x"]/N)d(t — ) dtdt
@ )\ is the spatial correlation length of the noise




SEPARATION OF TIMESCALES

@ Fluctuating term generates two distinct phenomena that occur on
different time—scales (Geier et al 1993,Sagues, Sancho and Garcia-Ojalvo
2007)

o A diffusive-like displacement A(t) of the front from its uniformly
translating position at long time scales, and fluctuations in the front
profile around its instantaneous position at short time scales .

@ Decompose solution in moving frame as
U(x,t) = Uo(€ — A1) +¢20(¢ — A(t), 1)
where Up and wave speed c are obtained from the deterministic equation

TR e = [ i w(€ — € )F(Us(¢))de

and dA(t) = O(e'/?).



SEPARATION OF TIMESCALES

e Substitute decomposition into NF equation and expand to O(¢'/?):

dB(E — A1) = Lo®(¢—A(r), )t +e ' 2Up(€ — AN)AA()
+AW(E — A1), 1) + O(?),
where L is the non-self-adjoint linear operator

Loa@) = < -a©+ [ wle— P U)aEH

for any function A(¢) € L2(R).
o W is a Wiener process with W(E, 1) = W(E +ct + A(t), B).

@ The linear operator L has a 1D null space spanned by Up(€) (Ermentrout
and McLeod 1993)
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SEPARATION OF TIMESCALES

@ In terms of the inner product

[ Beota@d = [ [EB©)] e
the adjoint operator is

B =

CB() + F(U(€)) /’w w(é — €)B(E )
V(e).

— 00
@ L* also has a one-dimensional null-space spanned by some function

@ Boundedness of ® implies solvability condition

/7 Z V() [ug(g)dA(t) T 2awe, t)] ¢ = 0.




SEPARATION OF TIMESCALES

@ Thus A(t) satisfies the stochastic differential equation (SDE)

/ [ v na
AA(t) = —'/? =22

| v©uiee
@ Assuming that A(0) = 0, we have

@ D(e) is the effective diffusivity

[ vierde
D) = e«

[_ / o;_:(f)ué(f)df] :



EXPLICIT RESULTS FOR HEAVISIDE RATE FUNCTION

@ Null vector V satisfies the equation

Vi(©) +v(e) = - 2

- w(EHV(EHde
o v
@ Has explicit solution (Bressloff 2001)

V(§) = —H(&) exp (=¢/c)

o

= —(1-2kr).
c 2,%(1 K)
e Diffusivity is

/:O e/ Uy (¢)"dg
D(e) =«

[T e

5 = 550(1 +o/c)



NUMERICAL RESULTS

@ Snapshots of stochastic front
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NUMERICAL RESULTS

@ Time evolution of mean and variance averaged over N = 4000 trials -
use level sets.

@ Determine the positions X,(t) such that U(X,(t),t) = a, for various level
set values a € (0.5k,1.3x) and then define

X(t) = E[X.(D)],  ox(t) = E[(Xa(t) = X(1))’]
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NUMERICAL RESULTS

@ Plot of (a) wave speed c and (b) diffusion coefficient D(¢) as a function of
threshold
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I1. Simulus-locked Fronts

=] F = E £ DA



EXISTENCE OF STIMULUS-LOCKED FRONTS

@ Moving front stimulus with speed v and amplitude Iy = I(—o0) — I(c0)
Ou(x,t)
ot

—u(x,t) + /OC w(x — x")F(u(x', t))dx" + I(x — ot)

@ Seek a traveling front solution u(x,t) = U(£) where { = x — vt and
U(&) = k for some & € R.

AU

~§0
= —u©+ [ e - +166).
@ The threshold crossing condition U(&) = x determines the position & of
and threshold k.

the front relative to the input as a function of speed v, input amplitude Iy




EXISTENCE OF STIMULUS-LOCKED FRONTS
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EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

@ Incorporate an external input into the stochastic NF equation

dUu(x,t)

{fll(x, ) + /m w(x —y)F(U(y,t))dy| dt

e 21(x — vt)dt + £ 2dW (x, )
@ Separation of time-scales with £ = x — vt:

U(x, 1) = Uo(€ — A(t)) + /7@€ — A(b), 1).
@ Here Up satisfies the deterministic equation
dau
*CT; + U

©-/ T w(e - EFU(E))de’

where c is the natural speed. Assume v = ¢ + /ev;.




EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

d(¢, 1)

@ Perturbation analysis yields inhomogeneous equation

Lo®(& tydt +e ' PUp(E)AA(E) + dW(E, £) + I(€ + A(t))dt
+U1U6(E)dt

where L is the non-self-adjoint linear operator

_ 94
LOA(&’) = UT
for any function A(€) € Lo(R).

4O+ [ - P UENAE)E
R
e Let V(¢) span the nullspace of the adjoint operator L*




EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

@ The solvability condition shows that A(t) satisfies the SDE
where

AA(H) + G(A())dt = dW(t),

//MV@W@+AwaMm%
G(A) = g'/?====

/MV@ﬂMQ%
and




EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

@ Suppose that there exists a unique shift A = & for which G(&) = 0 and

G’ (&) > 0. This repressnts a stable stimulus-locked state in the absence
of noise.

@ Taylor expanding about the fixed point by setting Y (t) = A(f) — & with
Y(t) = O(¢'/?) yields the OU process

dy(t) + AY(t)dt = dW( ),
where

| v




e Have

EFFECTS OF EXTRINSIC NOISE ON STIMULUS-LOCKED FRONTS

(@dW () = 0,

with D(e) is the same as the zero stimulus case

(dW()dW(t')) = 2D(e)dtdt' 5(t — ')

@ Using standard properties of an Ornstein-Uhlenbeck process

(Al) =& [1-e ] + A0,
(A7) - ) [1-e].

@ Hence, (A(t)) — & as t — oo. Predicted shift & relative to the input

(@) =2

@ The variance approaches a constant D(¢) /A in the large ¢ limit.




HEAVISIDE EXAMPLE

@ Propagation of stochastic stimulus-locked fronts
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HEAVISIDE EXAMPLE

@ Mean and variance
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II1. Pulled Fronts
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FISHER-LIKE NEURAL FIELD MODEL

@ Consider activity-based NF equation

Oa(x,t)
ot T

—a(x,t) + F (/ w(x — xa(x', t)dx/>
o Consider piecewise rate function

F(a) =0fora <0,

F(a) =afor0<a <k, F(a)=rfora> k.
<
F(Wga) . F(Wga)
@ ’o/
I l
/W activity a

(b)

K/WO activity a




PULLED FRONTS

o Consider a traveling front propagating into an unstable state

&p(x,t)
o~ P7aa

@ Analogous to invading fronts in a nonlocal version of the F-KPP equation
op(x, 1)

ox

+ up(x, t) (1 - / K(x — x')p(x'.t)dx') .
@ Continuum of front velocities - pulled fronts.

u(x,t) 4

@ Linear spreading velocity v*: asymptotic rate at which an initial
N

localized perturbation spreads into an unstable state

Xa(t1) Xé(fz)




LINEAR SPREADING VELOCITY

@ Consider a traveling wave solution A(x — ct) with A(§) - kas & — —o0
and A(§) - 0as & — oo.

A©

@ Assume that A(€) &~ e *¢ for sufficiently large ¢. Linearized in traveling
wave coordinates (with 7 = 1) takes the form
s

— A+ / w(é — €)AE)de
distribution

@ Need to restrict the integration domain of £’ to the leading edge of the
front. Suppose, for example that w(x) is given by the Gaussian

w(x) = Wo

efxz / 252
V2mo?
@ Introduce a cut-off X with 0 < X < &, so that

E+X
@)+ [l - €)AE)E




LINEAR SPREADING VELOCITY

e Substituting the exponential solution .A(¢) ~ e~ ** into (1) then yields
the dispersion relation ¢ = ¢(\) with

c(A) = % {/X w(y)e Mdy — 1} .

—X
@ Take the limit X — oo with w(y) an even function

() =

[W(/\) +W(=N) — 1} ,
where W(A) is the Laplace transform of w(x):

W(A) = /O w(y)efA}/dy.

@ If Wy > 1 (necessary for the zero activity state to be unstable) then c(\) is
a positive unimodal function with ¢(A\) — coas A = 0 or A — oo and a
unique minimum at A = \*.




DISPERSION CURVE

@ A sufficiently localized initial perturbation (one that decays faster than
—A*x . . . . .
e ) will asymptotically approach the traveling front solution with the

minimum wave speed c* = c(\*). Note that c* ~ o and \* ~ o~}
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STOCHASTIC MODEL

@ Stochastic activity-based NF equation

[e’s}

dA(x,t) = {fA(x., t)+F ( / w(x — ) Ay, t)dy)} dt + &AW (x, t)

—oo

@ Introduce slow/fast decomposition

A(x,1) = Ao(€ — A1) +'2@(¢ - A(D), 1)

@ Perturbative analysis breaks down. Find wandering of front is sub

diffusive
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IV. Hamilton-Jacobi theory of sharp fronts
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SLOWLY VARYING HETEROGENEITY

o Consider the heterogeneous neural field equation

Oa(x,t)
ot B

distribution with ¢ < 1.

—a(x,t) + F (/_: w(x — x")](ex")a(x', t)dx’)

@ Slow (non-periodic) spatial modulation [(ex) of the synaptic weight

Eaa({x, f)
ot

@ Rescale space and time according to t — t/e and x — x/e

= —a(x,t)+F (1 /jo w([x — x’}/s)](x')a(x',t)dx') .

@ Under the hyperbolic rescaling, the front region where the activity a(x, f)
rapidly increases as x decreases from infinity becomes a step as e — 0




WKB APPROXIMATION

@ Introduce the WKB approximation

a(x,t) ~ e Ctnh/e
with G(x, f) > 0 for all x > x(¢) and G(x(¢),t) =0

@ The point x(t) determines the location of the front and ¢ = x.
@ Substituting into NF equation gives

*G[G(x., f) = -1+ -

.

w(lx — x']/e)] (x')e & N=CEDI/2 gy
@ We have used the fact that for x > x(¢) and ¢ < 1, the solution is in the
leading edge of the front so that we can take F to be linear.

@ Evaluating integral using steepest descents

where w is Fourier transform of w.

—0:G(x,t) = =1 + w(i0:G(x, 1))](x)




HAMILTON-JACOBI EQUATION

@ Equivalent to the Hamilton—Jacobi equation

&G + H(0:G,x) = 0

@ The Hamiltonian is

H(p,x) = =1+ w(ip)](x)
where
@(ip) = W(p) + W(=p) = W(p)
with W(p) the Laplace transform of w(x).

@ Hamilton-Jacobi equation can be solved in terms of the Hamilton
equations

Z*f B %? = J@)W (p) = J@)[W'(p) = W' (-p)]
dp OH

s = T ox = —]/(X)W(P)A
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HAMILTON-JACOBI EQUATION

o Let X(s; x,t), P(s; x, ) denote the solution with x(0) = 0 and x(t) = x. We
can then determine G(x, t) according to
t
G(x,t) = —E(x, H)t + / P(s; x, )X (s; x, t)ds.
0
@ Here

E(x,t) = H(P(s; x, t), X(s; x, 1)),

which is independent of s due to conservation of “energy,” that is, the
Hamiltonian is not an explicit function of time.




CALCULATION OF WAVE SPEED

@ Suppose that there exists a small amplitude, slow modulation of the
synaptic weights J(x) = 1 + gf(x) with § < 1
@ Introduce the perturbation expansions

x(s) =

x0(s) + Bxi(s) + O(B%),  p(s) = po(s) + Bpi(s) + O(B?)
@ Taylor expand f(x) about xo and W(p) W

= W(p) + W(—p) about po
@ Obtain a hierarchy of equations, the first two of which are

and

po(s) =0, o(s) = W'(po),
pi(s) = —f (x0)W(po), ¥1(s) =W (po)pi(s) +f(x0)W'(po),
@ These are supplemented by the Cauchy conditions xo(0) = 0, xo(t) = x
and x,(0) = x,(t) = 0 for all integers n > 1




CALCULATION OF WAVE SPEED 11

@ Lowest order equations have solutions of the form

po(s) = A, xols) = W (N)s + Bo
with X, By independent of s. Imposing the Cauchy data then implies that
Bo = 0 and X satisfies the equation

W' (A) = x/t.
@ At the next order we have the solutions

—W if(xs/t) + A

t2 xs /t
W W)

xs/t
= | fWdy+
Jo
with Ay, B; independent of s

x1(s) =

fW)dy +W"(N)Ais + Bi,
@ Imposing the Cauchy data then implies that B; = 0 and

A= /f

A1(Y f

- v . fo

[m]
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CALCULATION OF WAVE SPEED III

@ Given these solutions, the energy function E(x, t) is

E(x,t) = =14 [1+ Bf(x0 + Bx1 + .. ) ]IWA+ Bp1 +...)
= —1+ W) + BV (Npi(s) +f (x0(s)) W) + O(57).

@ Substituting for xo(s) and p1(s) and using the condition W'(\) = x/t, we
find that

E(x,t) = =1+ W) + 81 Ai(x, 1) + O(F),

which is independent of s as expected.
@ Similarly,

/p (s)ds = Ax + BW'(A /;ﬁ )ds + O(5%)

=Xx+p

WL o - werov oo s+ o)
o)

= O [ sty + 0)

(=} = =

PANE



CALCULATION OF WAVE SPEED IV
@ Hence, to first order in 3,
G, 1) = £ — W(NE+ Ax — BW(A / £y)

@ Determine the wave speed ¢ by imposing G(x(f), t) = 0 and performing
the perturbation expansions x(t) = xo(t) 4 Bx1(t) + O(B*) and
A= X+ B+ O(B).

@ Leads to the following result:

L AW(N)
X() = cof + N / f)dy +O(5").

Here ¢ is the wave speed of the homogeneous neural field (8 = 0).

o Finally, differentiating both sides with respect to t and inverting the
hyperbolic scaling yields

BW (o)

=x(t) =
c=x(t) =co+ "

F(ecot) + O(B).




NUMERICAL RESULTS

@ Propagating front in a network with a linear heterogeneity in the
synaptic weights, J(x) = 1 +e(x — ), ] = 10, and £* = 0.005
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