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MULTISCALE DYNAMICS
Brain dynamics is noisy at the single cell level...but often observe
coherent states at the macroscopic level

noisy spike trains

coherent waves and oscillations at network level



SINGLE CELL RECORDINGS
Single cell recordings in vivo suggest that individual cortical neurons
are noisy with inter-spike intervals (ISIs) close to Poisson (Softy and
Koch 1993) The Journal of Neuroscience, January 1993, 13(l) 335 

neocortical units have a very high degree of irregularity, with 
C, ranging between 0.5 and 1 .O. We attempt to understand the 
origin ofthese values by two different theoretical methods: mod- 
ified integrate-and-fire models, and simulations ofdetailed com- 
partmental models of cortical pyramidal cells. Our analysis re- 
veals a strong contradiction between the large observed interspike 
variability at high firing rates and the much smaller values pre- 
dicted by well-accepted analytical and biophysical single-cell 
models. This contradiction does not exist for high variability at 
low firing rates, which is consistent with the models of Wilbur 
and Rinzel (1983) and Bugmann (1990). 

The manuscript is organized in four parts: data, analytical 
models, compartmental models, and discussion. A brief report 
of this work has appeared previously (Softky and Koch, 1992). 

Electrophysiological Data 

We used data from two different laboratories. In both cases, 
extracellular spike trains were recorded from cells in visual cor- 
tex of awake adult macaques. Our primary interest was neither 
in the nature of the stimuli used nor in the cells’ selective re- 
sponses to these stimuli, but only in the statistical properties of 
neuronal firing. 

The first set of data (“Vl” data) came from an investigation 
ofthe influence of the nonclassical receptive field (RF) on single- 
unit activity in the primary visual cortex of two alert and be- 
having macaque monkeys (A4ucuca fascicufaris; Knierim and 
Van Essen, 1992). Data were only accepted for trials during 
which the monkey fixated or performed a fixation-related task. 
The cells were stimulated by a variety of flashed bars of various 
orientation in the center of the classical RF, and in some cases 
additionally stimulated by either parallel or perpendicular ori- 
ented bars outside the classical RF (Knierim and Van Essen, 
1992). We used 1184 single, well-isolated spike trains of 1 set 
duration recorded from 16 cells at a temporal resolution of 1 
msec. Only one of these cells showed any bursting activity (as 
defined below), and was rejected. 

The second set of data (referred to in the following simply as 
“MT” data) was recorded during an investigation into the re- 
lationship between motion discrimination and the behavior of 
single units in area MT (or V5), a region of extrastriate visual 
cortex concerned with motion processing (M. muhtta; New- 
some et al., 1989b; Britten et al., 1992). In brief, three monkeys 
were trained to report the direction of motion of a random dot 
display in which a fixed fraction of dots (the amount of “motion 
coherency”) moved coherently in one direction while the re- 
mainder moved randomly in all directions (Newsome and Pare, 
1988). The amount of motion coherency, as well as the direction 
of motion, was varied across trials. During a single trial, the 
monkeys, whose heads were restrained, had to fixate a cross. If 
fixation was broken-as monitored by a search coil-the trial 
was terminated. 

Standard electrophysiological procedures were used to iden- 
tify and record single MT units in three alert and behaving 
monkeys (Mikami et al., 1986). The two-threshold window dis- 
criminator produced pulses corresponding to single action po- 
tentials whose time of arrival was recorded with 1 msec reso- 
lution. Care was taken to record only single-unit activity. 
Altogether, the activity from 409 neurons was recorded, each 
trial usually being 2 set long. Figure 1 shows a sample spike 
train, poststimulus time histogram (PSTH), and ISI histogram 
from a typical MT recording. 

For our analysis, we used a subset of these trials. We rejected 
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Figure 1. Firing statistics of neurons in areas VI and MT. A and B, 
Sample spike trains from one of the fastest-firing nonbursting neurons 
recorded in each area. C and D, PSTHs from the same neuron. E and 
F, ISI histograms from the same neuron. These neurons are “typical” 
in that their firing times seem nearly random at all observed firing rates. 

all spike trains that contained any dominant ISIS characteristic 
of “bursting” behavior. A “bursting” neuron frequently fires a 
pair of action potentials within a short time (< l-3 msec), a 
situation characterized by a sharp peak in that range on the IS1 
histogram. More specifically, we rejected any neuron whose IS1 
histogram (see below) contained more than twice as many counts 
in the 2 msec bin as in the 5 msec bin. These criteria yielded a 
subset of 233 nonbursting neurons. 

In general, we did not find any significant difference between 
the degree of variability of V 1 or MT neurons. Therefore, except 
when otherwise explicitly noted, we will lump these two sets of 
experimental data together. 

Analysis Method 
Parameters and normalization procedure 
The spikes following the stimulus onset arrived at times It,}. 
Thus, the interspike interval (ISI) is 

At, = t,,, - t,. (1) 

We will analyze histograms of these ISIS through two of their 
parameters. One is the mean of the histogram (the average in- 
terspike time hi): 

(2) 

where S, is the number of spikes in the train. The other parame- 
ter is the standard deviation about that mean, which is 

(3) 



LOCAL FIELD POTENTIAL (LFP)

Multisite bipolar LFP recordings
(Destexhe et al 1999) 13
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Figure 1. Simultaneous multisite LFP and unit recordings in awake cats. Eight pairs of
tungsten electrodes were inserted in cat cerebral cortex (area 5-7, parietal) as described in detail
in [Destexhe et al., 1999]. The system (placement illustrated on top) recorded simultaneously LFPs
(left) and raster plots of multi-unit activity (right) at each pair of electrode.

“1/f” noise in LFP recordings of
parietal cortex of awake cats (Bedard
et al Destexhe 2006)

cortex. Unit activity was recorded simultaneously with
LFPs at 8 locations separated by 1 mm [10]. The distribu-
tion of ISIs was computed for individual neurons, and was
represented in log-linear scale (Fig. 2; log-log scale in
insets). For both wakefulness and slow-wave sleep
[Fig. 2(a) and 2(b)], the distributions showed no evidence
for power-law behavior. During waking, the ISI distribu-
tions were close to exponentially distributed ISIs, as gen-
erated by Poisson stochastic process with same statistics as
the neurons analyzed (Fig. 2, Poisson). For 22 neurons
recorded during the wake state, the Pearson coefficient
was of 0:91� 0:13 for exponential distribution fits, and
of 0:86� 0:16 for power-law distribution fits. Taking only
the subset of 7 neurons with more than 2000 spikes, the fit
was nearly perfect for exponential distributions (Pearson
coefficient of 0:999� 0:001). However, during slow-wave
sleep, there was a marked difference between the experi-
mental ISI and the corresponding Poisson process

[Fig. 2(b)]. In this state, neurons tended to produce long
periods of silences, which are related to EEG slow waves
[10,12], and which is visible as a prominent tail of the
distribution for large ISIs. This tail was well fit by a
Poisson process of low rate [Fig. 2(b), dashed line].
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FIG. 2. Absence of power-law distributions in neuronal activ-
ity. The logarithm of the distribution of ISI during waking
(Wake, (a), 1951 spikes) and slow-wave sleep (SWS, (b),
15997 spikes) is plotted as a function of ISI length, or log ISI
length (insets). A Poisson process of the same rate and statistics
is displayed in (a) (Poisson; gray curve displaced upwards for
clarity). The exponential ISI distribution predicted by Poisson
processes of equivalent rates is shown as straight lines (smooth
curve in inset). The dotted line in (b) indicates a Poisson process
with lower rate which fits the tail of the ISI distribution in SWS.
(c) Avalanche analysis realized by taking into account the
statistics from all simultaneously recorded cells in Wake. The
distribution of avalanche sizes scales exponentially (black
curves), similar to the same analysis performed on a Poisson
process with same statistics (gray curves).
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FIG. 1. Frequency scaling of local field potentials from cat
parietal cortex. Top traces: LFPs recorded in cat parietal cortex
during wake and slow-wave sleep (SWS) states. Bottom: Power
spectral density of LFPs, calculated from 55 sec sampled at
300 Hz (150 Hz 4th-order low-pass filter), and represented in
log-log scale (dashed lines represent 1=f� scaling). During
waking (black), the frequency band below 20 Hz scales approxi-
mately as 1=f (* shows the peak at 20 Hz beta frequency),
whereas the frequency band between 20 and 65 Hz scales
approximately as 1=f3. During slow-wave sleep (gray; displaced
upwards), the power in the slow frequency band is increased, and
the 1=f scaling is no longer visible, but the 1=f3 scaling at high
frequencies remains unaffected. PSDs were calculated over
successive epochs of 32 sec, which were averaged over a total
period of 200 sec for Wake and 500 sec for SWS.
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NEURONAL AVALANCHES (BEGGS AND PLENZ 2003,
2004)

(a) Slice of rat somatosensory cortex. LFP measured at multiple sites
(in superficial layers) by an 8× 8 multi-electrode array with
spacing 200 µm.

(b) Examples of LFP population spikes

(c ) Each LFP spike represents the synchronous activity of multiple
neurons in a local population



DEFINING AN AVALANCHE

Each point represents time of occurrence of an LFP spike.
Grouped into an avalanche when peaks occur in contiguous time
bins of width ∆tavg. Avalanche terminated when there is an
empty time bin

Size of an avalanche s is either the number of active electrodes or
the sum of participating LFP spike amplitudes



POWER–LAW BEHAVIOUR

Distribution P(s) of avalanche sizes s is a heavy–tail distribution
that exhibits a power law over several orders of magnitude

P(s) ∝ sα

Find that α = −1.5 irrespective of value of ∆tavg (2-6 m sec)



Part I. Neural master equation



MASTER EQUATION I [BUICE, CHOW AND COWAN

(BCC), BRESSLOFF (PCB)]

Consider M homogeneous networks labelled k = 1, . . .M, each
containing N identical neurons

Suppose that in the interval [t, t + ∆t), nk(t) neurons in the kth
population fire an action potential or spike

Define population firing rate in terms of the number of neurons
that spike in the interval ∆t

ak(t) =
nk(t)
N∆t

.

Treat the number of active neurons nk(t) as a stochastic variable
that evolves according to a one–step jump Markov process



MASTER EQUATION II

n1(t)

n2(t)

n3(t)

ni+1

ni

Ω+ Ω-

Rates of state transitions nk → nk ± 1 are chosen so that under a
mean-field approximation one obtains deterministic
Wilson-Cowan equations – transition rates not unique!



MASTER EQUATION III

Let P(n, t) with n = (n1, . . . ,nM) denote probability that
mi(t) = ni for all i

Probability distribution evolves according to birth-death master
equation

dP(n, t)
dt

=
∑

k

[
(Tk − 1)

(
Ω−k (n)p(n, t)

)
+ (T−1

k − 1)
(
Ω+

k (n)p(n, t)
)]

where T±1
k F(. . . ,nk, . . .) = F(. . . ,nk ± 1, . . .)

Transition rates are (for sigmoid function F)

Ω−k (n) =
nk

τa
, Ω+

k (n) =
N∆t
τa

F

(∑
l

wklnl/N∆t

)



MEAN–FIELD APPROXIMATION

Multiply both sides of master equation by nk and sum over all
states n. This gives

d
dt
〈nk〉 =

∑
r=±1

r〈Tk,r(n)〉

where 〈f (n)〉 =
∑

n P(n, t)f (n) for any function of state f (n).

Assume all statistical correlations can be neglected so that
〈Tk,r(n)〉 ≈ Tk,r(〈n〉)

Setting ak = (N∆t)−1〈nk〉 leads to the mean–field equation

τa
d
dt

ak = −ak + F

(∑
l

wklal

)



COMPARISON OF PCB AND BCC MASTER EQUATIONS

It’s all about the bin size ∆t!

Master equation keeps track of changes in spiking activity.

PCB model assumes that network operates in a Gaussian-like
regime close to an asynchronous state for large N. Thus changes
in population activity could be slow ie can set ∆t = 1.

BCC model assumes that the network operates in a Poisson-like
regime for large N. Therefore, necessary to take ∆t→ 0 as
N →∞with N∆t = 1 fixed.



EFFECTS OF FLUCTUATIONS

Can adapt methods from chemical master equations in PCB
model: system-size expansion in N−1, Langevin approximation,
WKB or path integral methods for metastable states

No small parameter (1/N) in BCC model. However, one can
analyze the moment hierarchy using factorial moments or a loop
expansion of a path integral representation.

Both models determine how higher order correlations couple to
mean-field dynamics (see also Touboul, Ermentrout...)

BCC model has been used to analyze power law behavior in
terms of directed percolation theory



NEURAL LANGEVIN EQUATION I

Set ∆t = 1 and introduce the rescaled variables xk = nk/N and
corresponding transition rates

Ωk,−1(x) =
xk

τa
, Ωk,1(x) =

1
τa

F

(∑
l

wklxl

)
.

Carrying out a Kramers–Moyal expansion to second order in
ε = N−1/2 then leads to the multivariate FP equation

∂P(x, t)
∂t

= −
M∑

k=1

∂

∂xk
[Vk(x)P(x, t)] +

ε2

2

M∑
k=1

∂2

∂x2
k

[Bk(x)P(x, t)]

with

Vk(x) = Ωk,1(x)− Ωk,−1(x), Bk(x) = Ωk,1(x) + Ωk,−1(x)



NEURAL LANGEVIN EQUATION II

The FP equation determines the probability density function for
a corresponding stochastic process X(t) = (X1(t), . . . ,XM(t)),
which evolves according to the neural Langevin equation

dXk = Vk(X)dt + εbk(X)dWk(t).

with bk(x)2 = Bk(x).

Here Wk(t) denotes an independent Wiener process such that

〈Wk(t)〉 = 0, 〈Wk(t)Wl(s)〉 = δk,l min(t, s).

Langevin equation captures the relatively fast stochastic
dynamics within the basin of a attraction of a stable fixed point
(or limit cycle) of the corresponding deterministic rate equations

Rigorous analysis of Langevin approximation can be carried out
by extending work of Kurtz on chemical master equations
(Buckwar and Riedler 2012)



Part II. WKB approximation and
rare event statistics



SINGLE–POPULATION MODEL: BISTABLE NETWORK
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BIRTH-DEATH MASTER EQUATION

dP(n, t)
dt

= T+(n−1)P(n−1, t)+T−(n+1)P(n+1, t)−(T+(n)+T−(n))P(n, t)

Birth and death rates

T+(n) = NF(n/N), T−(n) = n,

Write steady-state solution in terms of probability current J(n):

J(n + 1) = J(n), J(n) = T−(n)PS(n)− T+(n− 1)PS(n− 1).

J(0) = 0 =⇒ J(n) = 0 for all n ≥ 0 so steady-state solution is

PS(n) =
T+(n− 1)

T−(n)
PS(n− 1) = PS(0)

n∏
m=1

T+(m− 1)

T−(m)

with PS(0) = 1−
∑

m≥1 PS(m).



STEADY-STATE DISTRIBUTION
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For large N, steady-state solution of master eqn is (x = n/N)

PS(x) = A exp
(

N
∫ x

ln
Ω+(x′)
Ω−(x′)

dx′
)

whereas soln of FP eqn is

PS(x) = A′ exp
(

2N
∫ x Ω+(x′)− Ω−(x′)

Ω+(x′) + Ω−(x′)
dx′
)



NOISE-INDUCED SWITCHING
Bistable deterministic network with stable fixed points x = x±
and saddle x = x0.

Noise induces switching between basins of attraction for finite N
– exponentially small escape rates r± ∼ e−Nτ± .

Rare transitions allow network to approach steady state PDF in
limit t→∞
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WKB APPROXIMATION

Set x = n/N.
Place an absorbing BC at saddle u0. Eigenvalue expansion of PDF:

P(x, t) = c0P0(x)e−λ0t + c1P1(x)e−λ1t + · · · .

For large N, λ0 ∼ e−NE0 with E0 = O(1). Can identify λ0 with
MFPT to escape basin of attraction of metastable state u−, say.

Can approximate P0(x) by a solution to the stationary master
equation with a reflecting BC at u0– quasistationary solution

Take P0(x) to have the WKB form

P0(x) ∼ K(x)e−NW(x), K(S) = 1,W(S) = 0,

Asymptotic expression for λ0 (large-deviation theory)

logλ0 ∼ N[W(x0)−W(x−)]



HAMILTON–JACOBI EQUATION FOR W
Expansion in powers of N−1 yields Hamilton-Jacobi eqn for W:

H(x, p) =
∑

r=±1

Ωr(x) [erp − 1] = 0, p =
∂W
∂x

with Ω+(x) = F(wx), Ω−(x) = x

Classical mechanical interpretation: H determines the
motion of a “particle” with position x and conjugate momentum p

ẋ =
∂H
∂p

= −xe−p + F(wx)ep

ṗ = −∂H
∂x

=
[
e−p − 1

]
+ wF′(wx) [ep − 1]

t is a parameterization of paths rather than time.

W(x) with W(S) = 0 determined by action along zero energy
trajectories of Hamiltonian system: most probable fluctuational
path from S to x (in the large–N limit)



HAMILTON–JACOBI EQUATION FOR W
Since HJ equation is a quadratic in ep, there are two classes of
zero–energy solution

p = 0, p = p∗(x) ≡ ln
Ω−(x)

Ω+(x)
.
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MATCHED ASYMPTOTICS

Can calculate pre factor using matched asymptotics - need to
match absorbing BC at u0

Along an activation trajectory (p = p∗(x))

P0(x) =
A√

xF(wx)
e−NW(x), W(x) =

∫ x

ln
[

y
F(wy)

]
dy

Along a relaxation trajectory (p = 0)

P0(x) =
B

F(wx)− x

Find that exit time from metastable state around x− is

λ0 =
2π√

−1 + wF′(wx0)

1√
| − 1 + wF′(wx−)|

√
x0

x
eN[W(x0)−W(x−)]



Part III. Path-integral formulation
of neural master equation



PATH INTEGRAL FORMULATION I

Consider the representation of the joint probability density for
the fields Φi = {Φi(s), 0 ≤ s ≤ t}, with Φi = Nui and ui satisfying
the deterministic rate equation.

Rewrite as an infinite product of Dirac delta functions:

P[Φ] = N
∏
s≤t

∏
i

δ

∂tΦi + αΦi −NF

∑
j

WijΦj/N

 ,

Introduce the Fourier representation of the Dirac delta function:

P[Φ] =

∫ ∏
i

DΦ̃ie−S[Φ,Φ̃], DΦ̃i ∼ N
∏
s≤t

dΦ̃i(s)

where each Φ̃i(s) is integrated along the imaginary axis.



PATH INTEGRAL FORMULATION II

Deterministic action is

S[Φ, Φ̃] =

∫
dt
∑

i

Φ̃i(t)

∂tΦi + αΦi −NF

∑
j

WijΦj/N


Path integral representation persists when fluctuations are taken
into account, with modified action

S[Φ, Φ̃] =

∫
dt
∑

i

Φ̃i

∂tΦi + αΦi −NF

∑
j

WijΨj/N

 ,
where Ψj = Φ̃jΦj + Φj.



MOMENT EQUATIONS

Given P[Φ], we can calculate mean–fields according to

〈〈Φk(t1)〉〉 =

∫ ∏
i

DΦiΦk(t1)P[Φ] =

∫ ∏
i

DΦi

∫ ∏
i

DΦ̃i Φk(t1)e−S[Φ,Φ̃]

Similarly, two–point correlations are given by

〈〈Φk(t1)Φl(t2)〉〉 =

∫ ∏
i

DΦi

∫ ∏
i

DΦ̃i Φk(t1)Φl(t2)e−S[Φ,Φ̃]

In terms of the physical activity variables mi(t),

〈mk(t)〉 ≡
∑

n

nkP(n, t) = 〈〈Φk(t)〉〉,

〈mk(t)ml(t)〉 − 〈mk(t)〉〈ml(t)〉
= 〈〈Φk(t)Φl(t)〉〉 − 〈〈Φk(t)〉〉〈〈Φl(t)〉〉+ 〈〈Φk(t)〉〉δk,l.



LARGE DEVIATIONS I

Perform rescaling Φi → φi = Φi/N so that we have a
path-integral of the form

P ∼
∫ ∏

i

Dφi

∫ ∏
i

Dφ̃i e−NS[φ,φ̃]

Rescaled action is

S[φ, φ̃] =

∫
dt

[∑
i

φ̃i∂tφi +H(φ, φ̃)

]
and

H(φ, φ̃) =
∑

i

φ̃i

αφi − F

∑
j

Wijψj





LARGE DEVIATIONS II

In the limit N →∞, the path integral is dominated by the
“classical” solutions u(t), ũ(t):

δS[φ, φ̃]

δφi(t)

∣∣∣∣∣
φ̃=ũ,φ=u

= 0,
δS[φ, φ̃]

δφ̃i(t)

∣∣∣∣∣
φ̃=ũ,φ=u

= 0.

These equations reduce to

∂ui

∂t
= −∂H(u, ũ)

∂ũi
,

∂ũi

∂t
=
∂H(u, ũ)

∂ui
.

Hamiltonian dynamical system in which ui is a “coordinate”
variable, ũi is its “conjugate momentum”
Equivalent to WKB Hamiltonian under a canonical
transformation



Part IV. Beyond the neural master
equation



LIMITATIONS OF THE NEURAL MASTER EQUATION

Transition rates are not uniquely determined

What is τa?

Mean-field dynamics given by an activity-based rate equation.
What about a current or voltage-based equation? Unlike number
of active neurons, current is not a discrete variable.

Neglects synaptic dynamics ie assumes that time-scale τ of
synaptic dynamics smaller than ∆t. But ∆t→ 0 in Poisson
regime and could be small in Gaussian regime.



VELOCITY-JUMP MARKOV MODEL I (PCB/NEWBY)

Uk(t) is a population averaged synaptic current evolving as

τdUk(t) =

[
−Uk(t) +

M∑
k=1

wklAl(t)

]
dt.

The stochastic population firing rate is given by

Ak(t) =
Nk(t)
N∆t

Nk(t) evolves according to a one-step jump Markov process

Nk(t)→ Nk(t)± 1

with transition rates

Ω+ =
N∆tF(Uk)

τa
, Ω− =

nk

τa
.

Take limit N →∞,∆t→ 0 with N∆t = 1.



VELOCITY-JUMP MARKOV MODEL II

Example of a stochastic hybrid system

Uk(t) is a piecewise deterministic variable coupled to the discrete
jump Markov processes Nl(t)

The Markov processes are coupled to Uk(t) via the transition
rates

Introduce the probability density

Pr{Uk(t) ∈ (uk,uk+du,Nk(t) = nk; k = 1, . . . ,M} = p(u,n, t|u0,n0, 0)du

with u = (u1, . . . ,uM), n = (n1, . . . ,nM).



NEURAL CHAPMAN-KOLMOGOROV EQUATION

p evolves according to the Chapman-Kolmogorov (CK) equation

∂p
∂t

+
1
τ

∑
k

∂[vk(x)p(x, t)]
∂uk

=
1
τa

∑
k

[
(Tk − 1) (ω−(nk)p(x, t)) + (T−1

k − 1) (ω+(uk)p(x, t))
]
,

with x = (u,n), and

ω+(uk) = F(uk), ω−(nk) = nk, vk(x) = −uk +
∑

k

wklnl.

In the limit τ → 0 for τa > 0 fixed, we recover the BCC neural
master equation with u = u(n) such that

vk(u(n),n) = 0.



LIMITING CASE τa � τ

In the limit τa → 0 for τ > 0 fixed we obtain the deterministic
voltage or current-based equation

τ
duk(t)

dt
=

[
−uk(t) +

M∑
k=1

wkl〈Nk(t)〉

]
dt.

where

〈Nk(t)〉 =
∑

n

nkρ(n,u(t))

ρ(n,u(t)) is the steady-state density of the birth-death process
and is given by M independent Poisson processes with rates
F(uk):

〈Nk(t)〉 = F(uk(t)).

What about the regime 0 < ε� 1 with ε = τa/τ?



PATH INTEGRAL

Path-integral representation of stochastic dynamics

p(x, τ |x0, 0) =

x(τ)=x∫
x(0)=x0

D[p]D[x] exp
(
−1
ε

S[x,p]

)

with action

S[x,p] =

∫ τ

0

[
M∑
α=1

pαẋα − λ0(x,p)

]
dt.

λ0 is the Perron eigenvalue of the following linear operator
equation

∑
m

A(n,m; x)R(0)(x,p,m) = [λ0(x,p)−
M∑
α=1

pαvα(x,n)]R(0)(x,p,n),



PERRON EIGENVALUE I
Use the ansatz

R(0)(x,p,n) =

M∏
α=1

Λα(x,p)nα

nα!
.

Using the explicit expressions for A and vα, we find that

M∑
α=1

([
F(xα)

Λα
− 1
]

nα + Λα − F(xα)

)
− λ0

= −
M∑
α=1

pα

−xα +
∑
β

wαβnβ

 .
Collecting terms in nα for each α yields

F(xα)

Λα
− 1 = −

M∑
β=1

pβwβα,



PERRON EIGENVALUE II

Collecting terms independent of all nα gives

λ0 =

M∑
α=1

[Λα − F(xα)− xαpα] .

Solving for each Λα in terms of p, we have

λ0(x,p) ≡
M∑
α=1

[
F(xα)

1−
∑M
β=1 pβwβα

− xαpα − F(xα)

]



GAUSSIAN APPROXIMATION I
Performing the rescaling p→ ip/ε in path-integral

P(x, t) =

x(τ)=x∫
x(0)=x0

D[x]D[p]

× exp

− ∫ τ

0
i
∑
α

pα

ẋα + xα −
∑
β

wαβF(xβ)

1− iε
∑
γ wγβpγ

 dt


The Gaussian approximation involves Taylor expanding the
Lagrangian to first order in ε, which yields a quadratic in p:

P(x, t) =

x(τ)=x∫
x(0)=x0

D[x]D[p] exp

∫ τ

0

i
∑
α

pα

ẋα + xα −
∑
β

wαβF(xβ)

− ε∑
α,γ

pαQαγ(x)pγ

 dt


where Qαγ(x) =

∑
β wαβF(xβ)wγβ



GAUSSIAN APPROXIMATION II
Performing the Gaussian integration along similar lines to the
one-population model yields the multi-variate Onsager-Machlup
path-integral

P(x, t) =

∫
D[x]e−A[x]/ε,

with action functional

A[x] =
1
4

∫ τ

0

∑
α,β

(ẋα(t)− Vα(x(t)))Q−1
αβ(x)(ẋβ(t)− Vβ(x(t)))dt,

where Vα(x) = −xα +
∑
β wαβF(xβ).

The corresponding Ito Langevin equation is

dXα(t) = Vα(X)dt +
√

2ε
∑
β

wαβ
√

F(xβ)dWβ(t),

where Wα(t) are independent Wiener processes.



Part V. Metastability in a two pop-
ulation model



E-I NETWORK (PCB/NEWBY)

Consider an E-I network with mean-field equations

dx
dt

= −x + wEEF(x)− wEIF(y)

dy
dt

= −y + wIEF(x)− wIIF(y),

E I

wEE

wII

wIE

wEI



PHASE-PLANE TRAJECTORIES
Red curves show the x-nullclines, and blue curve show the
y-nullcline.

The red nullcline through the saddle is its stable manifold and
acts as the separatrix Σ between the two stable fixed points

Two deterministic trajectories are shown (black curves), starting
from either side of the unstable saddle and ending at a stable
fixed point
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QUASIPOTENTIAL
The quasi-potential can be obtained by finding zero energy
solutions of Hamilton’s equations

ẋ = ∇pH(x,p), ṗ = −∇xH(x,p),

with x = (x, y),p = (px, py) andH = λ0.
Substituting forH, Hamilton’s equations have the explicit form

dxα
dt

= −xα +
∑
β

wαβF(xα)

1−
∑M
γ=1 pγwγα

dpα
dt

= pα −
F′(xα)

1−
∑M
γ=1 pγwγα

+ F′(xα)

The quasi-potential Φ is the action along a zero energy solution
curve x(t):

dΦ

dt
≡

M∑
α=1

∂Φ

∂xα
dxα
dt

=
M∑
α=1

pα
dxα
dt

,



CHARACTERISTIC PATHS OF MAXIMUM LIKELIHOOD

Rays originating from the left (right) stable fixed point are shown
in orange (cyan)
The ray connecting to the saddle shown in red (blue).
The grey curve is the separatrix Γ
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STOCHASTIC TRAJECTORIES

Sample trajectories of the two-population model
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CROSSING THE SEPARATRIX
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MEAN FPT

Good agreement between analytical results and Monte Carlo
simulations
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FUTURE DIRECTIONS

Apply stochastic phase reduction method to noise driven
synchrony of coupled E-I networks

Extend master equation framework to continuum neural fields
(see eg. path integral methods of Buice and Cowan)

Derivation of a master equation from first principles using
multi-scale analysis

Incorporation of other biophysical processes such as synaptic
depression, channel noise etc.
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