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RANDOM INTERMITTENT SEARCH

@ Random search strategies are used throughout nature as a means

of efficiently searching large areas for a target of unknown
location

o An efficient stochastic search strategy is to alternate between
(A) a slow motion (eg. diffusive) search phase and
(B) a fast (eg. motor-assisted or ballistic) non-search phase

@ Examples include foraging animals, a promoter protein
searching for a specific target site on DNA, virus searching for

the nucleus, mRNA transport in neurons
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DNA /PROTEIN INTERACTIONS (BERG ET AL 1981)
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@ Protein searching for a specific binding site on DNA with N base
pairs executes sliding 1D diffusion for mean time 7

@ Protein unbinds from DNA, executes 3D diffusion for mean time
73, rebinds at a random nonspecific site

N
T=_(n+m), n=2y/Din, 75" =4DsNb



BIOCHEMICAL REACTIONS WITHIN CELLS (BENICHOU
ET AL 2008)

unbinding
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@ A molecule searching for a reactant alternates between slow

diffusion of duration 7 and ballistic motion of duration 7

@ Ballistic motion consists of motor-driven transport along
cytsokeletal filaments that form a 2D or 3D mesh within cell

@ Active transport optimizes reaction rate ifa > D /v



NEURONS ARE LARGE CELLS

synapses located in mushroom-like dendrtic spines

@ Proteins and other molecules must be transported long distances
along dendrites and axons

@ Protein transport crucial in synapse formation and plasticity

@ Defects underly various neurodegenerative diseases

1

e Diffusive transport is too slow: 7 = L?/D with D = 1um?s~! and

L > 100um



MOTOR TRANSPORT OF MRNA

microtubule
synaptic target

=z

cell 17 axon

o Newly transcribed mRNA granules are transported into the
dendrite by kinesin motors on microtubules.

o Following synaptic activation, mRNA is localized to synapses by
actin-based myosin

@ Motile mRNA particles in cultured hippocampal randomly
switch between 3 states: stationary (or localized oscillations),
anterograde and retrograde



MRNA TRANSPORT IS BIDIRECTIONAL

Rook et al J. Neurosci. (2000)
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@ Depolarization of cell increases anterograde bias



SPECIAL CHARACTERISTICS OF MRN A TRANSPORT

@ Tends to be biased in anterograde direction — standard
intermittent search models are unbiased

@ Time for delivery is important - degradation of mRNA, synapses
only primed for a limited period

@ Non-zero probability of failure to find the target (eg.
degradation, competition with other targets) - cost in resources

@ Extensive dendritic branching
@ Intracellular cargo is transported by a multiple motor complex

e Complex signalling mechanism involved in transferring mRNA
to synaptic targets



Part I. Stochastic model of mRNA
transport



STOCHASTIC MODEL OF MRN A TRANSPORT
(PCB/NEWBY 2009)
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@ Particle injected into dendrite at x = 0.

o Transitions between 3 states (left/right moving and stationary)
given by a Markov process.

@ In stationary state particle is absorbed at a rate k if within a
distance ! of target



STOCHASTIC MODEL OF MRN A TRANSPORT

@ Chapman-Kolmogorov equation
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where x(x) = lif and only if |x — X| < ]
@ Boundary conditions (reflecting at x = 0, absorbing at x = L)

vp_(0,t) =vp4(0,t), p_(L,t)=0
@ Probability of finding target after time ¢ is

oo pX+I
~v(t) = k/ / po(x, 7)dxdr
Jt X-—1



OPTIMIZATION PROBLEM (UNBIASED SEARCH)

o Characterize efficiency of search in terms of the hitting
probability II and MFPT T:

1 =~(0), MFPTT = / 1) 4
0

7(0)
o First, consider unbiased search (5 = f_ = ) and reflecting
boundaries at both ends (IT = 1)
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OPTIMIZATION PROBLEM (BIASED SEARCH)
atx=L Il <1)

o Now consider biased search 3 # f_ and an absorbing boundary
increases T

@ Now an optimal solution no longer exists, since increasing II also
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POPULATION OF SEARCHERS (PCB/JN 2012)

o Consider N independent, identical searchers that all start at the
origin at time t = 0.

@ Denote the MFPT to find the target of the jth searcher by Tj,
j=1,...,N, with each T an independent, identically distributed
random variable drawn from the single searcher first passage
time (FPT) distribution

X+1

F(t) = /0 J(s)ds, J(s)=k po(x,s)dx.

JX—1

@ The random time T to find the target T = min(Ty, Ty, ..., Tn) has
the distribution

FN)(t) = Prob(T < t) = 1 — Prob(T > )
=1- PI'Ob(Tl >t Ty, > t, v, Ty > t)
=1—(1-F@)N.



MEAN-FIELD LIMIT

@ Now suppose that the rate of detection for a single searcher
scales as k = k/N. Then

F<N>(1})1(1//X+ (x,8)d >N

@ In the mean-field limit N — oo, the detection rate k — 0 so that
the density function py(x, t) is independent of the target.

@ Moreover, in the large N limit,

X+l
lim FN(#) =1 —e B p(t) = n/ /
N—oo

with pg(x, t) the solution of the CK equation in the absence of a
target.



EFFICIENCY OF SEARCH AS A FUNCTION OF N
@ Plot of T against II for various N in the case of biased search

@ Upper curve is based on mean-field solution and lower curve on
single searcher solution.

@ Data points for finite N based on Monte-Carlo simulations
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FPT DENSITY AS A FUNCTION OF N
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@ LEFT: unbiased search RIGHT: biased search

@ Asymptotic analysis shows that for an unbiased single searcher
there is power-law scaling

E(t) ~t73/2
whereas in the N — oo limit there is a stretched exponential

F(t) ~ eVt



Part II. Quasi-steady-state (QSS)
diffusion approximation



MODEL REDUCTION (PCB/NEWBY 2010)

@ 3-state model is simple to analyze directly.

@ What about more complex search domains eg. dendritic trees,
higher-dimensional microtubular networks?

@ What about more complex biophysical models of motor-driven
transport eg. tug—of-war model?

@ QSS approximation reduces the Chapman-Kolomogorov
equation to a Fokker-Planck equation in the regime of fast
transition rates.

@ Based on stochastic projection methods (Papanicolaou 1975,
Gardiner 2009)



VELOCITY JUMP MARKOV PROCESS

@ Consider a motor-complex having N internal velocity states
X = vy,

@ Let W(n,n'; x)dt/e be the probability that the system at x
-

switches from 7’ at time ¢ to the state n at time ¢ + dt
@ Introduce the probability density

Prob{x(f) € (x,x +dx),

(t) = n} = p(x,n, t|xp, np, 0)d
o Differential Chapman-Kolmogorov (CK) equation

op . Olp(x,n,1)]

Ot - n

ZAnn x)p(x,n’ t) — kyx(X)p(x,n, t)
A(n,n';x) =

I’ZTl

;X) EWmnx,,/

[m]
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MEAN-FIELD LIMIT

@ Assume that for fixed x, the matrix A(n, m; x) is irreducible and
has a simple zero eigenvalue: >, A(n,m;x) = 0 for all m.

@ Perron-Frobenius Theorem = continuous-time Markov
process for fixed x,

w _ % ZA(n, m; x)p(x, m, t),

m

has a globally attracting steady-state p(x, n) such that
p(x,n,t) — p(x,n) ast — oo.
@ In the limit e — 0 and k, = 0, we obtain the mean-field equation

dx Zvnp x,n),

where p(x, n) is the unique steady-state density:

ZA(n,m;x)p(x, m) =20

m



QUASI-STEADY-STATE DIFFUSION APPROXIMATION

@ Decompose the probability density as

p(x,n,t) = C(x,t)p(x,n) + ew(x,n, t),
where > p(x,n,t) = C(x,t) and >, w(x,n,t) = 0.
@ Asymptotic expansion in e yields FP equation
oC 0 0 oC
@ Drift term given by mean-field equation, and diffusion coefficient

D(x) = Z Z(x,n)vy,

m,n

@ Z(x,n) is the unique solution (for ) |, Z(x,m) = 0)

m

ZA(VI,WZ;X)Z(X,W!) = —[.7:(3() - ZJH]/)(XJ’!)

[m]
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3-STATE MODEL REVISITED

@ Transition matrix is

*/j+ 0 Qo 0 0
A= 0 —B_ o , v=| —-v |, k=1 0 |.
/8+ ‘6, —0p — O 0 k
@ The stationary density is
p=7"1(B7" 67 e,

= B;l =+ B:l + a—l
@ Drift and diffusion coefficient are

8-

De<(1]:)2

(1+F7)? 2
o), A=
o T )T

1 1 1 1 1
e O(e). yNo—
d Y (/3+ >+ (E)’ ' ﬁ—+




MOMENT GENERATING FUNCTION

o Total probability flux into target is

J(t) = /\/1+X u(x, t)dx.

—1+X
e Hitting probability and MFPT are given by

H:A J(Hdt =T1(0), T=

J= Hd ()
Jo Jtat — 1(0)
@ T(s) is moment generating function
%) 14+X
Y(s) = “H(tdt = A U(x,s)d
©= [ ewa=r [ O

—1+X



Part III. Random intermittent
search on a tree

dendrite

synapse

o F = E £ DA



DENDRITIC TREE (PCB AND NEWBY 2009)

| \/
\ Zfa’iiz"” . >/
SN

@ Interior branch nodes
© Open terminal nodes
O Closed terminal node

@ Suppose that there is a hidden target on the jth branch of a tree I'

o Let u; denote probability density on ith segment of a tree under

QSS approximation:
o ) O, O%u,
o = Wb = Fig 4 Dig g, 0<x <Ly



CONTINUITY AND CONSERVATION CONDITIONS

o Let J; denote the probability current or flux
ou;
Ji = —Di5— + Fil.
Ox
@ Impose closed boundary condition on primary terminal branch
and open boundary conditions at all other terminal segments

%(0 t) = O, M,'(Ll‘, t) =0
@ At all branch nodes a with set of segments Z,, impose continuity

ui(x(a),t) = @q(t), forallie I,

and current conservation

> Filx(e),t) =0.

i€y



GREEN’S FUNCTION ON A TREE

o Laplace transforming FP equation on a tree we find that

~ l ~
ui(xﬂs) - A/ gi,/(x:y+X:S)ui(y7s)d1 = _gi,O(xaoz/S)
—1

@ G (x,y;s) is Green’s function satisfying boundary conditions and

[Diaf — Fidy — s] Gij(x,y;8) = 0ij6(x —y)

e Given a target on the j" branch, the generating function for the
hitting probability and MFPT is then

—)\/ x+ X, s)d

2
1
]
i



STEPS IN CALCULATION OF Il AND T

@ Solve Green’s function on each line segment in terms of
unknown functions ®,(s)

@ Match solutions of line segments meeting at a branch node using
current conservation

© Working from the open terminal nodes inwards, generate an

iterative equation for ®,,(s) which can be solved as a finite
continued fraction

@ Substitute solution for Green’s function into integral equation
and solve for U; numerically

@ Construct generating function and take limits — 0.



EXAMPLE: SEMI-INFINITE CAYLEY TREE
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@ Semi-infinite Cayley tree (z = 3) with identical branches of
length L = 10pum.

@ Plot of Il and T vs. target distance X from soma.
@ Solid curves (analytical), points ‘x” (Monte Carlo)

@ Boundary layer at each branch node where

I ~I/(z—1)



TWO PHASES OF RANDOM SEARCH ON A TREE

10°¢ -
@ ]
pe [%\' " B=2
ohe .,
1041 e ——v,
= decreasing B_ decreasing f5_
103]
107 = ’mctional

0 0.2 04 4 06 0.8
@ n = 1 branch node between target and soma

e Hit Prob IT < 0.5: resources cheap, unidirectional strategy

o Hit Prob II > 0.5: resources costly, bidirectional strategy
o &




Part IV. Tug—of-war model of ran-
dom intermittent search

o F = E £ DA



TUG-OF-WAR MODEL OF BIDIRECTIONAL TRANSPORT
(KLUMPP ET AL 2005)

(+)

@ Microtubule are polarized filaments with biophysically distinct
+ and — ends.

@ Polarity determines preferred direction of motion of individual
motors: kinesin (dynein) moves towards the + (—) end

@ Multiple kinesin (antegrograde) and dynein (retrograde) motors
form a protein complex with vesicular cargo.

o Individual motors randomly attach to and detach from

microtubule track resulting in bidirectional transport
[m] = = =




SINGLE MOTOR PROPERTIES

o Consider a cargo complex with M4 kinesin/dynein motors.

@ Suppose that m (t) kinesin/dynein motors attached to
microtubule at time ¢

@ Load on each kinesin (dynein) motor is F/m, (—F/m_) where F
is the total cargo force.

@ Load reduces velocity of each motor according to
v="0(1— F/mFs)
where Fg is the stall force.
@ Unbinding rate of a motor increases exponentially with load
V(F/m) = 7"/

where F; is detachment force. Binding rate = is constant



TRANSITION RATES BETWEEN INTERNAL STATES

Y
v v
— —

— &
V.
T S - e T
~ 7 e ~—_
T T . T
@ Transition rates for m = m4

B(m) = my(F/m) form — m — 1, a(m)

(M —m)mform —m+1
o Equating velocities of kinesin/dynein motors determines F and v:
F=Fmy,m_), v=v(my,m_)=

myFey —m_Fgs_
o Divide internal states into slowly moving search phases

m+F5+/5+ + n’l_FS_/a_
(my = m_) and faster non—search phases (m # m_).

[m]

&




CHAPMAN-KOLMOGOROV EQUATION

motor-cargo L
complex target
microtubule T 1k
- +

x=0 x=X x=L

@ Letp(x,m,m_,t) be probability density that cargo complex is in
internal state (m+, _) and has position x at time f

o Convert to general velocity jump Markov process by setting
n(my,m_) =My +1)m_ + (my +1)

plx,n,t) =px,my,m_.t), v, =0v(my,m_), ky=0mu, m

o Differential Chapman-Kolmogorov (CK) equation

op 0[ (x,n,1)]
0 —p, ; %:A n,n'; x)p(x,n’ 1) — kyx(x)p(x,n, t)

— L



MICROTUBULE-ASSOCIATED PROTEINS (M APS)
binding rate of kinesin:

@ MAPs (tau, MAP2) can bind to microtubules and reduce the

,n.m{?,\‘
7o (7) 0

T 1temn)
@ Use QSS reduction to derive Fokker-Planck equation with
[7]-dependent parameters:

ou ou &%u
= - M (u—-VE= 4D
ot X(xu ox N 0x2
03
S o0zs
L o2 — (N4 NJ) = (2.1)
NE 0.15
3 o4
\50.05
(9.15 0.2

— (N4, N_) = (32)
_(NJrvN*) = (43)
0.15




LOCAL SIGNALING ENHANCES SEARCH PROCESS
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@ Increasing [MAP] in the target domain can sharply increase
hitting probability IT with only a relatively small increase in the
MFPT



T-INDUCED OSCILLATIONS
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@ Provides a possible explanation for experimentally observed
oscillatory motion of motor complexes

@ Breakdown of QSS approximation




METASTABILITY
@ Mean-field equation with local signaling:

dx av
a =Ty

@ Outside target domain F(x) = o

@ Inside target domain F(x) changes sign = potential ¥(x) has
two fixed points: stable/unstable pair

¥

N 2l
SN

SN

enhanced MAP




FIRST-PASSAGE TIME (FTP) PROBLEM

@ Assume particle starts at stable fixed point x
@ Absorbing boundary conditions at x.:

p(x«,n,t) =0 forall n such thatv, <0
o Let T be FPT with density f(t)

o Introduce survival probability

S(t) = /j* Zp(x,n, t)dx = Prob{t > T}.

o It follows that (for v, — F(x,n))




Part VI. Higher-dimensional
transport networks




MICROTUBULAR NETWORKS

© Axons and dendrites: microtubles tend to be aligned in parallel
so that transport process is effectively 1D

@ Intracellular transport within the cell body of neurons and most
non-polarized animal cells occurs along a microtubular network
that projects radially from an organizing center (centrosome)
with outward polarity

@ Often the delivery of cargo from the cell membrane or nucleus to
other localized cellular compartments requires a non-radial path
involving several tracks.

© Microtubules bend due to large internal stresses, resulting in a
locally disordered network.

@ In vivo transport on relatively short length scales may be similar
to transport observed in vitro, where microtubular networks are
not grown from a centrosome and thus exhibit orientational and
polarity disorder.



2D RANDOM INTERMITTENT SEARCH (PCB/NEWBY
2011)

%P
target

@ 2 types of behavior: Brownian motion with diffiusivity Dy or
ballistic motion with velocity v(§) = (vcos8,vsin®), § € [0, 2m).

@ Target is at unknown location ry = (x¢, o) and radius p

© Transition rate 5 from a ballistic state to the diffusive state is
independent of ¢

@ Reverse transition rate taken to be ag(f) with foh q(6)do =1



QSS REDUCTION OF MASTER EQUATION
o Chapman-Kolmogorov equation is
o _

%=V (v(0)p) — Bp + aq(0)po
8}7()

2
5 DoV?po + f3 / p(r, 0, t)d0" — apy — kx(r)po,
Jo
with r = (x,y) and the indicator function x(r) = 1 if and only if
[t — 19| < p.

@ Perform the rescalings oo — a/¢, § — /e and Dy — €Dy.

o Carry out a QSS reduction so that to leading order

p(r,0,t) = u(r,t) aq(9)

oy po(r,t) = u(r,t)




EFFECTIVE FOKKER-PLANCK EQUATION

ou

rTin —V - (Vu) + ebDgV?u + €V - (DVu) — Ax(r)u.

@ The diffusion tensor D has leading order components

af~1
Dy ~ a[jr 3 (<v§> — (0)? + P <0x>2>

af™!
Dy~ S ((0r0y) = (0 (0} +  (0) (1))

Dy ~ Sip’ << > (o))" +1° <Uy>2> )

@ The effective drift velocity and detection rate are given by

@]
a+ﬂW% A~a+5 /q

~




ISOTROPIC DIFFUSION IN A SQUARE DOMAIN WITH A
SMALL HOLE

o Backwards equation for MFPT T is

1
—1=eDV?T — M\(0)T, q(0) = —, Dy=0
27
@ Target radius p < L. Use matched asymptotics to solve for T.
Outer solution is

12 av?
T(r) = —— Tawy, D=e—
(1) D G(r,19) + Tav, 62/)’(@ e
@ G is Neumann Green’s function
V3G(r,¥) = 7 S(r—1r)

, rex

9,G(r,Y') =0, redy, / G(r,t")dr =0.
2

[m]

&




OPTIMIZING MFPT FOR ISOTROPIC DIFFUSION

@ Determine T,, by matching with inner solution around disc -
requires determining regular part of Green’s function

/ 1 / /
G(r,r):—ﬂ(logh—r\—l{(r r'))

@ In the case of reflecting boundary conditions (no other targets)
4.0

there exists a unique pair of transition rates (copt, Bopt) for which
the MFPT T is minimized (optimal search strategy)

Analytical
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Part VII. Model of cell polariza-
tion



CELL POLARIZATION IN BUDDING YEAST

@ Many cellular processes depend critically on the establishment

and maintenance of polarized distributions of signaling proteins
on the plasma membrane.

@ Well known example is budding yeast during mating or cell
mitosis

\

buddmg

symmetry
breaking
R
[ ] actin patch matlng
\_, actin cable
e Cdc42




CELL POLARIZATION IN NEURONS (3 STAGES)

@ Breaking of spherical geometry by actin-rich structures including
lamellipodia and filopodia

© Lamellipodia then coalesce to form growth cones, followed by the
establishment of several short processes, called neurites

@ One of the neurites grows more rapidly to become the axon —

Stage 2

Stage 3
neurites

other neurites remain short and later develop into dendrites
Stage 1

axon

growth cone

[m]

&




ACTIVE TRANSPORT MODEL

@ Signaling molecules attach and orient filaments that deliver
vesicles carrying the signaling molecule from the cytoplasm to
the plasma membrane.

@ The additional signaling molecules orient more filaments that
transport more molecules in a positive feedback loop, resulting
in a polarization region of higher molecule density.

membrane diffusion

signaling
molecule

endocytosis

.\ % .*
actin filaments

recycling




CELL POLARIZATION DEPENDS ON GEOMETRY OF
POLYMER NETWORK (HAWKINS ET AL (2009), PCB (2014))

@ Spontaneous cell polarization can occur if filaments are
nucleated at sites on the cell membrane (the actin cytoskeleton)

@ Cell only polarizes in response to an external chemical gradient
if the filaments nucleate from organizing sites within the
cytoplasm (microtubule asters).

c(x,z,1) z

A ST
oY,

(b)  actin cytoskeleton

c(x,z,t) z

AT NSRS i,
1)

u(x,t)




Stochastic ion channels

OTHER EXAMPLES OF STOCHASTIC HYBRID SYSTEMS

Gene networks (Newby)

Genetic
v
—

Switches
action potential propagation /

Stochastic neural population
dynamics (PCB/Newby)
+30 WEI
A distance
PCB/Keener/Newby
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