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Part I. Neural excitability



THE ACTION POTENTIAL

Generation and propagation of an action potential based on
nonlinearities associated with active membrane conductances.

Recordings of the current flowing through single ion channels indicate
that channels fluctuate rapidly between open and closed states in a
stochastic fashion.



ION CHANNELS I

Usually assume that there are a large number of approximately
independent channels of each type - law of large numbers

The conductance for an ion channel of type i

gi = ḡiXi

where ḡi is the density of channels in the membrane multiplied by the
conductance of a single channel and Xi is the fraction of open channels.
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ION CHANNELS II
Model kinetics of X in terms of voltage-dependent transitions between
an open and closed state:

dX
dt

= αX(v)(1− X)− βX(v)X,

where

C(closed)
αX(v)


βX(v)

O(open).

From basic thermodynamics, the opening and closing rates are expected
to be exponential functions of the voltage.
Kinetics can be rewritten in the alternative form

τX(v)
dX
dt

= aX(v)− X,

where

τX(v) =
1

αX(v) + βX(v)
, aX(v) = αX(v)τX(v).

It follows that X approach the asymptotic value aX(v) exponentially with
time constant τX(v),



MORRIS-LECAR MODEL OF NEURAL EXCITABILITY

Morris-Lecar (ML) model describes voltage dynamics driven by fast
sodium (Na) (or Ca) and slow potassium (K) channels

dv
dt

= a(v)fNa(v) + wfK(v)− g(v)

dw
dt

=
w∞(v)− w
τw(v)

,

Here fi(v) = ḡi(vi − v) and w represents the fraction of open K+

channels.

The fraction of Na+ channels is assumed to be in quasi steady-state.

Analyze the generation of action potentials using a fast/slow analysis



FAST/SLOW ANALYSIS OF EXCITABILITY

Fast variable v has a cubic-like nullcline and slow variable w has a
monotonically increasing nullcline

Assume nullclines have a unique intersection point - stable resting state

Excitable system: sufficiently large perturbations of the resting state
result in a time-dependent trajectory taking a prolonged excursion
through state space before returning to the resting state - the action
potential (AP)

Rapid transition (w ≈ constant) during initiation of AP



FUNDAMENTAL ISSUES

For fixed w, 1D system is bistable with a well-defined threshold for
initiation of an AP

How does one analyze the effects of sodium ion channel fluctuations on
spontaneous action potential (SAP) generation? - first passage time
problem

Is the fast/slow decomposition still valid when potassium ion channel
fluctuations are taken into account?

How does one formulate spontaneous action potential generation for an
excitable system in terms of a first passage time problem - there is no
well-defined separatrix for escape from the resting state?



Part II. First passage time problem for SAP for-
mation



STOCHASTIC ION CHANNEL MODEL

Let n, n = 0, . . . ,N be the number of open sodium channels:

dv
dt

= F(v, n) ≡ 1
N

f (v)n− g(v),

with f (v) = gNa(VNa − v) and g(v) = −geff[Veff − v] + Iext.

The opening and closing of the ion channels is described by a
birth-death process according to

n→ n + 1, n→ n− 1

at rates

ω+(v, n) = α(v)(N − n), ω−(n) = βn

Take

α(v) = β exp
(

2(v− v1)

v2

)
for constants β, v1, v2.



CHAPMAN-KOLMOGOROV EQUATION I

Introduce the joint probability density

Prob{v(t) ∈ (v, v + dv), n(t) = n} = p(v, n, t|v0, n0, 0)dv,

Differential Chapman-Kolmogorov (CK) equation (dropping the
explicit dependence on initial conditions)

∂p
∂t

= −∂[F(v, n)p(v, n, t)]
∂v

+
1
ε

[ω+(v, n− 1)p(v, n− 1, t) + ω−(n + 1)p(v, n + 1, t)

−(ω+(v, n) + ω−(n))p(v, n, t)],

Introduced small parameter ε - opening and closing of sodium channels
much faster than relaxation dynamics of voltage



CHAPMAN-KOLMOGOROV EQUATION II

Rewrite CK equation in the more compact form

∂p
∂t

= −∂[F(v, n)p(v, n, t)]
∂v

+
1
ε

∑
n′

A(n, n′; v)p(v, n′, t),

An,n−1;v = ω+(v, n− 1), An,n;v = −ω+(v, n)− ω−(n), An,n+1;v = ω−(n + 1).

There exists a unique steady state density ρ(v, n) for which∑
m

A(n,m; v)ρ(v,m) = 0

where

ρ(v, n) =
N!

(N − n)!n!
a(v)nb(v)N−n, a(v) =

α(v)

α(v) + β
, b(v) = 1− a(v).



MEAN-FIELD LIMIT

In the limit ε→ 0, we obtain the mean-field equation

dv
dt

=
∑

n

F(v, n)ρ(v, n) = a(v)f (v)− g(v) ≡ −dΨ

dv
,

Assume deterministic system operates in a bistable regime

Ψ(v)

v [mV]

v- v*

v+

-100 -80 -60 -40 -20 0 20 40 60 80 100

Iext = I*

Iext < I*



FIRST-PASSAGE TIME (FTP) PROBLEM

Assume particle starts at stable fixed point v−
Absorbing boundary conditions at v∗:

p(v∗, n, t) = 0 for all n ≤ k

such that F(v∗, n) < 0.

Let T be FPT with density f (t)
Introduce survival probability

S(t) =

∫ v∗

0

∑
n

p(v, n, t)dv ≡ Prob{t < T}.

It follows that

f (t) = −dS
dt

= −
∫ v∗

0

∑
n

∂p
∂t

(v, n, t)dv =
∑

n

F(v∗, n)p(v∗, n, t),



SPECTRAL PROJECTION METHOD I (WARD 1998,NEWBY/KEENER

2011,PCB/NEWBY 2013/2014)

Introduce the inner product

〈f , g〉 =
∞∑

n=0

∫ v∗

0
f (v, n)g(v, n)dv

Consider eigenfunctions of CK linear opertor L̂

L̂φr(v, n) ≡ d
dv

(F(v, n)φr(v, n))− 1
ε

∑
m

A(n,m; v)φr(v, n)

= λrφr(v, n),

together with the boundary conditions

φr(v∗, n) = 0, for n ≤ k



SPECTRAL PROJECTION METHOD II

Assume the spectrum of L̂ satisfies the following:

(i) L̂ has a complete orthonormal set of eigenfunctions φr

(ii) The eigenvalues λr all have positive real part and the smallest
eigenvalue λ0 is simple. Thus we can introduce the ordering
0 < λ0 < Re[λ1] ≤ Re[λ2] ≤ . . ..
(iii) λ0 is exponentially small, λ0 ∼ e−C/ε, whereas Re[λr] = O(1) for
r ≥ 1. In particular, limε→0 λ0 = 0 and limε→0 φ0(v, n) = ρ(v, n).

Introduce the eigenfunction expansion

p(v, n, t) =
N∑

r=1

Cre−λrtφr(v, n),



SPECTRAL PROJECTION METHOD III

At large times we have the quasistationary approximation

p(v, n, t) ∼ C0e−λ0tφ0(v, n).

Hence

f (t) ∼ e−λ0t
∑

n

φ0(v∗, n)v(v∗, n), λ1t� 1.

It can be shown that

λ0 =

∑∞
n=0 F(v∗, n)φ0(v∗, n)

〈1, φ0〉
.

Hence, (normalized) first passage time density reduces to

f (t) ∼ λ0e−λ0t

and 〈T〉 =
∫∞

0 tf (t)dt ∼ 1/λ0.



QUASISTATIONARY DENSITY I

Quasistationary density φε approximates φ0 up to exponentially small
terms at the boundary

L̂φε = 0, φε(v∗, n) = O(e−C/ε).

Express λ0 in terms of the quasistationary density φε by considering the
eigenfunctions of the adjoint operator

L̂†ξr(v, n) ≡ −F(v, n)
dξr(v, n)

dv
− 1
ε

∑
m

A(m, n; v)ξr(v,m) = λrξr(v, n)

and the boundary conditions

ξr(v∗, n) = 0, n > k.

The eigenfunctions {φr} and {ξr} form a biorthogonal set:

〈φr, ξs〉 ≡
∫ v∗

−∞

∑
n

φr(v, n)ξs(v, n)dv = δr,s



QUASISTATIONARY DENSITY II

Consider the identity

〈φε, L̂†ξ0〉 = λ0〈φε, ξ0〉.

Integration by parts then gives

λ0 = −
∑

n φε(v∗, n)ξ0(v∗, n)F(v∗, n)

〈φε, ξ0〉
.

Determine φε using the WKB method and ξ0 using matched asymptotics
(Keener and Newby 2011, Newby and Chapman 2013).



WKB METHOD I

Seek a solution of the form

φε(v, n) ∼ R(v, n) exp
(
−Φ(v)

ε

)
Substitution yields

∑
m

(
A(n,m; v) + Φ′(v)δn,mF(v,m)

)
R(v,m) = ε

dF(v, n)R(v, n)

dv

Asymptotic expansions R ∼ R(0) + εR(1) and Φ ∼ Φ0 + εΦ1

The leading order equation is

∑
m

A(n,m; v)R(0)(v,m) = −Φ′0(v)F(v, n)R(0)(v, n).



WKB METHOD II

One positive solution is R(0) = ρ, for which Φ′0 = 0.

There exists one other positive solution, for which Φ′0 = 0 at the
determistic fixed points (Newby and Keener 2011)

Next order in the asymptotic expansion:

∑
m

Ā(n,m; v)R(1)(v,m) =
dF(v, n)R(0)(v, n)

dv
− Φ′1(v)F(v, n)R(0)(v, n)

with

Ā(n,m; v) =
(
A(n,m; v) + Φ′0(v)δn,mF(v,m)

)
Matrix operator Ā(n,m; v) has a 1D null space spanned by the positive
WKB solution R(0)



WKB METHOD III

Fredholm Alternative Theorem yields solvability condition∑
n

S(v, n)

[
dF(v, n)R(0)(v, n)

dv
− Φ′1(v)F(v, n)R(0)(v, n)

]
= 0,

∑
n

S(v, n)
(
A(n,m; v) + Φ′0(v)δn,mF(v,m)

)
= 0.

Given R(0), S and Φ0, the solvability condition yields the following
equation for Φ1:

Φ′1(v) =

∑
n S(v, n)[F(v, n)R(0)(v, n)]′∑

n S(v, n)F(v, n)R(0)(v, n)
.



WKB METHOD IV

Define

k(v) = exp

(
−
∫ v

v−

Φ′1(y)dy

)
,

To leading order in ε,

φε(v, n) ∼ N k(v) exp
(
−Φ0(v)

ε

)
R(0)(v, n),

Normalization

N =

[∫ v∗

0
k(v) exp

(
−Φ0(v)

ε

)
dv
]−1

.

Laplace’s method gives

N ∼ 1
k(v−)

√
|Φ′′0 (v−)|

2πε
exp

(
Φ0(v−)

ε

)
.



ADJOINT EIGENFUNCTION I

Leading order adjoint equation

εF(v, n)
dξ0(v, n)

dv
+
∑

m

A(m, n; v)ξ0(v,m) = 0,

with boundary conditions

ξ0(v∗, n) = 0, n > k.

Boundary layer: set v = v∗ − εz and Q(z, n) = ξ0(u∗ − εz):

F(v∗, n)
dQ(z, n)

dz
+
∑

m

A(m, n; v∗)Q(z,m) = 0

Inner solution has to be matched with the outer solution ξ0 = 1

lim
z→∞

Q(z, n) = 1



ADJOINT EIGENFUNCTION II

Consider the eigenvalue equation∑
n

(A(n,m; v)− µr(v)δn,mv(u,m)) Sr(v, n) = 0,

S0(v, n) = 1, µ0 = 0, S1(v, n) = S(v, n), µ1(v) = −Φ′0(v)

Zero eigenvalue is degenerate at v = v∗, since Φ′0(v∗) = 0.

Introduce the generalized eigenfunction expansion

Q(z, n) = c0 + c1(Ŝ(v∗, n)− z) +
∑
r≥2

crSr(v∗, n)e−µr(v∗)z

∑
n

A(n,m; v∗)Ŝ(v∗, n) = −F(v∗,m).



ADJOINT EIGENFUNCTION III

Eliminate secular term −c1z using an alternative scaling in the boundary
layer of the form (Newby and Chapman 2013)

x = x∗ + ε1/2z

Find that

c1 ∼
√

2|Φ′′0 (v∗)|
π

+O(ε1/2), cr = O(ε1/2) for r ≥ 2

Only need c1, since the quasistationary approximation φε is proportional
to R(0), which is orthogonal to all eigenvectors Sr, r 6= 1.



PRINCIPLE EIGENVALUE

Principal eigenvalue is

λ0 ∼ 1
π

k(v∗)B(v∗)
k(v−)

√
Φ′′0 (v−)|Φ′′0 (v∗)| exp

(
−Φ0(v∗)− Φ0(v−)

ε

)
.

B(v∗) = −
∑

n

Ŝ(v∗, n)v(u∗, n)ρ(v∗, n)

∑
m

A(n,m; v)R(0)(v,m) = −Φ′0(v)F(v, n)R(0)(v, n).

∑
n

S(v, n)
(
A(n,m; v) + Φ′0(v)δn,mF(v,m)

)
= 0.

∑
n

A(n,m; v∗)Ŝ(v∗, n) = −F(v∗,m).



CALCULATION OF PRINCIPAL EIGENALUE
1 Find eigenfunction R(0)(v, n) and eigenvalue µ(v) = −Φ′0(v).

R(0)(v, n) =
N!

(N − n)!n!

(f (v)− g(v))N−ng(v)n

f (v)N .

and

µ(v) = N
α(v)f (v)− (α(v) + β)g(v)

g(v)(f (v)− g(v))
,

2 Calculate the prefactor k(v) from the null eigenfunction

S(v, n) =

(
b(v)g(v)

a(v)(f (v)− g(v)))

)n

3 Calculate the generalized eigenfunction Ŝ(v∗, n):

Ŝ(v∗, n) =
f (v∗)

N(α(v∗) + β)
n.

4 Calculate the factor B(v∗):

B(v∗) =
f (v∗)2α(v∗)β

N(α(v∗) + β)3

where have used the fixed point condition g(v∗) = f (v∗)a(v∗).



COMPARISON WITH NUMERICS (KEENER AND NEWBY 2011)

Compare analytical results with Monte Carlo simulations

Good agreement in super threshold and sub threshold regimes

A corresponding diffusion approximation breaks down in the sub
threshold regime

JAMES P. KEENER AND JAY M. NEWBY PHYSICAL REVIEW E 84, 011918 (2011)

whereas the true denominator is g(f − g). Now, notice that at
the fixed point v = v0, where g(v0) = a(v0)f (v0), we have

g(v0)[f (v0) − g(v0)] = a(v0)f (v0)[1 − a(v0)]f (v0)

= a(v0)b(v0)f (v0)2. (5.39)

Thus, like the eigenfunction ψ(s|v), the approximation
(5.37) of the eigenvalue μ(v) is valid only near the fixed point.
This means that the WKB method, applied after the system-
size expansion, fails to accurately approximate the stability
well in exactly the same way as the QSS approximation of
the full CK equation (see Sec. IV A). We conclude that all
of the diffusion approximation techniques fail for the same
reason: They cannot estimate the large-deviation behavior of
the random process away from the deterministic fixed point.

VI. RESULTS

Thus far, we have developed an approximation of the
probability density function for the onset time of an action
potential. Building upon earlier studies, which develop analyt-
ical and simulation approaches for the case where the stimulus
amplitude is above threshold, we now have a quasistationary
approximation for a below-threshold stimulus amplitude. This
allows us to build a complete picture of how stochasticity
affects the reliability of a neuron’s response to stimuli and
for how these results compare to those predicted in the
deterministic limit. We have also explored different diffusion
approximation techniques and found that each resulted in the
same one-dimensional reduced FP equation (4.7), which we
now refer to as the diffusion approximation. In this section, we
compare the quasistationary and diffusion approximations of
the MFT, using the theory developed in previous sections along
with averaged Monte Carlo simulations, which are generated
with the Gillespie algorithm [27] (see Appendix B for details).

The MFT is computed using the quasistationary approxima-
tion from Sec. III and the diffusion approximation (numerical
method) from Sec. IV. Parameter values are listed in Sec. II,

and unless otherwise specified we take β = 0.8 s−1 so that ε =
6.9 × 10−3. The results of this calculation are shown in Fig. 2.

It is evident that the quasistationary approximation is
accurate for I < I∗ and the diffusion approximation is accurate
for I > I∗; however, we note that the diffusion approximation
is in error by many orders of magnitude as I → 0. In Fig. 2(b)
we also show the coefficient of variation (CV), defined as
the standard deviation over the mean, from the Monte Carlo
simulations, which shows the qualitative transition as the
applied current increases past the deterministic threshold
(I∗ ≈ 40 mA) from an exponential distribution (CV = 1) to
something else for which CV < 1.

To characterize the stochastic nature of the model, one can
examine how the fluctuations change as a function of voltage.
This quantity is often experimentally accessible and has a
convenient theoretical form. When using the diffusion ap-
proximation, the random process can be written as a Langevin
equation (4.8), in which the noise term contributes fluctua-

tions with magnitude σ (v) =
√

1
N

a(v)b(v)2f (v)2. However, a
continuous description of the noise is not valid away from the
deterministic fixed point v0. To see how this affects the MFT
we compute an approximation of stationary distribution, using
the FP equation (4.7). We find

û(v) = N exp

[
−1

ε
�(v)

]
, (6.1)

where

�(v) = −N

∫ v

v∗

ν(v′)
a(v′)b(v′)2f (v′)2

dv′ (6.2)

and N is a normalization constant. The mean (and determin-
istic limit) is given by ν(v) (2.25), and it characterizes the
stability properties; that is, the zeros of ν are the deterministic
fixed points and the local minima and maxima of �(v). Indeed,
� can be thought of as a stability landscape, which has
multiple wells corresponding to metastable states. Recall that
the deterministic system has three fixed points; two are stable,
and they are separated by one that is unstable (see Sec. II). We
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FIG. 2. Mean time to fire an action potential (MFT) T (ms) as a function of the applied current I (mA) for N = 10. (a) The quasistationary
(solid line) and diffusion (dashed line) approximations are compared to 300 averaged Monte Carlo simulations (symbols). The relative error
of each approximation, compared to Monte Carlo simulations, is shown by gray lines. (b) Coefficient of variation (CV) from the Monte Carlo
simulations.
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Part III. Breakdown of fast/slow analysis



STOCHASTIC MORRIS-LECAR MODEL

Take n ≤ N open Na+ channels and m ≤ M open K+ channels:

dv
dt

= F(v,m, n) ≡ n
N

fNa(v) +
m
M

fK(v)− g(v).

Each channel satisfies the kinetic scheme

C
αi(v)
−→
←−
βi(v)

O, i = Na, K,

The Na+ channels fast relative to voltage and K+ dynamics.

Chapman–Kolmogorov (CK) equation,

∂p
∂t

= −∂(Fp)

∂v
+ LKp + LNap.

The jump operators Lj, j = Na,K, are defined according to

Lj = (E+
n − 1)ω+

j (n, v) + (E−n − 1)ω−j (n, v),

with E±n f (n) = f (n± 1), ω−j (n, v) = nβj and ω+
j (n, v) = (N − n)αj(v).



K+ CHANNEL FLUCTUATIONS CAN INDUCE SAPS

The deterministic ML model is recovered in the limit βNa →∞, M→∞
with λM = βNa/M fixed.

Find spontaneous SAPs can be generated for finite M and/or finite βNa

Na K



SMALL NOISE LIMIT

Introduce a small parameter ε� 1 such that (in dimensionless units)

β−1
Na = ε, M−1 = λMε,

Set w = m/M and write (m± 1)/M = w±M−1

Perturbation expansion in ε combines a system size expansion with a
slow/fast analysis

We would like to determine the most probable or optimal paths of
escape from the resting state in the (v,w)-plane for small ε

For chemical master equations, the quasipotential of the WKB
approximation satisfies a Hamilton-Jacobi equation - the optimal paths
given by solutions to an effective Hamiltonian dynamical system

There is an underlying variational principle derived using large
deviation theory or path-integrals



OPTIMAL PATHS

Ω

∂Ω

separatrix

xs

Ω

∂Ω

xs

a b

(a) Deterministic trajectories converging to a stable fixed point xS.
Boundary of basin of attraction formed by a union of separatrices

(b) Noise-induced paths of escape



WKB APPROXIMATION

Introduce quasistationary solution of the form

φε(v,w, n) = R(n|v,w) exp
(
−1
ε

Φ(v,w)

)
,

where Φ(v,w) is the quasipotential

To leading order,

[LNa + pv + h(v,w, pw)] R(n|v,w) = 0,

where

pv =
∂Φ

∂v
, pw =

∂Φ

∂w
and

h(v,w, pw) =
βK

MλM

[
(e−λMpw − 1)ω+

K (Mw, v) + (eλMpw − 1)ω−K (Mw, v)
]



HAMILTON-JACOBI EQUATION

Introducing the ansatz

Rn(v,w) =
Λ(v,w)n

(N − n)!n!
,

yields a Hamilton-Jacobi equation for Φ:

0 = H(v,w, pw, pv) ≡ (a(v)fNa(v) + g(v))pv + h(v,w, pw)

− b(v)

N

[
((2g(v) + fNa(v))pvh(v,w, pw) + (fNa(v) + g(v))g(v)p2

v + h(v,w, pw)2
)

Solve for Φ using method of characteristics. Satisfy Hamilton’s equations

ẋ = ∇pH(x,p), ṗ = −∇xH(x,p).

for x = (v,w) and p = (pv, pw)

Interpret Φ(t) as the action with Φ̇(t) = p(t) · ẋ(t), is a strictly increasing
function of t, and the quasipotential is given by Φ(v,w) = Φ(t) at the
point (v,w) = x(t).



RESULTS I: SOLUTIONS OF HJ EQUATION 4

C
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FIG. 2. Orange curves are SAP trajectories, shown until they
reach the metastable separatrix (S). The dashed red curve
is a SAP that reaches S near the bottleneck (BN). All of
the SAP trajectories that enter the shaded region are visu-
ally indistinguishable from the dashed red line before crossing
S. Deterministic trajectories are shown as black streamlines.
The upper left inset is a close up of the caustic formation
point (CP) with overlapping metastable trajectories. Level
curves of Φ are shown inside the potential well region with
grey lines. Also shown are the caustic (C), v nullcline (VN),
and w nullcline (WN). Parameter values are N = M = 40
and λM = 0.25.

at the fixed point as a single trajectory and then fan out
just before reaching the metastable separatrix (Fig. 2).
After crossing the separatrix, all of the SAP trajecto-
ries eventually reach the caustic. Although all SAPs are
equally likely to reach the separatrix, their likelihood of
reaching the caustic depends on their amplitude. Large
amplitude SAPs are less likely and reach the caustic far
from the caustic formation point. Strictly speaking, the
most probable SAP strikes the caustic formation point,
but Φ increases by a very small amount in the shaded re-
gion of Fig. 2 because SAP trajectories are very close to
deterministic trajectories (black streamlines). (The rela-
tive difference is |∆Φ| /Φc ≈ 0.01.) Hence, the stationary
density (7) is nearly constant in the shaded region.

SAPs that cover the shaded region cross a very small
segment of the separatrix, the center of which acts as
a bottleneck for SAPs. The shaded region represents
the most likely, experimentally observable SAP trajecto-
ries; it excludes the small amplitude SAPs that (crossing
above the bottleneck) strike very close to the caustic for-
mation point and the far less probable SAPs that (cross-
ing below the bottleneck) strike the caustic above or be-
hind the potential well region. The portion of the SAP
trajectory between the fixed point and the bottleneck
(see Fig. 2 dashed curve) represents the initiation phase;
it is not constant and remains below the voltage nullcline.
This behavior is confirmed by Monte-Carlo simulations
(see supplementary material for details).

To summarize our results, we find that fluctuations in
the slow recovery dynamics of K+ channels significantly

affect spontaneous activity in the ML model. The max-
imum likelihood trajectory during initiation of a SAP
can be thought of as a path of least resistance, drop-
ping below the voltage nullcline where voltage increases
deterministically. Hence, SAP initiation is more likely
to occur using the second of the two mechanisms men-
tioned in the introduction: a burst of simultaneously-
closing K+ channels causes v to increase. If one takes
w to be constant, only the first mechanism is available
and the path is artificially constrained, which alters the
quasipotential. In other words, constraining the path al-
ters the effective energy barrier for SAP initiation, which
significantly affects determination of the spontaneous fir-
ing rate. Although it is more difficult to construct an
exit time problem in an excitable system, this can now
be done using the metastable separatrix. The methods
used here are general and may lead to future studies of
noise-induced dynamics in other nonlinear stochastic sys-
tems. In particular, it would be interesting to extend the
current analysis to the Hodgkin-Huxley model, where the
Na+ channels have a slow inactivating component.
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RESULTS II

Φ takes the shape of a potential well in a neighborhood of resting state
with convex level curves.

Once Φ reaches a threshold, a caustic is formed along which every point
is connected to two equally likely metastable trajectories

Most probable paths of escape dip significantly below the resting value
for w, indicating a breakdown of the deterministic slow/fast
decomposition.

Escape trajectories pass through a narrow region of state space that acts
like a bottleneck or stochastic saddle node

Hence, although there is no well-defined separatrix for an excitable
system, one can formulate an escape problem by determining the MFPT
to reach the bottleneck from the resting state.

Curves that don’t pass through SN are bounded by a curve (S) that acts
like a stochastic separatrix.



RESULTS III

Identify SAP trajectories as those metastable trajectories that cross the
separatrix.

SAP trajectories begin at the fixed point as a single trajectory and then
fan out just before reaching the metastable separatrix.

Result confirmed by Monte-Carlo simulations

t=−2.0t=−4.0t=−6.0t=−8.0t=−10.

t=−12.t=−14.t=−16.t=−18.t=−20.



SUMMARY OF RESULTS

Fluctuations in the slow recovery dynamics of K+ channels significantly
affect spontaneous activity in the ML model.

The maximum likelihood trajectory during initiation of a SAP drops
below the voltage nullcline so that w is not constant - breakdown of
fast/slow analysis

SAP initiation mechanisms is a burst of simultaneously-closing K+

channels that causes v to increase.

Constraining the paths by fixing w alters the effective energy barrier for
SAP initiation, which significantly affects determination of the
spontaneous firing rate.

There is an effective metastable separatrix that can be used to formulate
an FPT problem for an excitable system



Part IV. Dendritic NMDA spikes



NMDA SPIKES IN THIN DENDRITES

A pyramidal neuron has a thick apical dendrite and various thin
dendrites. The latter support the initiation of dendritic NMDA spikes

A strong glutamatergic input can trigger a dendritic plateau potential of
duration 100 msec.

The plateau potential consists of several dendritic conductances, the
most predominant being due to NDMAR channels. Pharmacologically
blocking Na and Ca channels reveals the pure dendritic NMDA spike
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thin apical

tufts

thin basal

branches

(a)

axon

thin oblique

tufts

(b)

NMDA spike

plateau potentialNa+ spikelet

subthreshold EPSP
20 mV
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VOLTAGE CHARACTERISTICS OF DENDRITIC MEMBRANE

Following strong stimulation and removal of the Mg+ block, the
maximum conductance gmax of the NMDARs is high so that the
N-shaped I-V curve has only a stable depolarized fixed point.

As gmax decreases due to glutamate unbinding, two additional fixed
points arise via an SN bifurcation – bistability

As gmax is further reduced, a second SN bifurcation results in a rapid
return to the resting state.

voltage

current

rest

boosting

bistable

self-triggering

increasing gmax



DETERMINISTIC CONDUCTANCE-BASED MODEL

The dendritic voltage v evolves as

C
dv
dt

= gx(t)ax(v)(Vx − v) + ḡyay(v)(Vy − v) + ḡL(VL − v),

where x, y label NMDA and Na channels, respectively, and C is the
membrane capacitance.

The glutamate-bound NMDA receptors act like sodium channels,with
non-ohmic voltage-dependent conductances

ar(v) =
1

1 + e−γr(v−κr)
, r = x, y.

Here ar(v) represents the fraction of open ion channels of type r in the
limit of fast channel kinetic

The time-dependent deactivation of the NMDA channels following the
binding of glutamate is incorporated by taking the maximal conductance
of the NMDA receptors to be a slowly decaying function of time t:

gx(t) = ḡxe−t/τ ,



STOCHASTIC MODEL

Fix gx and set C = 1. Have a stochastic hybrid system

dV
dt

= I(V, nx, nY) ≡ ḡx
nx(t)

N
(Vx − V) + ḡy

ny(t)
N

(Vy − V) + ḡL(VL − V),

Only holds between jumps in the discrete random variables nx, ny:
birth-death processes

nr →
ωr
+(nr,V)/ε

nr + 1, nr →
ωr
−(nr)/ε

nr − 1.

The transition rates are

ωr
+(nr,V) = αr(V)(N − nr), ωr

−(nr) = βrnr,

after rescaling αj, βj by a factor 1/ε.

Introduce the associated probability density

p(v, nx, ny, t)dv = P[v ≤ V(t) ≤ v + dv, nx(t) = nx, ny(t) = ny],



STOCHASTIC MODEL II

The differential Chapman-Kolmogorov (CK) equation is

∂p
∂t

= − ∂

∂v
[I(v, nx, ny)p(v, nx, ny, t)] +

1
ε
Lp(v, nx, ny, t),

where L = Lx + Ly,

Lr = (E+
r − 1)ωr

−(nr) + (E−r − 1)ωr
+(nr,V).

and E±r are ladder operators defined according to

E±r F(nr) = F(nr ± 1)



STOCHASTIC MODEL III

Can rewrite CK equation as

∂p
∂t

= − ∂

∂v
[I(v,n)p(v,n, t)] +

1
ε

∑
m

A(n,m; v)p(v,m),

where n = (nx, ny) and the matrix A has the non–zero entries

A(nx, ny, nx − 1, ny; v) = ωx
+(nx − 1, v),

A(nx, ny, nx, ny − 1; v) = ω
y
+(ny − 1, v),

A(nx, ny, nx + 1, ny; v) = ωx
−(nx + 1),

A(nx, ny, nx, ny + 1; v) = ω
y
−(ny + 1),

A(nx, ny, nx, ny; v) = −
[
ωx
−(nx) + ω

y
−(ny) + ωx

+(nx, v) + ω
y
+(ny, v)

]
.

Note that
∑

m ≡
∑N

mx=0

∑N
my=0.



STOCHASTIC MODEL IV
The transition matrix satisfies∑

n

A(n,m; v) = 0,
∑

m

A(n,m; v)ρ(v,m) = 0.

The steady-state density ρ is

ρ(v, nx, ny) =
∏

r=x,y

N!

(N − nr)!nr!
ar(v)nr br(v)N−nr

ar(v) =
αr(v)

αr(v) + βr
, br(v) =

βr

αr(v) + βr
.

In the deterministic limit ε→ 0

dv
dt

= F(v) =
n̄x

N
fx(v) +

n̄y

N
fy(v)− g(v) ≡ −dΨ

dv
.

where n̄r is the mean number of open channels,

n̄r =
N∑

nx=1

N∑
ny=1

nrρ(v, nx, ny) = Nar(v).



WKB APPROXIMATION

Seek a WKB solution of the form

ϕε(v,n) = R(v,n) exp
(
−Φ(v)

ε

)
,

where Φ(v) is the quasipotential.

Substituting into the equation L̂φε = 0, we have

∑
m

(
A(n m; v) + Φ′(v)δn,mI(v,m)

)
R(v,m) = ε

dI(v,n)R(v,n)

dv
,

where Φ′ = dΦ/dv.

Introducing the asymptotic expansions R ∼ R(0) + εR(1) and
Φ ∼ Φ0 + εΦ1, the leading order equation is∑

m

A(n,m; v)R(0)(v,m) = −Φ′0(v)I(v,n)R(0)(v,n).



CALCULATION OF THE QUASIPOTENTIAL

Try a normalized positive solution of the form

R(0)(v,n) =
1

[1 + Λx(v)]N
1

[1 + Λy(v)]N

N![Λx(v)]nx

(N − nx)!nx!
· N![Λy(v)]ny

(N − ny)!ny!
,

with
∑

nx,ny
R(0)(v,n) = 1 for all v

Substitute into zeroth order equation and collect terms independent of n
and terms linear in nx, ny

Three equations in three unknowns Λx,Λy,Φ0.
Find that Λx satisfies a quadratic with

Λ±x = − b
2a
±
√

b2 − 4ac
2a

, Λy =
αx + αy − βxΛx

βy

with

a = βx(fx + fy), c = −(αx + αy)fy

b = −(αx + αy)(fx + fy) + βxfy − fxβy

Only one root yields positive solution



EFFECT OF GLUTAMATE UNBINDING ON QUASIPOTENTIAL

MFPT for spike initiation calculated using similar methods to ML model

Need to account for glutamate unbinding to determine mean duration of
a spike

Quasipotential is a function of slowly varying maximum NMDA
conductance gx(t) = ḡxe−t/τ

Using an adiabatic approximation, we can take Φ to vary slowly with
time t



STOCHASTIC PHASE-PLANE ANALYSIS

With glutamate unbinding have a planar system

dv
dt

= hax(v)(Vx − v)/τx + ay(v)(Vy − v)/τy + (VL − v)/τL ≡ J(v, h),

dh
dt

= − h
τ
, h(0) = 1.

Assume a separation of time-scales τj � τ and use an adiabatic
approximation.
Let λ0(t) be the MFPT to jump from RH to LH branch given h(t) = e−t/τ .

v

h

rest

h = 1

v-(h)

v0(h)

v+(h)

h*

h
*

O



PHASE-PLANE ANALYSIS

Let P(s) = P(T > s) where T is the random spike duration.

The probability that a spike terminates in an infinitesimal time interval
δs is λ0(s)δs, so that

P(s + δs) = P(s)(1− λ0(s)δs).

Taking δs→ 0 and integrating gives P(s) = exp
(
−
∫ s

0 λ0(t)dt
)
, and

p(s) = −dP
ds

= λ0(s) exp
(
−
∫ s

0
λ0(t)dt

)
.


