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MULTISCALE DYNAMICS
Brain dynamics is noisy at the single cell level...but often observe
coherent states at the macroscopic level
noisy spike trains
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SINGLE CELL RECORDINGS

Single cell recordings in vivo suggest that individual cortical neurons
are noisy with inter-spike intervals (ISIs) close to Poisson (Softy and

Koch 1993)
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LOCAL FIELD POTENTIAL (LFP)

Multisite bipolar LFP recordings
(Destexhe et al 1999)
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“1/t” noise in LFP recordings of
parietal cortex of awake cats (Bedard
et al Destexhe 2006)
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NEURONAL AVALANCHES (BEGGS AND PLENZ 2003,
2004)
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(a) Slice of rat somatosensory cortex. LFP measured at multiple sites
(in superficial layers) by an 8 x 8 multi-electrode array with
spacing 200 pm.

(b) Examples of LFP population spikes
(c) Each LFP spike represents the synchronous activity of multiple

neurons in a local population
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DEFINING AN AVALANCHE

Avalanche i Avalanche A1 Avalanche i#2
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e Each point represents time of occurrence of an LFP spike.
Grouped into an avalanche when peaks occur in contiguous time
bins of width At,ys. Avalanche terminated when there is an

empty time bin

@ Size of an avalanche s is either the number of active electrodes or
the sum of participating LFP spike amplitudes



POWER-LAW BEHAVIOUR
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@ Distribution P(s) of avalanche sizes s is a heavy-tail distribution
that exhibits a power law over several orders of magnitude

P(s) ox s¢

@ Find that o = —1.5 irrespective of value of Aty (2-6 m sec)
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Part I. Neural master equation
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MASTER EQUATION I [BUICE, CHOW AND COWAN
(BCC), BRESSLOFF (PCB)]

@ Consider M homogeneous networks labelled k = 1,. ..M, each
containing N identical neurons

@ Suppose that in the interval [t, t + At), n,(t) neurons in the kth
population fire an action potential or spike

@ Define population firing rate in terms of the number of neurons
that spike in the interval At

n(t)

ak(t) = NAt

@ Treat the number of active neurons n(t) as a stochastic variable
that evolves according to a one-step jump Markov process



MASTER EQUATION II

@ Rates of state transitions n, — 1, &= 1 are chosen so that under a
mean-field approximation one obtains deterministic

Wilson-Cowan equations — transition rates not unique!




MASTER EQUATION III

@ Let P(n,t) withn = (n1,...,ny) denote probability that
m,‘(f) =n; for all i

@ Probability distribution evolves according to birth-death master
equation

dp(dr;’ ) - > {(Tk = 1) (4 (m)p(n, 1) + (T — 1) (Q]j(n)p(n_,t))}

k

where']I‘kilF(...,nk,...) =F(..,m=£1,...)

o Transition rates are (for sigmoid function F)

Ta

o) =%, orm=N2F (Zwkm,/NAt)




MEAN-FIELD APPROXIMATION

@ Multiply both sides of master equation by 1, and sum over all
states n. This gives

%<nk> = Z 1’<Tk,r(n)>

r==%+1
where (f(n)) = > P(n,t)f(n) for any function of state f(n).

o Assume all statistical correlations can be neglected so that
<Tk,r(n)> ~ Tk,r(<n>)

@ Setting a, = (NA#)~!(n;) leads to the mean—field equation

d
Tn%ak = —ar + F (Z ZU/(1611>

1



COMPARISON OF PCB AND BCC MASTER EQUATIONS

@ It’s all about the bin size At!
@ Master equation keeps track of changes in spiking activity.

@ PCB model assumes that network operates in a Gaussian-like
regime close to an asynchronous state for large N. Thus changes
in population activity could be slow ie can set At = 1.

@ BCC model assumes that the network operates in a Poisson-like
regime for large N. Therefore, necessary to take At — 0 as
N — oo with NAt =1 fixed.



EFFECTS OF FLUCTUATIONS

o Can adapt methods from chemical master equations in PCB
model: system-size expansion in N1, Langevin approximation,
WKB or path integral methods for metastable states

@ No small parameter (1/N) in BCC model. However, one can
analyze the moment hierarchy using factorial moments or a loop
expansion of a path integral representation.

@ Both models determine how higher order correlations couple to
mean-field dynamics (see also Touboul, Ermentrout...)

@ BCC model has been used to analyze power law behavior in
terms of directed percolation theory



NEURAL LANGEVIN EQUATION I

@ Set At = 1 and introduce the rescaled variables x; = n;/N and
corresponding transition rates

Q-1 (x) = =, Ya(x) = *F (Z wklxl>
o Carrying out a Kramers—Moyal expansion to second order in

¢ = N~1/2 then leads to the multivariate FP equation
OP

M
Z ai P(x,t)] +
with

V ( ) = Qk_,l(x) — Qk ,1( )

Bi(x) =

Qg1 (%) + Q,1(x)




NEURAL LANGEVIN EQUATION II

o The FP equation determines the probability density function for
a corresponding stochastic process X(t) = (Xi(f), ..., Xum(t)),
which evolves according to the neural Langevin equation

dXi = Vi(X)dt + ebe(X)dWi(t).
with bk(x)2 = Bk(X).

@ Here Wi (t) denotes an independent Wiener process such that

(Wi(t)) =0, (Wi

(H)Wi(s)) = 0k min(t,s).

o Langevin equation captures the relatively fast stochastic
dynamics within the basin of a attraction of a stable fixed point
(or limit cycle) of the corresponding deterministic rate equations

@ Rigorous analysis of Langevin approximation can be carried out
by extending work of Kurtz on chemical master equations
(Buckwar and Riedler 2012)



Part II. WKB approximation and
rare event statistics
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SINGLE-POPULATION MODEL: BISTABLE NETWORK
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BIRTH-DEATH MASTER EQUATION

dP(n, t)

a

Ty (n=1)P(n—1,t)+T_(n+1)P(n+1,t)— (T (n)+T_(n))P(n,t)
@ Birth and death rates

T, (n) = NE(t/N), T_(n)=n,
@ Write steady-state solution in terms of probability current J(n):
J(n+1) =](n), J(n) =

T_(n)Ps(n) — Ty (n—1)Ps(n —1).
@ /(0) =0 = J(n) =0 for all n > 0 so steady-state solution is
_Ty(n—1) -
PS(”) - T (7’1)
with Ps(0) = 1

Ps(n—1) =Ps(0) [ |

Ty(m—1)
2m>1 Ps(m).

m=1 T- (Wl)



STEADY-STATE DISTRIBUTION
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For large N, steady-state solution of master eqn is (x = n/N)
- o),
Ps(x) = Aexp <N/ In 527(3{/)5135

whereas soln of FP eqn is

o ) -0 (),
Ps(x) = A'exp <2N'/ mﬁ)




NOISE-INDUCED SWITCHING

@ Bistable deterministic network with stable fixed points x = x4
and saddle x = x.

@ Noise induces switching between basins of attraction for finite N
— exponentially small escape rates . ~ e N7+,

@ Rare transitions allow network to approach steady state PDF in
limit t — oo

time t (sec)




WKB APPROXIMATION

@ Setx =n/N.
Place an absorbing BC at saddle uy. Eigenvalue expansion of PDF:

P(x,t) = coPo(x)e ™" + ¢, Py (x)e M + ... .

@ Forlarge N, \g ~ e NEo with Eg = O(1). Can identify Ao with
MEFPT to escape basin of attraction of metastable state u_, say.

@ Can approximate Py(x) by a solution to the stationary master
equation with a reflecting BC at u— quasistationary solution

o Take Py(x) to have the WKB form
Po(x) ~ K(x)e NV K(S) =1, W(S) =0,
@ Asymptotic expression for Ay (large-deviation theory)

log )\0 ~ N[W(Xo) — W(X_)}



HAMILTON-JACOBI EQUATION FOR W
@ Expansion in powers of N~! yields Hamilton-Jacobi eqn for W:
oW

H(x,p) =Y Q@) [e? -1 =0, p= N

r==+1
with Q4 (x) = F(wx), Q_(x) =x

o Classical mechanical interpretation: H determines the
motion of a “particle” with position x and conjugate momentum p

OH

5= (Tp = —xe P + F(wx)e’
OH
p= _(;7 = [e*p — 1} + wF' (wx) [¢” — 1]

t is a parameterization of paths rather than time.

@ W(x) with W(S) = 0 determined by action along zero energy
trajectories of Hamiltonian system: most probable fluctuational
path from S to x (in the large—-N limit)



HAMILTON-JACOBI EQUATION FOR W

Since HJ equation is a quadratic in e?, there are two classes of
zero—energy solution

p=0, p=p«(x)=In (1)

Q4 (x)
1.5




MATCHED ASYMPTOTICS

@ Can calculate pre factor using matched asymptotics - need to
match absorbing BC at ug

@ Along an activation trajectory (p = p.(x))
A
Po(x) =

efNW(x)
xF(wx) '

W(x):/'ln{ J ]dy
o Along a relaxation trajectory (p = 0)

Py(x) = b

F(wx) — x
@ Find that exit time from metastable state around x_ is

2
Ao T

1
/=1 +wF (wxg) /] — 1+ wF (wx_)| V x

X0 NIW (x0)~W(x-)]
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Part III. Path-integral formulation
of neural master equation

o F = E £ DA



PATH INTEGRAL FORMULATION [

o Consider the representation of the joint probability density for
the fields ®; = {®;(s),0 < s < t}, with ®; = Nu; and u; satisfying
the deterministic rate equation.

@ Rewrite as an infinite product of Dirac delta functions:

=N][]I]¢ (dﬁb +a®; — NF (Z ,/N)) :

s<t i

@ Introduce the Fourier representation of the Dirac delta function:

Pi# = [ [[D#e @, D~ N [dbio

s<t

where each ®;(s) is integrated along the imaginary axis.



PATH INTEGRAL FORMULATION II

@ Deterministic action is

S[®, | = / ity " ®(t) |9,P; + a®; — NF (Z Wijéj/N)
: - ;
o Path integral representation persists when fluctuations are taken
into account, with modified action

S[®, P

/ dtZ&n

where ¥; = ;fj(I)]- + 9;.

0;®; + a®; — NF (Z WIJ\I///N)
j




MOMENT EQUATIONS

o Given P[®], we can calculate mean—fields according to

(Pr(tr))) = /HD@,@,C(t])p[@] = /HD‘I’I‘/HDE% By (11 )eS12-®]

@ Similarly, two—point correlations are given by

(D (1) Dy (t2)) /HD@ /HDQ) By (1) Dy(t)e 51 2-®]

@ In terms of the physical activity variables m;(f),

my(t)) = anP(n7 t) = ((Pk(t))),

(i (£)m ()> (e (£)) (rm (£
= ((Pr(B)@s(£))) — ((Dx(

H-v
=



LARGE DEVIATIONS I

@ Perform rescaling ®; — ¢; = ®;/N so that we have a
path-integral of the form
P~ [T]Dos [ T[DGe 04
J & J
@ Rescaled action is

/ dt [Z Gi0:6i + H(b, %)]
and

H(¢. g) - Z &;‘ [Oégb,‘ —F (Z Wl]w])]
f j



LARGE DEVIATIONS II

o In the limit N — oo, the path integral is dominated by the
“classical” solutions u(t), u(t):

5S[, @] _o. %Sl¢.9l
dgi(t) o

=i, p=u 3¢i(t) =ii,p=u
@ These equations reduce to

01/11' 787‘[(1/!,5) (C)ﬂ, B 8H(uﬁ)

or ou; ot ou;
@ Hamiltonian dynamical system in which u; is a “coordinate”
variable, u; is its “conjugate momentum”

o Equivalent to WKB Hamiltonian under a canonical
transformation




Part IV. Beyond the neural master
equation
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LIMITATIONS OF THE NEURAL MASTER EQUATION

o Transition rates are not uniquely determined
@ Whatis 7,?

@ Mean-field dynamics given by an activity-based rate equation.
What about a current or voltage-based equation? Unlike number
of active neurons, current is not a discrete variable.

@ Neglects synaptic dynamics ie assumes that time-scale 7 of
synaptic dynamics smaller than At. But At — 0 in Poisson
regime and could be small in Gaussian regime.



VELOCITY-JUMP MARKOV MODEL I (PCB/NEWBY)

@ U(t) is a population averaged synaptic current evolving as
Tduk( Uk + z WklAl

@ The stochastic population firing rate is given by

Nk(t>
NAt

Ai(t) =
@ N (t) evolves according to a one-step jump Markov process

Nk(i’) — Nk(i> +1
with transition rates

NAIF(UY) () _m

Ta / Ta

Q=

o Take limit N — oo, At — 0 with NAf = 1.



VELOCITY-JUMP MARKOV MODEL II

o Example of a stochastic hybrid system

o U(t) is a piecewise deterministic variable coupled to the discrete
jump Markov processes Nj(t)

@ The Markov processes are coupled to U (t) via the transition
rates

@ Introduce the probability density

Pr{Ui(t) € (g, up+du, Ne(t) = nsk=1,..., M} = p(u,n, tjug, ng, 0)du

withu = (ug,...,upm), n=(n,...,nm).



NEURAL CHAPMAN-KOLMOGOROV EQUATION
o 1

Aok (x¥)p(x, t)]
ot * T ;

@ p evolves according to the Chapman-Kolmogorov (CK) equation
Ouy,

= 23 [T 1) - mpx ) + (T = 1) (0 ()
ok
with x = (u,n), and

wy(ug) = Flug), w—(m) =ng, op(x) = —uy + Zwkzﬂz»
k

@ In the limit 7 — 0 for 7, > 0 fixed, we recover the BCC neural

master equation with u = u(n) such that

U (u(n),n) =0




LIMITING CASE 7, < T

@ In the limit 7, — 0 for 7 > 0 fixed we obtain the deterministic
voltage or current-based equation

du(t) ¢
T E;t = 7llk(t)+kz:;wkl<Nk(t)> dt.

where

(Ne(®) = 3 mep(m, u(t)

@ p(n,u(t)) is the steady-state density of the birth-death process

and is given by M independent Poisson processes with rates
F (M k ) :

(Nk(t)) = F(ux(t)).
@ What about the regime 0 < ¢ < 1 with e = 7,/7?



PATH INTEGRAL

@ Path-integral representation of stochastic dynamics

x(1)=x
(x, T|x0,0) =

1
DIpIP exp (25051
X(O) =Xp
with action

o[ [
equation

p)} dt.
a=1
@ )\ is the Perron eigenvalue of the following linear operator

m

ZA(n, n; x)RO (x, p, m)

= [Ao(x, p) vau X, 1)]

a=1

[m]

&

O(x,p,n),

D¢



PERRON EIGENVALUE I

@ Use the ansatz

M ’
Aa X Ne
RO(x p.m) = ] 2P
a=1 @

@ Using the explicit expressions for A and v,, we find that

M

Z:: ([FE@) _1} Mo+ Aa —F(xa)> e
= il’a [—x(Y + Zw(wn@] .
8

a=l1

@ Collecting terms in n,, for each « yields

M
F(x,)
A -1=- Zp[j’wﬁua
“ B=1



PERRON EIGENVALUE II

@ Collecting terms independent of all n, gives
M

a=1

@ Solving for each A, in terms of p, we have

Ao = Z [Aq — F(xa) — Xapa]

M

F(xq
Ezl (xa)

a=1

)‘O(Xv P)

— XaPao — F(xa
- Zf’\le PBWax ’ )



GAUSSIAN APPROXIMATION I

@ Performing the rescaling p — ip/e in path-integral

x(1)=x
P(x,t) =

DIX|DIp]
x(Oj =Xp

X exp ( / Zp“ x“ Fx, — Z : 7ZU(Y ?F xﬂ

dt

1€ Z W~y aP~ ] )

@ The Gaussian approximation involves Taylor expanding the
Lagrangian to first order in ¢, which yields a quadratic in p

x(1)=x

P(x,t) = /

D[x]D[p] exp (/ { Zpa (xa+xa ZZUGjF (xg ) i
x(0)=xo
where Q. (x) =

Zﬁ WapF(xg)wyp



GAUSSIAN APPROXIMATION II

@ Performing the Gaussian integration along similar lines to the
one-population model yields the multi-variate Onsager-Machlup
path-integral

(x,t) = / Dx]e AN/
with action functional

S s

- u t))) Q;;
a,f3
where V,(x) = —x, + E,@ wapsF(xs)

@ The corresponding Ito Langevin equation is

dX.(t) =

() (s (8) = Vs (x(£)))dt

Va(X dtJr\FZw”a

x 3)d Wq ( )
where W, (t) are independent Wiener processes

[m]

&




Part V. Metastability in a two pop-
ulation model



E-I NETWORK (PCB/NEWBY)

@ Consider an E-I network with mean-field equations

dx

i —x + weeF(x) — weiF(y)
dy

-y + ZU[EF(X) — ZU“F(]/),

WEI

=




PHASE-PLANE TRAJECTORIES

@ Red curves show the x-nullclines, and blue curve show the
y-nullcline.

@ The red nullcline through the saddle is its stable manifold and
acts as the separatrix 3 between the two stable fixed points

@ Two deterministic trajectories are shown (black curves), starting
from either side of the unstable saddle and ending at a stable
fixed point

0.8 0 16




QUASIPOTENTIAL
o The quasi-potential can be obtained by finding zero energy
solutions of Hamilton’s equations

X = VPH(XfP)a p= _VXH(XBP)v

with x = (x,y),p = (px,py) and H = Ao.
@ Substituting for #, Hamilton’s equations have the explicit form

dxq WasF(xa)
B D e
dt 71 PrWya
d [e3 F «
b e
¢ 1= 1 PyWya
o The quasi-potential ® is the action along a zero energy solution

curve x(t):

Ao _ - a@dx(_zM: dxa
pudtt

o=

— -

dt ’Gzlﬂ dt



in orange (cyan)

CHARACTERISTIC PATHS OF MAXIMUM LIKELIHOOD
@ Rays originating from the left (right) stable fixed point are shown

@ The ray connecting to the saddle shown in red (blue).
@ The grey curve is the separatrix I




STOCHASTIC TRAJECTORIES

@ Sample trajectories of the two-population model
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CROSSING THE SEPARATRIX
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MEAN FPT

@ Good agreement between analytical results and Monte Carlo

simulations
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FUTURE DIRECTIONS

@ Apply stochastic phase reduction method to noise driven
synchrony of coupled E-I networks

o Extend master equation framework to continuum neural fields
(see eg. path integral methods of Buice and Cowan)

@ Derivation of a master equation from first principles using
multi-scale analysis

@ Incorporation of other biophysical processes such as synaptic
depression, channel noise etc.
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