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Part I. Neural excitability
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THE ACTION POTENTIAL

@ Generation and propagation of an action potential based on
nonlinearities associated with active membrane conductances.

@ Recordings of the current flowing through single ion channels indicate

that channels fluctuate rapidly between open and closed states in a
stochastic fashion.
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ION CHANNELS I

@ Usually assume that there are a large number of approximately
independent channels of each type - law of large numbers

@ The conductance for an ion channel of type i

8i = S’ iXI
where g; is the density of channels in the membrane multiplied by the
conductance of a single channel and X; is the fraction of open channels.
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ION CHANNELS II

@ Model kinetics of X in terms of voltage-dependent transitions between
an open and closed state:

axX
E = Ozx(?])(l — X) — AL})((U)X
where

ax(v)
C(closed) s O(open).
Bx(v)
@ From basic thermodynamics, the opening and closing rates are expected
to be exponential functions of the voltage.
@ Kinetics can be rewritten in the alternative form

dXx
7x(0)
where

T ax(v) — X,

1
O S )

ﬂx(f)) = ()zx(U)TX(U)-
time constant 7x(v),

It follows that X approach the asymptotic value ax(v) exponentially with
v
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MORRIS-LECAR MODEL OF NEURAL EXCITABILITY

@ Morris-Lecar (ML) model describes voltage dynamics driven by fast
sodium (Na) (or Ca) and slow potassium (K) channels

dit’ = a(v)fna(v) + wfk (v) — g(v)

dw W (v) —w

dt Tw(0)

@ Here f;(v) = gi(v; — v) and w represents the fraction of open K*
channels.

@ The fraction of Na™ channels is assumed to be in quasi steady-state.

@ Analyze the generation of action potentials using a fast/slow analysis



FAST/SLOW ANALYSIS OF EXCITABILITY
°

Fast variable v has a cubic-like nullcline and slow variable w has a
monotonically increasing nullcline
°

Assume nullclines have a unique intersection point - stable resting state
Excitable system: sufficiently large perturbations of the resting state
result in a time-dependent trajectory taking a prolonged excursion
through state space before returning to the resting state - the action
potential (AP)

Rapid transition (w ~ constant) during initiation of AP
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FUNDAMENTAL ISSUES

@ For fixed w, 1D system is bistable with a well-defined threshold for
initiation of an AP

@ How does one analyze the effects of sodium ion channel fluctuations on
spontaneous action potential (SAP) generation? - first passage time
problem

@ Is the fast/slow decomposition still valid when potassium ion channel
fluctuations are taken into account?

e How does one formulate spontaneous action potential generation for an
excitable system in terms of a first passage time problem - there is no
well-defined separatrix for escape from the resting state?



Part II. First passage time problem for SAP for-
mation
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STOCHASTIC ION CHANNEL MODEL

dov

@ Letn,n=0,...,N be the number of open sodium channels

i

Fo,n) = f(0)n - g(0).
with f(v) = gna(Vna — ) and (v) = —geft[Vetr — U] + Lext.

@ The opening and closing of the ion channels is described by a
birth-death process according to
at rates

n—-n+1l n—n-—1
w-%—(vﬂn) = O/(U)(N - ”)a

w_(n) = Pn
o Take

a(v) = Bexp (2(0 — )
for constants 3, v1, vs.

)




CHAPMAN-KOLMOGOROV EQUATION I

@ Introduce the joint probability density
Prob{o(t) € (v,v + dv),n(t) = n} = p(v, n, t|vo, no, 0)dv,
o Differential Chapman-Kolmogorov (CK) equation (dropping the
explicit dependence on initial conditions)
p _ _O[F(v,m)p(v,n,1)]
ot

ov

1
+=
€

4 [wi(v,n—1)p(o,n—1,t) +w_(n+ 1)p(o,n 4+ 1,t)
—(wt(o,n) + w—(n))p(v, n, )],

@ Introduced small parameter e - opening and closing of sodium channels
much faster than relaxation dynamics of voltage




CHAPMAN-KOLMOGOROV EQUATION II

@ Rewrite CK equation in the more compact form

op _ OF(v,n)p(v,n,t
ot

)1 / '
- A ;
oy + - ; (n,n";0)p(v,n', 1),
An,nfl:v = W+ (ZJ7 n— 1) An’”;z) = —W+ (U, 7’1) — W_ (1’[)7 AH,H+1;D = w_ (1/1 -+ 1)
@ There exists a unique steady state density p(v, n) for which
where

ZA(VZ, m;v)p(o,m) =0



MEAN-FIELD LIMIT

@ In the limit e — 0, we obtain the mean-field equation

% - ZF(U,n)p(U,H) =a(v)f (v) - g(v)

A
T dv’
@ Assume deterministic system operates in a bistable regime
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FIRST-PASSAGE TIME (FTP) PROBLEM

@ Assume particle starts at stable fixed point v_
@ Absorbing boundary conditions at v.:

p(ve,n,t) =0 foralln <k
such that F(v.,n) < 0.

@ Let T be FPT with density f(t)

@ Introduce survival probability

S(t) = /O.U* Zp(v.,n, t)dv = Prob{t < T}

o It follows that

ft) = —Z—f = 7/0?* Z %(v,mt)dv = ZP(U*,H)p(U*,n,f),




SPECTRAL PROJECTION METHOD I (WARD 1998, NEWBY /KEENER
2011,PCB/NEWBY 2013/2014)

@ Introduce the inner product

Z fvn ,n)dv

n=0
@ Consider eigenfunctions of CK linear opertor L

E@,,(u n) =

%(F(U., n)ey(v,n)) — % ZA(n,m;v)qb,(v,n)

= Mo(v,n),
together with the boundary conditions

¢r(ve,n) =0, forn <k




SPECTRAL PROJECTION METHOD II

@ Assume the spectrum of L satisfies the following:

(i) Lhasa complete orthonormal set of eigenfunctions ¢,

(ii) The eigenvalues A, all have positive real part and the smallest
eigenvalue )¢ is simple. Thus we can introduce the ordering
0< A < Re[)q] < Re[Az] <

(iii) Ao is exponentially small, g ~ e~“/¢, whereas Re[\,] = O(1) for
r > 1. In particular, lim._.o Ag = 0 and lim._,0 ¢o(v, 1) = p(v, n).

@ Introduce the eigenfunction expansion

p(v,n,t) ZCe Lo (v, ),



SPECTRAL PROJECTION METHOD III

@ Atlarge times we have the quasistationary approximation
@ Hence

p(o,1,t) ~ Coe™ o (v, n).

@ It can be shown that

f(t) ~ efAO'Zgbg(v*,n)v(v*,n)., At > 1.

/\O:Z

> F(0., m)0(0, )
<17 OO) '
@ Hence, (normalized) first passage time density reduces to

and (T)

F() ~ Ao
= [t (H)dt ~ 1/ .




QUASISTATIONARY DENSITY I

@ Quasistationary density ¢. approximates ¢o up to exponentially small
terms at the boundary

Lo =0,

Ge(v2,m) = O(e™).
@ Express )¢ in terms of the quasistationary density ¢. by considering the
eigenfunctions of the adjoint operator

Dem = —Fon&®n

dv
and the boundary conditions

1
T Z”I:A(mfn; 0)& (v, m) = \& (v, 1)

&(ve,n) =0, n>k
@ The eigenfunctions {¢,} and {¢,} form a biorthogonal set:

<Ola €5> =

/w qu,‘(v,n)&(v,n)d =4

]
w




QUASISTATIONARY DENSITY II

@ Consider the identity

(e, L1€0) = No(be, &0).

@ Integration by parts then gives

Ao =

- Zn Pe (0*7 ”)&J(v*v H)F(U*., TZ)
<¢F7 60>

@ Determine ¢. using the WKB method and & using matched asymptotics
(Keener and Newby 2011, Newby and Chapman 2013).




WKB METHOD 1

@ Seek a solution of the form

¢e(v,n) ~ R(v,n) exp (_(I)iv))
@ Substitution yields

m

Z (A(n, m;0) + ®(0)86ymF(v,m)) R(v,m) = €

_ dF(v,n)R(v, n)
dv

@ Asymptotic expansions R ~ RO 4+ ¢RM and & ~ &g + ed;

@ The leading order equation is

m

Z A(n,m;0)R© (v, m) = —®((v)F(v, n)R (v, n).




WKB METHOD 11

@ One positive solution is R©® = p, for which &} = 0.
p P 0

@ There exists one other positive solution, for which ®; = 0 at the
determistic fixed points (Newby and Keener 2011)

@ Next order in the asymptotic expansion:

m

. o
E A(n,m;0)RY (v, m) = dF (v, n)R™ (v, n)
with

dv

— ' (v)F(v,n)R™ (v, n)

WXKB solution R©®

A(n,m;v) = (A(n,m;v) + ©4(0)0umF (v, m))
@ Matrix operator A(n,m;v) has a 1D null space spanned by the positive




WKB METHOD III

@ Fredholm Alternative Theorem yields solvability condition

;S(un) {

dF(U,H)dIz(O)(U:”) q)/(v)p(yﬂn)R(o)(v n)| =0,

n

> " S(0,n) (A(n, m;v) + ©4(0)8,,mF(v,m)) =0

equation for ®;

e Given R©® S and @y, the solvability condition yields the following

ol(0) - SnSENIEE,

nR <°>(
>, S(0,n)F(v,

mR¢

n)]’
O(o,n) -



WKB METHOD IV

@ Define

k(v) = exp ( / <I>i(y)dy> :
@ To leading order in ¢,

¢e(v,n) ~ Nk(v) exp (749%(0)) RO (v, n),

@ Normalization

N = M k(v) exp (—

o) do h
€
@ Laplace’s method gives

1 |5 (v-)|
N~ k(v)

0] exp (ij)) .




ADJOINT EIGENFUNCTION I

@ Leading order adjoint equation

eF(v,n) d&)g;’ ")

with boundary conditions

+ 3 Al s 0)6o(0,m) =0,

&o(ve,n) =0, n>k
@ Boundary layer: set v = v. — ez and Q(z,n) = & (ux — €z):
dQ
F(v.,n) )

m

(sz n) + ZA("L”SU*)Q(Z m) =0

@ Inner solution has to be matched with the outer solution & =1

lim Qz,n) =1




ADJOINT EIGENFUNCTION II

o Consider the eigenvalue equation

Z (A(n,m;v) — pr(0)dn,mo(u,m)) Se(v,n) =0,
SO(v7n) =1 Ho = 0, Sl(v7n) = S(Uv 7’1), H1 (U) - —@6(?})
@ Zero eigenvalue is degenerate at v = v, since ®j(v.) = 0

@ Introduce the generalized eigenfunction expansion

Q(z,n) = co + c1(S(vs,n) — 2) + ZCySr(Z)*, n)e Hr(x)z

r>2
ZA(;L m; v*)g(v )

—F(v.,m).




ADJOINT EIGENFUNCTION III

@ Eliminate secular term —c;z using an alternative scaling in the boundary
layer of the form (Newby and Chapman 2013)
o Find that

X:X*JrEl/ZZ

11~
Y ECHCH] LOER), o=
71'

O(e/?) forr > 2
@ Only need ¢y, since the quasistationary approximation ¢. is proportional
to R, which is orthogonal to all eigenvectors S, v # 1.




PRINCIPLE EIGENVALUE

@ Principal eigenvalue is

n v TEIBO oo o) exp - 20 0D,
-3 " S(., n)p(v., 1)
ZA(n,m;v)R(U)(v m) = —®)(v)F(v,n)R™ (v, n)
ZS(U,H) n,m; ) + ©4(0)8ymF(v,m)) =0
ZA (n,m;v.)S 0*7 n) = —F(v.,m).




CALCULATION OF PRINCIPAL EIGENALUE
@ Find eigenfunction R (v, 1) and eigenvalue 1(v) = — ().

RO — — N () —3)""50)"

(N —n)!n! f(o)N
and

L a(@)f) — (o) + A)3()
MO =N o) —s@)

@ Calculate the prefactor k(v) from the null eigenfunction

_ (. bog@)
00 = (750 5
@ Calculate the generalized eigenfunction §( n):
o f(v.
S0 =~ N 77"

@ Calculate the factor B(vx):

f(0.Yalv.)8
B0) = N(aton) 1 87



COMPARISON WITH NUMERICS (KEENER AND NEWBY 2011)

o Compare analytical results with Monte Carlo simulations
@ Good agreement in super threshold and sub threshold regimes

@ A corresponding diffusion approximation breaks down in the sub
threshold regime

10mr

" < diffusion approx

NI<I | I>1T,
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Part III. Breakdown of fast/slow analysis
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STOCHASTIC MORRIS-LECAR MODEL

do
dr

@ Take n < N open Na* channels and m < M open K* channels:

n m
F(o,m,m) = < fun(0) + 11f(0) - g(0)
@ Each channel satisfies the kinetic scheme

«;(v)
C— 0, i=Na K,
Bi()

@ The Na' channels fast relative to voltage and K* dynamics
@ Chapman-Kolmogorov (CK) equation,

19 o(F
@7&} = —% + Lxp + Lnap.
@ The jump operators L;, j = Na, K, are defined according to

I[“f = (Ej - 1)(“‘)]% (l’l,U) + (En

- 1)@;(”»7))7
with EXf(n) = f(n + 1), w (n,v) = nfjand w; (n,0) = (N = n)e;(v).

[m]

&




K+ CHANNEL FLUCTUATIONS CAN INDUCE SAPS

@ The deterministic ML model is recovered in the limit By, — 0o, M — oo
with Ay = Bna/M fixed.

@ Find spontaneous SAPs can be generated for finite M and/or finite Sy,

2.0
Na K

v 10 ~ >
0.0f

0.6}
w 0-4f
0.2f
o.0-
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SMALL NOISE LIMIT

@ Introduce a small parameter ¢ < 1 such that (in dimensionless units)
Bl =€, M= Aye,
@ Setw = m/M and write (m+ 1)/M = w+ M™!

@ Perturbation expansion in e combines a system size expansion with a
slow/fast analysis

@ We would like to determine the most probable or optimal paths of
escape from the resting state in the (v, w)-plane for small ¢

@ For chemical master equations, the quasipotential of the WKB
approximation satisfies a Hamilton-Jacobi equation - the optimal paths
given by solutions to an effective Hamiltonian dynamical system

@ There is an underlying variational principle derived using large
deviation theory or path-integrals



OPTIMAL PATHS

o0Q

0Q
separatrix

@ (a) Deterministic trajectories converging to a stable fixed point xs

Boundary of basin of attraction formed by a union of separatrices
@ (b) Noise-induced paths of escape




WKB APPROXIMATION

@ Introduce quasistationary solution of the form

¢c(v,w,n) = R(nlv, w) exp (fl'b(v, w))
€

where @ (v, w) is the quasipotential

@ To leading order,

[Lna + po + h(v, w, po)] R(n|v,w) = 0,
where
0P 0P
Po="3" P»= 54
and

h(v, w, po) = ]\g\(M

[( AP 1) (Mw, 0) + (M — 1)wi (Muw, U)]

N



HAMILTON-JACOBI EQUATION

@ Introducing the ansatz

_ Av,w)"
Ra(o,w) = (N —n)n!’
yields a Hamilton-Jacobi equation for ®:

0=H(v,w,puw, po) = (a(v)fNa(v) + &(V))po + h(v, w, po)

b(v

~ O [((23(0) + ra)peh(o, w, pu) + (fa(0) + 8(0))3(@)p2 + (o, w0, p)?)

@ Solve for ® using method of characteristics. Satisfy Hamilton’s equations

x=VpH(x,p), p=-—ViH(x,p).

for x = (v,w) and p = (pv, Pw)

o Interpret ®(t) as the action with ®(t) = p(t) - x(t), is a strictly increasing

function of ¢, and the quasipotential is given by ®(v,w) = ®(f) at the
point (v, w) = x(t).




RESULTS I: SOLUTIONS OF HJ EQUATION

/

@ Caustic (C), v nullcline (VN), and w nullcline (WN), metastable
separatrix (S), bottleneck (BN), caustic formation point (CP)

[m]
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RESuLTS I1

@ & takes the shape of a potential well in a neighborhood of resting state
with convex level curves.

@ Once @ reaches a threshold, a caustic is formed along which every point
is connected to two equally likely metastable trajectories

@ Most probable paths of escape dip significantly below the resting value
for w, indicating a breakdown of the deterministic slow /fast
decomposition.

@ Escape trajectories pass through a narrow region of state space that acts
like a bottleneck or stochastic saddle node

@ Hence, although there is no well-defined separatrix for an excitable
system, one can formulate an escape problem by determining the MFPT
to reach the bottleneck from the resting state.

@ Curves that don’t pass through SN are bounded by a curve (S) that acts
like a stochastic separatrix.



REsULTS III

o Identify SAP trajectories as those metastable trajectories that cross the
separatrix.

@ SAP trajectories begin at the fixed point as a single trajectory and then
fan out just before reaching the metastable separatrix.

@ Result confirmed by Monte-Carlo simulations
t=—20. t=—18. t=—16. t=—14. t=—12.




SUMMARY OF RESULTS

@ Fluctuations in the slow recovery dynamics of K™ channels significantly
affect spontaneous activity in the ML model.

@ The maximum likelihood trajectory during initiation of a SAP drops
below the voltage nullcline so that w is not constant - breakdown of
fast/slow analysis

@ SAP initiation mechanisms is a burst of simultaneously-closing K+
channels that causes v to increase.

@ Constraining the paths by fixing w alters the effective energy barrier for
SAP initiation, which significantly affects determination of the
spontaneous firing rate.

@ There is an effective metastable separatrix that can be used to formulate
an FPT problem for an excitable system



Part IV. Dendritic NMDA spikes
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NMDA SPIKES IN THIN DENDRITES

@ A pyramidal neuron has a thick apical dendrite and various thin
dendrites. The latter support the initiation of dendritic NMDA spikes

@ A strong glutamatergic input can trigger a dendritic plateau potential of
duration 100 msec.

@ The plateau potential consists of several dendritic conductances, the
most predominant being due to NDMAR channels. Pharmacologically
blocking Na and Ca channels reveals the pure dendritic NMDA spike

(a) /thin apical ()
tufts i
§ 4 u Na* spikelet % plateau potential
thick apical
thin oblique <« branch
tufts  ~_| NMDA spike
/ 20 mV
subthreshold EPSP
% 50 ms
-
thin basal
axon branches




VOLTAGE CHARACTERISTICS OF DENDRITIC MEMBRANE

e Following strong stimulation and removal of the Mg™ block, the
maximum conductance gmax of the NMDARs is high so that the
N-shaped I-V curve has only a stable depolarized fixed point.

@ As gmax decreases due to glutamate unbinding, two additional fixed
points arise via an SN bifurcation — bistability

@ As gmax is further reduced, a second SN bifurcation results in a rapid
return to the resting state.

current
A
increasing gmax
bistable x
\re‘?\ < \ » voltage
boo;'ng/\\\



DETERMINISTIC CONDUCTANCE-BASED MODEL

@ The dendritic voltage v evolves as

do _ _
C g = &:(Bax(0) (Vi = 0) + gyay (0)(Vy —v) +81(VL — 0),

where x, y label NMDA and Na channels, respectively, and C is the
membrane capacitance.

@ The glutamate-bound NMDA receptors act like sodium channels,with
non-ohmic voltage-dependent conductances

1
ar(v) = Tre—r)’

Here a,(v) represents the fraction of open ion channels of type r in the
limit of fast channel kinetic

r=x,y.

@ The time-dependent deactivation of the NMDA channels following the
binding of glutamate is incorporated by taking the maximal conductance
of the NMDA receptors to be a slowly decaying function of time t:

() = e ™/7,



STOCHASTIC MODEL

av

@ Fix gy and set C = 1. Have a stochastic hybrid system
T I(V, 1y,

_ ne(t ny(f) _
m =220 W vy 18" v, vy 1w -v),
@ Only holds between jumps in the discrete random variables 7,, 1,
birth-death processes
— n-+1, n,
u,’+ (n,,V) /e
@ The transition rates are

- n—1L
Wl (nr) /e

Wy (17, V) = ar(V)(N = 1)

after rescaling «;, §; by a factor 1/e

w” (1) = By
@ Introduce the associated probability density

p(v,ny,ny, Hdo =Plo < V(1) < v+ do, ne(t) = ny,ny(t) = ny)




STOCHASTIC MODEL II

p

@ The differential Chapman-Kolmogorov (CK) equation is
_ 0
ot

o
whereL =L, + Ly,

1
(v, nx, ny)p(v, nx, ny, £)] + EILp(v,nx, 1y, t),

L, = (B — 1w (n) + (B — 1w (n,V)
and E;* are ladder operators defined according to

E£F(n,) = F(n, +1)




STOCHASTIC MODEL III

@ Can rewrite CK equation as

__0
ot~ Ov

m

1

I(v, ,n,t -> A ; ,

(v, n)p(v,n, 1)] + = > A(n,m;v)p(v, m)
where n = (11,, n,) and the matrix A has the non-zero entries
A(ny,ny,ny — 1,ny;0) = Wi (ny — 1,0),
A(n, ny, ne,ny — 1;0) = o (ny — 1,0),

A(ny, ny, ny + 1,ny;0) = wt (ne + 1),
A(ny, ny, ne, ny + 150) = o’ (ny + 1),

ANy, ny, Ny, 1y 0) = — [WA (11x) + wyf(”y) + Wi (nx,0) + wi(ny, v)}
e Note that ) = Z:,(:o an]yzo-

N



STOCHASTIC MODEL IV

@ The transition matrix satisfies
ZA(n,m; v) =0, ZA(n,m;v)p(v,m) =0.

@ The steady-state density p is

N' ny N—n,
p(v,ny,ny) = H mar(v) br(?’)\]
r=x,y
(X;-('U) ﬂr
T — N 00 b" = /N A
! (U) O(,/(Z)) + /3}' (U) ar(v) + ﬁr
@ In the deterministic limit e — 0
dv Ty iy B _ dv
T F(v) = fo(v) + ﬁfy(v) g(v) = i

where 7, is the mean number of open channels,

N N

n, = Z Z np(v, nx, ny) = Nay(v).

ny=1n,=1



WKB APPROXIMATION

@ Seek a WKB solution of the form

¢e(v,n) = R(v,n) exp (f (I)
where ®(v) is the quasipotential.

2)

Z (A(nm;v) + ®'(0)6nml(v,m)) R(v,m) =

@ Substituting into the equation fée =0, we have

where & = d® /dv.

6dI(v,n)R(v7 n)

dv
e Introducing the asymptotic expansions R ~ R©® + ¢RM and
O ~ Pg + Py, the leading order equation is

> A(n,m;v)RY (v, m) = —&;(v)I(v,n)R” (v,n).




CALCULATION OF THE QUASIPOTENTIAL
@ Try a normalized positive solution of the form
RO (0,n) = 1 | 1 N![Ax(v)]"" ] N![Ay(v)}”?/ 7
A+ AN 0+ A,@F N—n)hnl (N —n,)]
with any RO (v,n) =1forallv

@ Substitute into zeroth order equation and collect terms independent of n
and terms linear in 7y, ny

@ Three equations in three unknowns A, A, ®o.
@ Find that A, satisfies a quadratic with

Ai_ b j:\/172*40(3 A _CY,\'“FO(y_ﬁxAx
X ) Yy —

N i 2a : “Sy
with

egx(fv +fy)7 c= 7(a~\‘ + a}/)f}/
—(ax + ozy)(fx +fy) + Bufy *fxﬁy

@ Only one root yields positive solution




EFFECT OF GLUTAMATE UNBINDING ON QUASIPOTENTIAL

@ MFPT for spike initiation calculated using similar methods to ML model

@ Need to account for glutamate unbinding to determine mean duration of
a spike

@ Quasipotential is a function of slowly varying maximum NMDA
conductance g.(t) = ge /"

@ Using an adiabatic approximation, we can take & to vary slowly with
time ¢

201

15

q)lo




STOCHASTIC PHASE-PLANE ANALYSIS

e With glutamate unbinding have a planar system

d
o = hax(0) (Vi = 0) /72 + 8y (0) (Vy = 0)/y + (Vi = 0) /7. = J (0, ),
dh h
approximation.

@ Assume a separation of time-scales 7; < 7 and use an adiabatic

o Let \(t) be the MFPT to jump from RH to LH branch given h(t) = e /7.




PHASE-PLANE ANALYSIS

s is Ao(s)ds, so that

@ Let P(s) = P(T > s) where T is the random spike duration.
@ The probability that a spike terminates in an infinitesimal time interval

P(s + 85) = P(s)(1 — Ao(s)3s)

e Taking ds — 0 and integrating gives P(s) = exp (— [; Ao(t)dt), and

dP s
pls) = -2 = Ao(s) exp (f/ /\o(t)dt) .
s 0
500r
400} N * *
300} >
T
200/
100}
0,

05 15 25 35 45
1/e




