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RANDOM INTERMITTENT SEARCH

Random search strategies are used throughout nature as a means
of efficiently searching large areas for a target of unknown
location

An efficient stochastic search strategy is to alternate between
(A) a slow motion (eg. diffusive) search phase and
(B) a fast (eg. motor-assisted or ballistic) non-search phase

Examples include foraging animals, a promoter protein
searching for a specific target site on DNA, virus searching for
the nucleus, mRNA transport in neurons



DNA/PROTEIN INTERACTIONS (BERG ET AL 1981)
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Protein searching for a specific binding site on DNA with N base
pairs executes sliding 1D diffusion for mean time τ1

Protein unbinds from DNA, executes 3D diffusion for mean time
τ3, rebinds at a random nonspecific site

τ =
N
n

(τ1 + τ3), n = 2
√

D1τ1, τ−1
3 = 4πD3Nb



BIOCHEMICAL REACTIONS WITHIN CELLS (BENICHOU

ET AL 2008)

D, τ1

a

v, τ2

unbinding

binding

A molecule searching for a reactant alternates between slow
diffusion of duration τ1 and ballistic motion of duration τ2

Ballistic motion consists of motor–driven transport along
cytsokeletal filaments that form a 2D or 3D mesh within cell

Active transport optimizes reaction rate if a > D/v



NEURONS ARE LARGE CELLS

synapses located in mushroom-like dendrtic spines

Proteins and other molecules must be transported long distances
along dendrites and axons
Protein transport crucial in synapse formation and plasticity
Defects underly various neurodegenerative diseases
Diffusive transport is too slow: τ = L2/D with D = 1µm2s−1 and
L > 100µm



MOTOR TRANSPORT OF MRNA

axon

synaptic target

cell body

microtubule

Newly transcribed mRNA granules are transported into the
dendrite by kinesin motors on microtubules.
Following synaptic activation, mRNA is localized to synapses by
actin-based myosin
Motile mRNA particles in cultured hippocampal randomly
switch between 3 states: stationary (or localized oscillations),
anterograde and retrograde



MRNA TRANSPORT IS BIDIRECTIONAL

A

B

after depolarizationbefore depolarization

Rook et al J. Neurosci. (2000)

Depolarization of cell increases anterograde bias



SPECIAL CHARACTERISTICS OF MRNA TRANSPORT

Tends to be biased in anterograde direction – standard
intermittent search models are unbiased

Time for delivery is important - degradation of mRNA, synapses
only primed for a limited period

Non-zero probability of failure to find the target (eg.
degradation, competition with other targets) - cost in resources

Extensive dendritic branching

Intracellular cargo is transported by a multiple motor complex

Complex signalling mechanism involved in transferring mRNA
to synaptic targets



Part I. Stochastic model of mRNA
transport



STOCHASTIC MODEL OF MRNA TRANSPORT

(PCB/NEWBY 2009)
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boundary

Particle injected into dendrite at x = 0.

Transitions between 3 states (left/right moving and stationary)
given by a Markov process.

In stationary state particle is absorbed at a rate k if within a
distance l of target



STOCHASTIC MODEL OF MRNA TRANSPORT

Chapman–Kolmogorov equation

∂p+

∂t
= −v

∂p+

∂x
+ αp0 − β+p+

∂p−
∂t

= v
∂p−
∂x

+ αp0 − β−p−

∂p0

∂t
= −2αp0 + (β+p+ + β−p−)− kχ(x)p0

where χ(x) = 1 if and only if |x− X| < l

Boundary conditions (reflecting at x = 0, absorbing at x = L)

vp−(0, t) = vp+(0, t), p−(L, t) = 0

Probability of finding target after time t is

γ(t) = k
∫ ∞

t

∫ X+l

X−l
p0(x, τ)dxdτ



OPTIMIZATION PROBLEM (UNBIASED SEARCH)
Characterize efficiency of search in terms of the hitting
probability Π and MFPT T:

Π = γ(0), MFPT T =

∫ ∞
0

γ(t)
γ(0)

dt

First, consider unbiased search (β+ = β− = β) and reflecting
boundaries at both ends (Π = 1)
There then exists an optimal search strategy with respect to α, β



OPTIMIZATION PROBLEM (BIASED SEARCH)
Now consider biased search β 6= β− and an absorbing boundary
at x = L (Π < 1)

Now an optimal solution no longer exists, since increasing Π also
increases T
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POPULATION OF SEARCHERS (PCB/JN 2012)
Consider N independent, identical searchers that all start at the
origin at time t = 0.

Denote the MFPT to find the target of the jth searcher by Tj,
j = 1, . . . ,N, with each Tj an independent, identically distributed
random variable drawn from the single searcher first passage
time (FPT) distribution

F(t) =

∫ t

0
J(s)ds, J(s) = k

∫ X+l

X−l
p0(x, s)dx.

The random time T to find the target T = min(T1,T2, ...,TN) has
the distribution

F(N)(t) = Prob(T < t) = 1− Prob(T > t)
= 1− Prob(T1 > t,T2 > t, ...,TN > t)

= 1− (1− F(t))N.



MEAN-FIELD LIMIT

Now suppose that the rate of detection for a single searcher
scales as k = κ/N. Then

F(N)(t) = 1−
(

1− κ

N

∫ t

0

∫ X+l

X−l
p0(x, s)ds

)N

.

In the mean-field limit N →∞, the detection rate k→ 0 so that
the density function p0(x, t) is independent of the target.

Moreover, in the large N limit,

lim
N→∞

F(N)(t) = 1− e−µ(t), µ(t) = κ

∫ t

0

∫ X+l

X−l
p0(x, s)ds

with p0(x, t) the solution of the CK equation in the absence of a
target.



EFFICIENCY OF SEARCH AS A FUNCTION OF N

Plot of T against Π for various N in the case of biased search

Upper curve is based on mean-field solution and lower curve on
single searcher solution.

Data points for finite N based on Monte-Carlo simulations
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FPT DENSITY AS A FUNCTION OF N
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Asymptotic analysis shows that for an unbiased single searcher
there is power-law scaling

F(t) ∼ t−3/2

whereas in the N →∞ limit there is a stretched exponential

F(t) ∼ e−c
√

t



Part II. Quasi-steady-state (QSS)
diffusion approximation



MODEL REDUCTION (PCB/NEWBY 2010)

3-state model is simple to analyze directly.

What about more complex search domains eg. dendritic trees,
higher-dimensional microtubular networks?

What about more complex biophysical models of motor–driven
transport eg. tug–of–war model?

QSS approximation reduces the Chapman-Kolomogorov
equation to a Fokker-Planck equation in the regime of fast
transition rates.

Based on stochastic projection methods (Papanicolaou 1975,
Gardiner 2009)



VELOCITY JUMP MARKOV PROCESS

Consider a motor-complex having N internal velocity states:

ẋ = vn, n = 1, . . . ,N.

Let W(n,n′; x)dt/ε be the probability that the system at x
switches from n′ at time t to the state n at time t + dt
Introduce the probability density

Prob{x(t) ∈ (x, x + dx),n(t) = n} = p(x,n, t|x0,n0, 0)dx

Differential Chapman-Kolmogorov (CK) equation

∂p
∂t

= −vn
∂[p(x,n, t)]

∂x
+

1
ε

∑
n′

A(n,n′; x)p(x,n′, t)− knχ(x)p(x,n, t)

where

A(n,n′; x) = W(n,n′; x)−
∑

m

W(m,n; x)δn′,n



MEAN-FIELD LIMIT

Assume that for fixed x, the matrix A(n,m; x) is irreducible and
has a simple zero eigenvalue:

∑
n A(n,m; x) = 0 for all m.

Perron-Frobenius Theorem =⇒ continuous-time Markov
process for fixed x,

dp(x,n, t)
dt

=
1
ε

∑
m

A(n,m; x)p(x,m, t),

has a globally attracting steady-state ρ(x,n) such that
p(x,n, t)→ ρ(x,n) as t→∞.
In the limit ε→ 0 and kn = 0, we obtain the mean-field equation

dx
dt

= F(x) ≡
∑

n

vnρ(x,n),

where ρ(x,n) is the unique steady-state density:∑
m

A(n,m; x)ρ(x,m) = 0



QUASI-STEADY-STATE DIFFUSION APPROXIMATION

Decompose the probability density as

p(x,n, t) = C(x, t)ρ(x,n) + εw(x,n, t),

where
∑

n p(x,n, t) = C(x, t) and
∑

n w(x,n, t) = 0.
Asymptotic expansion in ε yields FP equation

∂C
∂t

= − ∂

∂x
(FC) + ε

∂

∂x

(
D∂C
∂x

)
,

Drift term given by mean-field equation, and diffusion coefficient

D(x) =
∑
m,n

Z(x,n)vn,

Z(x,n) is the unique solution (for
∑

m Z(x,m) = 0)∑
m

A(n,m; x)Z(x,m) = −[F(x)− vn]ρ(x,n)



3-STATE MODEL REVISITED

Transition matrix is

A =

 −β+ 0 α+

0 −β− α−
β+ β− −α+ − α−

 , v =

 v
−v
0

 , k =

 0
0
k

 .

The stationary density is

ρ = γ−1(β−1
+ , β−1

− , α−1)T, γ = β−1
+ + β−1

− + α−1

Drift and diffusion coefficient are

F =
1
γ

(
1
β+
− 1
β−

)
+O(ε), γ =

1
β−

+
1
β+

+
1
α

D = ε

(
(1−F)2

γβ2
+

+
(1 + F)2

γβ2
−

)
+O(ε2), λ =

k
αγ

+O(ε)



MOMENT GENERATING FUNCTION

Total probability flux into target is

J(t) = λ

∫ 1+X

−1+X
u(x, t)dx.

Hitting probability and MFPT are given by

Π =

∫ ∞
0

J(t)dt = Υ(0), T =

∫∞
0 tJ(t)dt∫∞
0 J(t)dt

=
Υ′(0)

Υ(0)

Υ(s) is moment generating function

Υ(s) =

∫ ∞
0

e−stJ(t)dt = λ

∫ 1+X

−1+X
Ũ(x, s)dx



Part III. Random intermittent
search on a tree

dendrite
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axon
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DENDRITIC TREE (PCB AND NEWBY 2009)

Interior branch nodes

Open terminal nodes

Closed terminal node

Target on jth

branch

α

Suppose that there is a hidden target on the jth branch of a tree Γ

Let ui denote probability density on ith segment of a tree under
QSS approximation:

∂ui

∂t
= −λχ(x)δi,jui −Fi

∂ui

∂x
+Di

∂2ui

∂x2 , 0 < x < Li



CONTINUITY AND CONSERVATION CONDITIONS

Let Ji denote the probability current or flux

Ji ≡ −Di
∂ui

∂x
+ Fiui.

Impose closed boundary condition on primary terminal branch
and open boundary conditions at all other terminal segments

J0(0, t) = 0, ui(Li, t) = 0

At all branch nodes α with set of segments Iα impose continuity

ui(x(α), t) = Φα(t), for all i ∈ Iα,
and current conservation ∑

i∈Iα
Ji(x(α), t) = 0.



GREEN’S FUNCTION ON A TREE

Laplace transforming FP equation on a tree we find that

Ũi(x, s)− λ
∫ 1

−1
Gi,j(x, y + X; s)Ũi(y, s)dy = −Gi,0(x, 0; s)

Gi,j(x, y; s) is Green’s function satisfying boundary conditions and[
Di∂

2
x −Fi∂x − s

]
Gi,j(x, y; s) = δi,jδ(x− y)

Given a target on the jth branch, the generating function for the
hitting probability and MFPT is then

Υj(s) = λ

∫ 1

−1
Ũj(x + X, s)dx.



STEPS IN CALCULATION OF Π AND T

1 Solve Green’s function on each line segment in terms of
unknown functions Φ̃α(s)

2 Match solutions of line segments meeting at a branch node using
current conservation

3 Working from the open terminal nodes inwards, generate an
iterative equation for Φ̃α(s) which can be solved as a finite
continued fraction

4 Substitute solution for Green’s function into integral equation
and solve for Ũj numerically

5 Construct generating function and take limit s→ 0.



EXAMPLE: SEMI–INFINITE CAYLEY TREE
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Semi–infinite Cayley tree (z = 3) with identical branches of
length L = 10µm.

Plot of Π and T vs. target distance X from soma.

Solid curves (analytical), points ‘x’ (Monte Carlo)

Boundary layer at each branch node where

Π→ Π′ ≈ Π/(z− 1)



TWO PHASES OF RANDOM SEARCH ON A TREE
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n = 1 branch node between target and soma

Hit Prob Π < 0.5: resources cheap, unidirectional strategy

Hit Prob Π > 0.5: resources costly, bidirectional strategy



Part IV. Tug–of–war model of ran-
dom intermittent search

ANRV376-BB38-11 ARI 27 January 2009 23:38
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Figure 4
Positive feedback when a motor has load-accelerated dissociation (a) Tug-of-war. (b) The positive feedback
cycle associated with load-accelerated dissociation. (c) The drag force on a sphere as a function of air velocity
showing a region of negative slope at velocities around ∼0.5 m s−1, corresponding to a Reynolds number of
∼350,000, where the flow switches from laminar to turbulent. Data from Reference 1, with parameters for a
sphere of diameter 0.1 m at 20◦C and a pressure of 1 bar.

appreciated by considering a tug-of-war
(Figure 4a). Imagine that both sides are evenly
matched (symmetric) and that the probability of
one person letting go (or slipping on the grass)
increases with the load that he or she is car-
rying. If someone on one side accidentally lets
go, then the load is shared among fewer people
on that side and the load per person increases.
This increases the likelihood that another per-
son lets go, leading to a catastrophic release on
that side. Consideration of the other side leads
to the same result: If another person attaches,
then the load per person is decreased so that
even more people can take hold, leading to an
ever-increasing force (Figure 4b). The tug-of-
war illustrates that positive feedback associated
with load-dependent detachment can lead to
spontaneous symmetry breaking.

Positive feedback in a mechanical system
can be understood using the concept of nega-
tive damping. This is an unusual concept about
which many people initially feel uncomfortable.
To understand it, I remind the reader about pos-
itive damping. Positive damping refers to the
increased resistance to movement that a body
experiences as its speed increases. For example,
to move a spoon faster in a jar of honey requires
more force. Negative damping corresponds to
the situation in which the resisting force de-
creases as the speed increases. A classic example

Spontaneous
symmetry breaking:
occurs when a spatially
symmetric system is
not stable with respect
to small perturbations
and rather than
returning to its initial
position it moves one
way or the other and
becomes asymmetric

Negative damping
(or drag): a force that
augments motion and
whose magnitude
increases with velocity

Positive damping
(or drag): a force that
opposes motion and
whose magnitude
increases with velocity

from the fluid mechanics literature is the tran-
sition from laminar to turbulent flow past a
sphere: As the speed increases, a critical re-
gion is reached where the drag force decreases
and the drag coefficient (the slope of the force-
velocity curve) is less than zero (Figure 4c). If
a spoon in a jar of honey were to suffer such
viscosity breakdown, a critical force would be
reached in which the spoon would suddenly
start accelerating in the jar—it would lurch for-
ward. A loose analogy is quicksand that has high
resistance when stationary but lower resistance
when agitated. Another example is the phe-
nomenon that the coefficient of moving fric-
tion is usually smaller than the coefficient of
stationary friction (i.e., a velocity-dependent
friction coefficient): This phenomenon is as-
sociated with the skidding of a wheel and can
lead to slip-stick oscillations, such as during the
bowing of a violin string (3, 55).

The reason that negative damping is a use-
ful concept is that it leads to instability. For ex-
ample, consider a linear oscillator described by
the equation ma + γ v + κx = 0 where m is
the mass, a is the acceleration, γ is the drag
coefficient that provides damping, v is the ve-
locity, κ is the stiffness, and x is the position. If
γ is positive, the oscillations will die out; if γ

is negative, they will build up, and we call this
spontaneous oscillation. The build-up requires
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TUG-OF-WAR MODEL OF BIDIRECTIONAL TRANSPORT

(KLUMPP ET AL 2005)

lengths or velocities, as observed by mutating dynein on lipid-
droplets (13, 14) and kinesin on axonal protein carrying vesicles
(19). However, in melanophores, kinesin inactivation leads to
breakdown of plus motion and increased minus run lengths (11).

Interfering with the dynein–cofactor dynactin impairs trans-
port in both directions in melanophores (16), but impairs minus
and enhances plus transport of adenovirus particles (20). In the
only in vitro experiment concerning bidirectional transport (21),
a motility assay of kinesin and dynein, it was observed that
increasing the number of dyneins enhances minus and impairs
plus end transport.

As shown here, all of these experimental observations are
consistent with the tug-of-war mechanism. In fact, we present an
explicit tug-of-war model that takes into account the experi-
mentally known single motor properties and makes quantitative
predictions for bidirectional transport. In our model, the motors
act independently and interact only mechanically via their
common cargo. We find seven possible motility regimes for cargo
transport. Three of these regimes are dominated by the three
configurations (0), (�), and (�) in Fig. 1 and represent no
motion, fast plus motion, and fast minus motion of the cargo,
respectively. The other motility states are combinations thereof;
in particular, there are the two regimes, (��) and (�0�), where
the cargo displays fast bidirectional transport without and with
pauses, respectively. During fast plus or minus motion, only one
motor type is pulling most of the time and the tug-of-war appears
to be coordinated.

The different motility regimes are found for certain ranges of
single-motor parameters such as stall force and MT affinity.
Small changes in these parameters lead to drastic changes in
cargo transport, e.g., from fast plus motion to bidirectional
motion or no motion. We propose that cells could use the
sensitivity of the transport to the single-motor properties to
regulate its traffic in a very efficient manner. We illustrate this
general proposal by providing an explicit and quantitative tug-
of-war model for the lipid-droplet system.

Results
Model. To study the bidirectional transport of cargos, we devel-
oped a model for a cargo to which N� plus and N� minus motors
are attached. Typically these numbers will be in the range of 1
to 10 motors as observed for many cargos in vivo (12, 22, 23). For
N� � 0 or N� � 0, we recover the model for cooperative
transport by a single motor species as studied in ref. 24. We
characterize each motor species by six parameters as measured
in single molecule experiments [see Table 1 and supporting
information (SI) Text] as follows: it binds to a MT with the
binding rate �0 and unbinds with the unbinding rate �0, which
increases exponentially under external force, with the force scale
given by the detachment force Fd. When bound to the MT, the
motor walks forward with the velocity vF, which decreases with
external force and reaches zero at the stall force Fs. Under
superstall external forces, the motor walks backward slowly with
backward velocity vB.

The motors on the cargo bind to and unbind from a MT in a

stochastic fashion, so that the cargo is pulled by n� � N� plus
and n� � N� minus motors, where n� and n� f luctuate with time
(see Fig. 2). We have derived the rates for unbinding of one of
the bound motors and for binding of an additional motor on the
cargo from the single motor rates under the assumption that: (i)
the presence of opposing motors induces a load force, and (ii)
this load force is shared equally by the bound motors belonging
to the same species (see SI Text). We obtain a Master equation
for the motor number probability p(n�, n�) that the cargo is
pulled by n� plus and n� minus motors. The observable cargo
motion is characterized by the motor states (n�, n�) with high
probability. If there is high probability for a state (n�, 0) or (0,
n�) with only one motor species bound, corresponding to Fig.
1(�) and (�), the cargo exhibits fast plus or minus motion,
respectively. If there is high probability for a state with both
motor species active, i.e., n� � 0 and n� � 0, the cargo displays
only negligible motion into the direction of the motors that ‘‘win’’
the tug-of-war, because the losing motors walk backward only
very slowly. This corresponds to the blockade situation depicted
in Fig. 1 (0).

Motility States for the Symmetric Case. We first studied the instruc-
tive symmetric case, for which the number of plus and minus motors
are the same and where plus and minus motors have identical
single-motor parameters except for their preferred direction of
motion. Apart from being theoretically appealing, this symmetric
situation can be realized in vitro if cargos are transported by a single
motor species along antiparallel MT bundles, and can also be used
in vivo provided plus and minus end transport exhibit sufficiently
similar transport characteristics.

We solved our model for fixed motor numbers N� � N� and
fixed single-motor parameters and determined the probability
distribution p(n�, n�) (see SI Text). Depending on the values of

(0) (−)

− − − ++ +

(+)

Fig. 1. Cargo transport by 2 plus (blue) and 2 minus (yellow) motors: possible
configurations (0), (�), and (�) of motors bound to the MT. For configuration
(0), the motors block each other so that the cargo does not move. For
configuration (�) and (�), the cargo exhibits fast plus and minus motion,
respectively.

Table 1. Values of the single-motor parameters for kinesin 1,
cytoplasmic dynein, and an unknown plus motor (kin?) that
transports Drosophila lipid droplets

Parameter Kinesin 1 Dynein kin?

Stall force Fs, pN 6 (29, 30) 1.1* (12, 27) 7 (31) 1.1* (12)
Detachment force Fd, pN 3 (30) 0.75* 0.82*
Unbinding rate �0, s�1 1 (30, 32) 0.27* (27, 33) 0.26*
Binding rate �0, s�1 5 (34) 1.6* (33, 35) 1.6*
Forward velocity vF, �m/s 1 (32, 36) 0.65* (33, 37) 0.55*
Back velocity vB, nm/s 6 (36) 72* 67*

The kinesin 1 values have been taken from the cited references. The starred
values are obtained by fitting experimental data of Drosophila lipid-droplet
transport and are consistent with the cited references.

Fig. 2. A cargo with N� � 3 plus (blue) motors and N� � 2 minus (yellow)
motors is pulled by a fluctuating number of motors bound to the MT. The
configuration in the middle corresponds to (n�, n�) � (2, 1). Only five of 12
possible (n�, n�) configurations are displayed.
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Microtubule are polarized filaments with biophysically distinct
+ and − ends.

Polarity determines preferred direction of motion of individual
motors: kinesin (dynein) moves towards the + (−) end

Multiple kinesin (antegrograde) and dynein (retrograde) motors
form a protein complex with vesicular cargo.

Individual motors randomly attach to and detach from
microtubule track resulting in bidirectional transport



SINGLE MOTOR PROPERTIES

Consider a cargo complex with M± kinesin/dynein motors.

Suppose that m±(t) kinesin/dynein motors attached to
microtubule at time t

Load on each kinesin (dynein) motor is F/m+ (−F/m−) where F
is the total cargo force.

Load reduces velocity of each motor according to

v = v(1− F/mFS)

where FS is the stall force.

Unbinding rate of a motor increases exponentially with load

γ(F/m) = γeF/mFd

where Fd is detachment force. Binding rate π is constant



TRANSITION RATES BETWEEN INTERNAL STATES

γγ γ

Transition rates for m = m±

β(m) = mγ(F/m) for m→ m− 1, α(m) = (M−m)π for m→ m + 1

Equating velocities of kinesin/dynein motors determines F and v:

F = F(m+,m−), v = v(m+,m−) =
m+FS+ −m−FS−

m+FS+/v+ + m−FS−/v−

Divide internal states into slowly moving search phases
(m+ = m−) and faster non–search phases (m+ 6= m−).



CHAPMAN-KOLMOGOROV EQUATION

target
motor-cargo

complex

microtubule

+
−

l

x=0

k

Let p(x,m+,m−, t) be probability density that cargo complex is in
internal state (m+,m−) and has position x at time t

Convert to general velocity jump Markov process by setting

n(m+,m−) = (M+ + 1)m− + (m+ + 1)

p(x,n, t) = p(x,m+,m−, t), vn = v(m+,m−), kn = δm+,m−

Differential Chapman-Kolmogorov (CK) equation

∂p
∂t

= −vn
∂[p(x,n, t)]

∂x
+

1
ε

∑
n′

A(n,n′; x)p(x,n′, t)− knχ(x)p(x,n, t)



MICROTUBULE-ASSOCIATED PROTEINS (MAPS)

MAPs (tau, MAP2) can bind to microtubules and reduce the
binding rate of kinesin:

π0(τ) =
πmax

0

1 + e−γ(τ0−τ)
,

Use QSS reduction to derive Fokker–Planck equation with
[τ ]-dependent parameters:

∂u
∂t

= −λχ(x)u− V
∂u
∂x

+ D
∂2u
∂x2
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LOCAL SIGNALING ENHANCES SEARCH PROCESS
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Increasing [MAP] in the target domain can sharply increase
hitting probability Π with only a relatively small increase in the
MFPT



τ -INDUCED OSCILLATIONS
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Provides a possible explanation for experimentally observed
oscillatory motion of motor complexes
Breakdown of QSS approximation



METASTABILITY

Mean-field equation with local signaling:

dx
dt

= F(x) = −dΨ

dx

Outside target domain F(x) = v̄
Inside target domain F(x) changes sign =⇒ potential Ψ(x) has
two fixed points: stable/unstable pair

X

2l

x

Ψ

x0

x
*

enhanced MAP



FIRST-PASSAGE TIME (FTP) PROBLEM

Assume particle starts at stable fixed point x0

Absorbing boundary conditions at x∗:

p(x∗,n, t) = 0 for all n such that vn < 0

Let T be FPT with density f (t)
Introduce survival probability

S(t) =

∫ x∗

−∞

∑
n

p(x,n, t)dx ≡ Prob{t > T}.

It follows that (for vn → F(x,n))

f (t) = −dS
dt

= −
∫ x∗

−∞

∑
n

∂p
∂t

(x,n, t)dx

=
∑

n

F(x,n)p(x∗,n, t),



Part VI. Higher–dimensional
transport networks

Diffusion and directed motion in cellular transport

Avi Caspi, Rony Granek, and Michael Elbaum
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We study the motion of a probe driven by microtubule-associated motors within a living eukaryotic cell. The
measured mean square displacement,^x(t)2& of engulfed 2 and 3mm diameter microspheres shows enhanced
diffusion scaling ast3/2 at short times, with a clear crossover to ordinary or subdiffusive scaling, i.e.,tg with
g less than or equal to 1, at long times. Using optical tweezers we tried to move the engulfed bead within the
cell in order to relate the anomalous diffusion scaling to the density of the network in which the bead is
embedded. Results show that the larger beads, 2 and 3mm diameter, must actively push the cytoskeleton
filaments out of the way in order to move, whereas smaller beads of 1mm diameter can be ‘‘rattled’’ within a
cage. The 1mm beads also perform an enhanced diffusion but with a smaller and less consistent exponent
1.2,g,1.45. We interpret the half-integer power observed with large beads based on two diverse phenomena
widely studied in purified cytoskeleton filaments:~1! the motion of the intracellular probe results from random
forces generated by motor proteins rather than thermal collisions for classical Brownian particles, and~2!
thermal bending modes of these semiflexible polymers lead to anomalous subdiffusion of particles embedded
in purified gel networks or attached to single filaments, with^x(t)2&;t3/4. In the case of small beads, there may
also be a Brownian contribution to the motion that results in a smaller exponent.

DOI: 10.1103/PhysRevE.66.011916 PACS number~s!: 87.17.2d, 87.16.Ka

I. INTRODUCTION

The eukaryotic cell generates directed forces in order to
distribute components among internal compartments, to im-
port and export materials, and to apply forces to external
objects. We have shown that in certain cellular models, a
particle adhering to the cell surface near its periphery be-
comes engulfed into the cell and performs a directed centrip-
etal motion. The directionality of this motion ends near the
nuclear region, where it continues to move randomly within
a restricted space@1#. The random ‘‘wandering’’ near the
nucleus appears to be similar to diffusive motion, but dis-
plays a mean square displacement~MSD! ^x(t)2& propor-
tional to tg, with g53/2 rather thang51 for Brownian mo-
tion. Values ofg.1 are classified as enhanced diffusion@2#
and inside the cell this phenomenon is caused by a collective
activity of protein motors rather than thermal kicks@3#.
Those motors are used to move cargos back and forth along
the microtubules between different regions and compart-
ments within the cell.

Enhanced diffusion with 3/2 scaling was previously dis-
cussed theoretically in the context of a random velocity field
@4,5#. Recently, enhanced diffusion was observed in the
swimming activity of bacteria, and interpreted as a crossover
between ballistic and diffusion time regimes@6#. We argued
@3# that in our case, i.e., within the living cell, the anomalous
t3/2 scaling is due to microtubule-associated motor proteins
giving rise to the driven motion while the surrounding mi-
crotubule network~Fig. 1! inhibits this motion by introduc-
ing a time-dependent drag. Therefore thet3/2 scaling effec-
tively represents an inhibited ballistic regime, rather than
enhancement of a thermal diffusion process. In this paper,
the effect of intimate contact between the cytoskeletal net-
work and the bead will be studied by using beads with vari-
ous sizes relative to the effective mesh size of the network.
The particle dynamics will be evaluated by measuring the

MSD, while the space available for the bead to diffuse will
be measured by ‘‘rattling’’ it within the cell using optical
tweezers.

The paper will consist of the following sections. First, a
brief description of the cytoskeletal filaments, i.e., actin and
microtubules, will be presented. Then the thermal undulation
of these semiflexible polymers will be discussed at the level
of individual filaments, with particular attention to the
anomalous scaling of the mean square displacement of a
point along the polymer. Following, we will summarize and
integrate previous experiments in which scaling laws were
measured directly in a purified network of microtubules@7#.
Those results are used to explain measurements of enhanced

FIG. 1. Immunofluorescence image of the microtubule network
of a giant multinuclear SV80 fibroblast. Cells were fixed in cold
methanol, then stained by a primary antibody fora tubulin and a
secondary fluorescently labeled antibody. Scale bar 10mm.
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MICROTUBULAR NETWORKS

1 Axons and dendrites: microtubles tend to be aligned in parallel
so that transport process is effectively 1D

2 Intracellular transport within the cell body of neurons and most
non–polarized animal cells occurs along a microtubular network
that projects radially from an organizing center (centrosome)
with outward polarity

3 Often the delivery of cargo from the cell membrane or nucleus to
other localized cellular compartments requires a non–radial path
involving several tracks.

4 Microtubules bend due to large internal stresses, resulting in a
locally disordered network.

5 In vivo transport on relatively short length scales may be similar
to transport observed in vitro, where microtubular networks are
not grown from a centrosome and thus exhibit orientational and
polarity disorder.



2D RANDOM INTERMITTENT SEARCH (PCB/NEWBY

2011)

target

ρ

1 2 types of behavior: Brownian motion with diffiusivity D0 or
ballistic motion with velocity v(θ) = (v cos θ, v sin θ), θ ∈ [0, 2π).

2 Target is at unknown location r0 = (x0, y0) and radius ρ

3 Transition rate β from a ballistic state to the diffusive state is
independent of θ

4 Reverse transition rate taken to be αq(θ) with
∫ 2π

0 q(θ)dθ = 1



QSS REDUCTION OF MASTER EQUATION

Chapman-Kolmogorov equation is

∂p
∂t

= −∇ · (v(θ)p)− βp + αq(θ)p0

∂p0

∂t
= D0∇2p0 + β

∫ 2π

0
p(r, θ′, t)dθ′ − αp0 − kχ(r)p0,

with r = (x, y) and the indicator function χ(r) = 1 if and only if
|r− r0| < ρ.

Perform the rescalings α→ α/ε, β → β/ε and D0 → εD0.

Carry out a QSS reduction so that to leading order

p(r, θ, t) = u(r, t)
αq(θ)

α+ β
p0(r, t) = u(r, t)

β

α+ β
,



EFFECTIVE FOKKER–PLANCK EQUATION

∂u
∂t

= −∇ · (Vu) + εbD0∇2u + ε∇ · (D∇u)− λχ(r)u.

The diffusion tensor D has leading order components

Dxx ∼
αβ−1

α+ β

(〈
v2

x
〉
− 〈vx〉2 + b2 〈vx〉2

)
Dxy ∼

αβ−1

α+ β

(〈
vxvy

〉
− 〈vx〉

〈
vy
〉

+ b2 〈vx〉
〈
vy
〉)

Dyy ∼
αβ−1

α+ β

(〈
v2

y

〉
−
〈
vy
〉2

+ b2 〈vy
〉2
)
,

The effective drift velocity and detection rate are given by

V ∼ α

α+ β
〈v〉 , λ ∼ βk

α+ β
, 〈f 〉 =

∫
q(θ)f (θ)dθ



ISOTROPIC DIFFUSION IN A SQUARE DOMAIN WITH A

SMALL HOLE

Backwards equation for MFPT T is

−1 = εD∇2T − λχ(r)T, q(θ) =
1

2π
, D0 = 0

Target radius ρ� L. Use matched asymptotics to solve for T.
Outer solution is

T(r) = −L2

D
G(r, r0) + Tav, D = ε

αv2

2β(α+ β)

G is Neumann Green’s function

∇2G(r, r′) =
1
L2 − δ(r− r′), r ∈ Σ

∂nG(r, r′) = 0, r ∈ ∂Σ,

∫
Σ

G(r, r′)dr = 0.



OPTIMIZING MFPT FOR ISOTROPIC DIFFUSION

Determine Tav by matching with inner solution around disc -
requires determining regular part of Green’s function

G(r, r′) = − 1
2π

(log |r− r′| − R(r, r′))

In the case of reflecting boundary conditions (no other targets)
there exists a unique pair of transition rates (αopt, βopt) for which
the MFPT T is minimized (optimal search strategy)

β β

Analytical Monte-Carlo



Part VII. Model of cell polariza-
tion



CELL POLARIZATION IN BUDDING YEAST

Many cellular processes depend critically on the establishment
and maintenance of polarized distributions of signaling proteins
on the plasma membrane.
Well known example is budding yeast during mating or cell
mitosis

mating

budding

symmetry

breaking

Cdc42

actin patch

actin cable



CELL POLARIZATION IN NEURONS (3 STAGES)
1 Breaking of spherical geometry by actin-rich structures including

lamellipodia and filopodia
2 Lamellipodia then coalesce to form growth cones, followed by the

establishment of several short processes, called neurites
3 One of the neurites grows more rapidly to become the axon –

other neurites remain short and later develop into dendrites

neurites

Stage 1 Stage 2 Stage 3

axon

growth cone



ACTIVE TRANSPORT MODEL

Signaling molecules attach and orient filaments that deliver
vesicles carrying the signaling molecule from the cytoplasm to
the plasma membrane.
The additional signaling molecules orient more filaments that
transport more molecules in a positive feedback loop, resulting
in a polarization region of higher molecule density.

actin filaments

signaling

molecule

membrane diffusion

endocytosis

recycling

k-
k- k+

_



CELL POLARIZATION DEPENDS ON GEOMETRY OF

POLYMER NETWORK (HAWKINS ET AL (2009), PCB (2014))

Spontaneous cell polarization can occur if filaments are
nucleated at sites on the cell membrane (the actin cytoskeleton)
Cell only polarizes in response to an external chemical gradient
if the filaments nucleate from organizing sites within the
cytoplasm (microtubule asters).

c(x,z,t) z

x

z

x

(a)

(b)
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u(x,t)

u(x,t)

aster

actin cytoskeleton



OTHER EXAMPLES OF STOCHASTIC HYBRID SYSTEMS

Stochastic ion channels

PCB/Keener/Newby

Gene networks (Newby)

Stochastic neural population
dynamics (PCB/Newby)
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