Strongly anisotropic wave equations

Mihaï BOSTAN
University of Aix-Marseille, FRANCE mihai.bostan@univ-amu.fr

Nachos team INRIA
Sophia Antipolis, 28/06/2019

Main goals

- Effective models when disparate scales occur ;
- Derivation of the limit models, well-posedness, balances, symmetries ;
- Convergence results ;
- Applications: transport of charged particles (magnetic confinement), heat equations, Maxwell equations.

1. Multi-scale analysis for linear first order PDE

$$
\begin{cases}\partial_{t} u^{\varepsilon}+a \cdot \nabla_{y} u^{\varepsilon}+\frac{1}{\varepsilon} b \cdot \nabla_{y} u^{\varepsilon}=0, & (t, y) \in \mathbb{R}_{+} \times \mathbb{R}^{m} \\ u^{\varepsilon}(0, y)=u^{\text {in }}(y), & y \in \mathbb{R}^{m} .\end{cases}
$$

Hypotheses

$$
\begin{gathered}
a \in L_{\mathrm{loc}}^{1}\left(\mathbb{R}_{+} ; W_{\mathrm{loc}}^{1, \infty}\left(\mathbb{R}^{m}\right)\right), \quad b \in W_{\mathrm{loc}}^{1, \infty}\left(\mathbb{R}^{m}\right) \Longrightarrow \text { smooth flows } \\
\operatorname{div}_{y} a=0, \operatorname{div}_{y} b=0 \Longrightarrow \text { measure preserving flows } \\
|a(t, y)|+|b(y)| \leq C(1+|y|) \Longrightarrow \text { global flows }
\end{gathered}
$$

Dominant dynamics

$$
\partial_{t} u^{\varepsilon}+\frac{1}{\varepsilon} b \cdot \nabla_{y} u^{\varepsilon}=0, \quad(t, y) \in \mathbb{R}_{+} \times \mathbb{R}^{m}
$$

Fast time variable

$$
s=\frac{t}{\varepsilon}, \quad \partial_{s} u+b \cdot \nabla_{y} u=0, \quad(s, y) \in \mathbb{R} \times \mathbb{R}^{m}
$$

Question: behavior when $\varepsilon \searrow 0$?
Main idea: filtering out the fast oscillations

$$
\frac{\mathrm{d} Y}{\mathrm{~d} s}=b(Y(s ; y)), \quad Y(0 ; y)=y, \quad(s, y) \in \mathbb{R} \times \mathbb{R}^{m}
$$

New coordinates

$$
z=Y(-t / \varepsilon, y) \text { or equivalently } y=Y(t / \varepsilon, z)
$$

Search for a profile (solving the fast dynamics)

$$
u^{\varepsilon}(t, y)=v^{\varepsilon}(t, \underbrace{Y(-t / \varepsilon ; y)}_{z})
$$

The equation in the new coordinates ?

$$
\left\{\begin{array}{l}
\partial_{t} v^{\varepsilon}(t, z)+\underbrace{\partial_{y} Y(-t / \varepsilon ; Y(t / \varepsilon ; z)) a(t, Y(t / \varepsilon ; z))}_{\varphi(t / \varepsilon) a(t)} \cdot \nabla_{z} v^{\varepsilon}(t, z)=0 \\
v^{\varepsilon}(0, z)=u^{\text {in }}(z)
\end{array}\right.
$$

Stability for $\left(v^{\varepsilon}\right)_{\varepsilon>0}$

$$
\varphi(s) a=\partial_{y} Y(-s ; Y(s ; \cdot)) a(Y(s ; \cdot))
$$

Behavior when $\varepsilon \searrow 0$

$$
\partial_{y} Y(-t / \varepsilon ; Y(t / \varepsilon ; z)) a(t, Y(t / \varepsilon ; z))=\varphi(t / \varepsilon) a(t)
$$

If involution between $a(t)$ and b

$$
[b, a(t)]=0 \Longrightarrow \varphi(s) a(t)=a(t), s \in \mathbb{R}
$$

$$
\begin{gathered}
\begin{cases}\partial_{t} v^{\varepsilon}(t, z)+a(t, z) \cdot \nabla_{z} v^{\varepsilon}(t, z)=0, & (t, z) \in \mathbb{R}_{+} \times \mathbb{R}^{m} \\
v^{\varepsilon}(0, z)=u^{\mathrm{in}}(z), & z \in \mathbb{R}^{m}\end{cases} \\
v^{\varepsilon}(t, z)=u^{\mathrm{in}}(Z(-t ; z))=v(t, z), \\
\\
\quad \frac{\mathrm{d} Z}{\mathrm{~d} t}=a(t, Z(t ; z)) \\
u^{\varepsilon}(t, y)=v(t, Y(-t / \varepsilon ; y))=u^{\mathrm{in}}(Z(-t ; Y(-t / \varepsilon ; y)))
\end{gathered}
$$

Splitting : advection along a and advection along $\frac{1}{\varepsilon} b$.

Two scale approach : t and $s=t / \varepsilon$
Use ergodicity
$\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} \partial_{y} Y(-s ; Y(s ; \cdot)) a(t, Y(s ; \cdot)) \mathrm{d} s=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} \varphi(s) a(t) \mathrm{d} s$
Key point
Emphasize a C^{0}-group of unitary transformations and use :
von Neumann's Ergodic Mean Theorem
Let $(G(s))_{s \in \mathbb{R}}$ be a C^{0}-group of unitary operators on a Hilbert space $(H,(\cdot, \cdot))$ and A be the infinitesimal generator of G. Then, for any $x \in H$, we have

$$
\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{r}^{r+T} G(s) \times \mathrm{d} s=\operatorname{Proj}_{\operatorname{ker}} A^{x} \text {, strongly in } H
$$

uniformly with respect to $r \in \mathbb{R}$.

Average vector field

$$
\begin{gathered}
X_{Q}=\left\{c(y): \mathbb{R}^{m} \rightarrow \mathbb{R}^{m} \text { measurable }: \int_{\mathbb{R}^{m}} Q(y): c(y) \otimes c(y) \mathrm{d} y<+\infty\right\} \\
Q=P^{-1}, \quad P={ }^{t} P>0,[b, P]:=\left(b \cdot \nabla_{y}\right) P-\partial_{y} b P-P^{t} \partial_{y} b=0 \\
(c, d)_{Q}=\int_{\mathbb{R}^{m}} Q(y): c(y) \otimes d(y) \mathrm{d} y, \quad c, d \in X_{Q}
\end{gathered}
$$

Proposition $(\varphi(s))_{s \in \mathbb{R}}$ is a C^{0}-group of unitary operators on X_{Q}.
Theorem
We denote by \mathcal{L} the infinitesimal generator of the group $(\varphi(s))_{s \in \mathbb{R}}$.
Then for any vector field $a \in X_{Q}$, we have the strong convergence in X_{Q}

$$
\langle a\rangle:=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{r}^{r+T} \partial_{y} Y(-s ; Y(s ; \cdot)) a(Y(s ; \cdot)) \mathrm{d} s=\operatorname{Proj}_{\mathrm{ker}} \mathcal{L}^{a}
$$

uniformly with respect to $r \in \mathbb{R}$.

Theorem (Convergence)

The family $\left(v^{\varepsilon}\right)_{\varepsilon>0}$ converges strongly in $L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right)$ to a weak solution $v \in L^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right)$ of the transport problem

$$
\begin{cases}\partial_{t} v+\langle a(t, \cdot)\rangle \cdot \nabla_{z} v=0, & (t, z) \in \mathbb{R}_{+} \times \mathbb{R}^{m} \\ v(0, z)=u^{\mathrm{in}}(z), & z \in \mathbb{R}^{m}\end{cases}
$$

Moreover, if v is smooth enough, we have $v^{\varepsilon}=v+\mathcal{O}(\varepsilon)$ in $L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right)$, as $\varepsilon \searrow 0$.
Formal proof

$$
\begin{gathered}
\partial_{t} v^{\varepsilon}+\varphi(t / \varepsilon) a(t) \cdot \nabla_{z} v^{\varepsilon}=0 \\
v^{\varepsilon}(t, z)=v(t, s=t / \varepsilon, z)+\varepsilon v^{1}(t, s=t / \varepsilon, z)+\ldots \\
\partial_{s} v=0, \partial_{t} v+\varphi(s) a(t) \cdot \nabla_{z} v+\partial_{s} v^{1}=0 \\
\partial_{t} v+\left(\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{0}^{T} \varphi(s) a(t) \mathrm{d} s\right) \cdot \nabla_{z} v=0 .
\end{gathered}
$$

2. Wave equation with disparate propagation speeds

$$
\begin{gathered}
\partial_{t}^{2} u^{\varepsilon}-\operatorname{div}_{y}\left(D(y) \nabla_{y} u^{\varepsilon}\right)-\frac{1}{\varepsilon^{2}} \operatorname{div}_{y}\left(b(y) \otimes b(y) \nabla_{y} u^{\varepsilon}\right)=0,(t, y) \in \mathbb{R}_{+} \times \mathbb{R}^{m} \\
u^{\varepsilon}(0, y)=u_{\mathrm{in}}^{\varepsilon}(y), \quad \partial_{t} u^{\varepsilon}(0, y)=\dot{u}_{\mathrm{in}}^{\varepsilon}, \quad y \in \mathbb{R}^{m}
\end{gathered}
$$

Variational solutions

$$
\begin{gathered}
a^{\varepsilon}(u, v)=\int_{\mathbb{R}^{m}} D(y) \nabla u \cdot \nabla v \mathrm{~d} y+\frac{1}{\varepsilon^{2}} \int_{\mathbb{R}^{m}}(b \cdot \nabla u)(b \cdot \nabla v) \mathrm{d} y, u, v \in H_{P}^{1} \\
\left(u^{\varepsilon}(0), \partial_{t} u^{\varepsilon}(0)\right)=\left(u_{\mathrm{in}}^{\varepsilon}, \dot{u}_{\mathrm{in}}^{\varepsilon}\right) \in H_{P}^{1} \times L^{2} \\
\frac{\mathrm{~d}}{\mathrm{~d} t} \int_{\mathbb{R}^{m}} \partial_{t} u^{\varepsilon} v(y) \mathrm{d} y+a^{\varepsilon}\left(u^{\varepsilon}(t), v\right)=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right), v \in H_{P}^{1}
\end{gathered}
$$

Average matrix field

$$
\begin{gathered}
H_{Q}=\left\{A(y): Q^{1 / 2} A Q^{1 / 2} \in L^{2}\right\}, \quad H_{Q}^{\infty}=\left\{A(y): Q^{1 / 2} A Q^{1 / 2} \in L^{\infty}\right\} \\
(\cdot, \cdot)_{Q}: H_{Q} \times H_{Q} \rightarrow \mathbb{R}, \quad(A, B)_{Q}=\int_{\mathbb{R}^{m}} Q(y) A(y): B(y) Q(y) \mathrm{d} y . \\
G(s): H_{Q} \rightarrow H_{Q}, G(s) A=\partial_{y} Y^{-1}(s ; \cdot) A\left(Y(s ; \cdot \cdot)^{t} \partial_{y} Y^{-1}(s ; \cdot), s \in \mathbb{R}\right.
\end{gathered}
$$

Proposition $(G(s))_{s \in \mathbb{R}}$ is a C^{0}-group of unitary operators on H_{Q}.
Theorem Let L be the infinitesimal generator of the group $(G(s))_{s \in \mathbb{R}}$.
For any matrix field $A \in H_{Q}$ we have the strong convergence in H_{Q}
$\langle A\rangle:=\lim _{T \rightarrow+\infty} \frac{1}{T} \int_{r}^{r+T} \partial_{y} Y^{-1}(s ; \cdot) A(Y(s ; \cdot))^{t} \partial_{y} Y^{-1}(s ; \cdot) \mathrm{d} s=\operatorname{Proj}_{\text {ker } L} A$
uniformly with respect to $r \in \mathbb{R}$.
Localization

$$
\psi \in C\left(\mathbb{R}^{m}\right), \psi \circ Y(s ; \cdot)=\psi \text { for any } s \in \mathbb{R}, \lim _{|y| \rightarrow+\infty} \psi(y)=+\infty .
$$

Properties of $(G(s))_{s}$

1. If A is a field of symmetric matrices, then so is $G(s) A, s \in \mathbb{R}$.
2. If A is a field of non-negative matrices, then so is $G(s) A, s \in \mathbb{R}$.
3. Let $\mathcal{S} \subset \mathbb{R}^{m}$ be an invariant set of the flow of b, that is $Y(s ; \mathcal{S})=\mathcal{S}$, for any $s \in \mathbb{R}$. If there is $d>0$ such that $Q^{1 / 2}(y) A(y) Q^{1 / 2}(y) \geq d I_{m}, y \in \mathcal{S}$, then for any $s \in \mathbb{R}$ we have $Q^{1 / 2}(y)(G(s) A)(y) Q^{1 / 2}(y) \geq d I_{m}, y \in \mathcal{S}$.
4. Moreover, the family of applications $(G(s))_{s \in \mathbb{R}}$ acts on $H_{Q, \text { loc }}$, that is, if $A \in H_{Q, \text { loc }}$, then $G(s) A \in H_{Q, \text { loc }}$ for any $s \in \mathbb{R}$. We have

$$
\mathbf{1}_{\{\psi \leq k\}} G(s) A=G(s)\left(\mathbf{1}_{\{\psi \leq k\}} A\right), \quad A \in H_{Q, \text { loc }}, \quad s \in \mathbb{R}, \quad k \in \mathbb{N} .
$$

Average of $H_{Q, \text { loc }}$ matrix fields

1. If $A \in H_{Q}$ is a field of symmetric non-negative matrices, then so is $\langle A\rangle$.
2. Let $\mathcal{S} \subset \mathbb{R}^{m}$ be an invariant set of the flow of b. If $A \in H_{Q}$ and there is $d>0$ such that $Q^{1 / 2}(y) A(y) Q^{1 / 2}(y) \geq d I_{m}, \quad y \in \mathcal{S}$ therefore we have $Q^{1 / 2}(y)\langle A\rangle(y) Q^{1 / 2}(y) \geq d l_{m}, \quad y \in \mathcal{S}$ and in particular, $\langle A\rangle(y)$ is definite positive, $y \in \mathcal{S}$.
3. If $A \in H_{Q} \cap H_{Q}^{\infty}$, then $\langle A\rangle \in H_{Q} \cap H_{Q}^{\infty}$ and

$$
|\langle A\rangle|_{H_{Q}} \leq|A|_{H_{Q}}, \quad|\langle A\rangle|_{H_{Q}^{\infty}} \leq|A|_{H_{Q}^{\infty}} .
$$

Average of $H_{Q, \text { loc }}$ matrix fields
4. For any matrix field $A \in H_{Q, \text { loc }}$, the family

$$
\left(\frac{1}{S} \int_{r}^{r+S} \partial Y(-s ; Y(s ; \cdot)) A(Y(s ; \cdot))^{t} \partial Y(-s ; Y(s ; \cdot)) \mathrm{d} s\right)_{S>0}
$$

converges in $H_{Q, \text { loc }}$, when S goes to infinity, uniformly with respect to $r \in \mathbb{R}$, for any fixed $k \in \mathbb{N}$. Its limit, denoted by $\langle A\rangle$, satisfies

$$
\mathbf{1}_{\{\psi \leq k\}}\langle A\rangle=\left\langle\mathbf{1}_{\{\psi \leq k\}} A\right\rangle, \text { for any } k \in \mathbb{N}
$$

where the symbol $\langle\cdot\rangle$ in the right hand side stands for the average operator on H_{Q}. In particular, any matrix field $A \in H_{Q}^{\infty}$ has an average in $H_{Q, \text { loc }}$ and $|\langle A\rangle|_{H_{Q}^{\infty}} \leq|A|_{H_{Q}^{\infty}}$. If $A \in H_{Q, \text { loc }}$ is such that $Q^{1 / 2}(y) A(y) Q^{1 / 2}(y) \geq \alpha I_{m}, \quad y \in \mathbb{R}^{m}$, for some $\alpha>0$, then we have $Q^{1 / 2}(y)\langle A\rangle(y) Q^{1 / 2}(y) \geq \alpha I_{m}, \quad y \in \mathbb{R}^{m}$.

Weighted H^{1} space

$$
\begin{gathered}
H_{P}^{1}=\left\{u \in L^{2}: P^{1 / 2} \nabla u \in L^{2}\right\} \\
(u, v)_{H_{P}^{1}}=\int_{\mathbb{R}^{m}} u(y) v(y) \mathrm{d} y+\int_{\mathbb{R}^{m}} P(y): \nabla u \otimes \nabla v \mathrm{~d} y, \quad u, v \in H_{P}^{1}
\end{gathered}
$$

Average of H_{P}^{1} functions
For any $s \in \mathbb{R}$ and $u \in H_{P}^{1}$ we have $u_{s}:=u \circ Y(s ; \cdot) \in H_{P}^{1}$ and $\left|u_{s}\right|_{H_{P}^{1}}=|u|_{H_{P}^{1}}$. The family of applications $u \in H_{P}^{1} \rightarrow u \circ Y(s ; \cdot) \in H_{P}^{1}$ is a C^{0}-group of unitary operators on H_{P}^{1}. In particular, for any $u \in H_{P}^{1}$ we have $\langle u\rangle \in H_{P}^{1}$

$$
\begin{gathered}
\nabla_{y}\langle u\rangle=\lim _{S \rightarrow+\infty} \frac{1}{S} \int_{r}^{r+S} \nabla_{y} u_{s} \text { ds, in } X_{P}, \quad \text { uniformly w.r.t. } r \in \mathbb{R} \\
u-\langle u\rangle \perp \operatorname{ker} \mathcal{T} \cap H_{P}^{1} \text { in } H_{P}^{1}, \quad\left|\nabla_{y}\langle u\rangle\right| x_{P} \leq\left|\nabla_{y} u\right|_{X_{P}} .
\end{gathered}
$$

Lemma

For any matrix field $D \in H_{Q}^{\infty}$ and any vector field $c \in X_{P}$ we have the convergence
$\lim _{S \rightarrow+\infty} \frac{1}{S} \int_{r}^{r+S} G(s) D c \mathrm{~d} s=\langle D\rangle c$, strongly in X_{Q}, unif. w.r.t. $r \in \mathbb{R}$.
Proof

1. $D \in H_{Q}$
2. $D \in H_{Q}^{\infty} \subset H_{Q, \text { loc }}$.

Asymptotic analysis

$$
\begin{gathered}
H_{P}^{1} \subset L^{2}, \quad a^{\varepsilon}: H_{P}^{1} \times H_{P}^{1} \rightarrow \mathbb{R} \\
a^{\varepsilon}(u, v) \int_{\mathbb{R}^{m}} D(y) \nabla u \cdot \nabla v \mathrm{~d} y+\frac{1}{\varepsilon^{2}} \int_{\mathbb{R}^{m}}(b \cdot \nabla u)(b \cdot \nabla v) \mathrm{d} y, \quad u, v \in H_{P}^{1} \\
Q^{1 / 2}(y)(D(y)+b(y) \otimes b(y)) Q^{1 / 2}(y) \geq d l_{m}, \quad y \in \mathbb{R}^{m} \\
D \in H_{Q}^{\infty}, \quad b \in X_{Q}^{\infty} .
\end{gathered}
$$

Proposition The bilinear forms a^{ε} are well defined, continuous, symmetric, non-negative. For any $\varepsilon \in] 0,1]$, the forms a^{ε} are coercive on H_{p}^{1}, with respect to L^{2}.

$$
\begin{aligned}
& a^{\varepsilon}(u, u)+d|u|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} \\
& =\int_{\mathbb{R}^{m}} Q^{1 / 2}\left(D+\frac{b \otimes b}{\varepsilon^{2}}\right) Q^{1 / 2}:(P \\
& \geq d|\nabla u|_{X_{P}}^{2}+d|u|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2}=d|u|_{H_{P}^{1}}^{2} .
\end{aligned}
$$

$$
=\int_{\mathbb{R}^{m}} Q^{1 / 2}\left(D+\frac{b \otimes b}{\varepsilon^{2}}\right) Q^{1 / 2}:\left(P^{1 / 2} \nabla u\right) \otimes\left(P^{1 / 2} \nabla u\right) \mathrm{d} y+d|u|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2}
$$

Well-posedness
Let $\left(u_{\text {in }}^{\varepsilon}, \dot{u}_{\text {in }}^{\varepsilon}\right) \in H_{P}^{1} \times L^{2}\left(\mathbb{R}^{m}\right)$. For any $\left.\left.\varepsilon \in\right] 0,1\right]$ there is a unique variational solution i.e., $u^{\varepsilon} \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}_{+} ; H_{P}^{1}\right), \partial_{t} u^{\varepsilon} \in L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right)$

$$
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbb{R}^{m}} \partial_{t} u^{\varepsilon} v(y) \mathrm{d} y+a^{\varepsilon}\left(u^{\varepsilon}(t), v\right)=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right), v \in H_{P}^{1}
$$

We have $u^{\varepsilon} \in C\left(\mathbb{R}_{+} ; H_{P}^{1}\right), \partial_{t} u^{\varepsilon} \in C\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right)$ and for any $t \in \mathbb{R}_{+}, \quad 0<\varepsilon \leq 1$

$$
\begin{aligned}
\left|\partial_{t} u^{\varepsilon}(t)\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} & +d\left|\nabla u^{\varepsilon}(t)\right|_{X_{P}}^{2}+\left(\frac{1}{\varepsilon^{2}}-1\right)\left|b \cdot \nabla u^{\varepsilon}(t)\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} \leq\left|\dot{u}_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right.}^{2} \\
& +|D|_{H_{Q}^{\infty}}^{\infty}\left|\nabla u_{\text {in }}^{\varepsilon}\right|_{X_{P}}^{2}+\frac{1}{\varepsilon^{2}}\left|b \cdot \nabla u_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} \\
\left|u^{\varepsilon}(t)\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} \leq & 2\left|u_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2} \\
& +2 t^{2}\left[\left|\dot{u}_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2}+|D|_{H_{Q}^{\infty}}\left|\nabla u_{\mathrm{in}}^{\varepsilon}\right|_{X_{P}}^{2}+\frac{1}{\varepsilon^{2}}\left|b \cdot \nabla u_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}^{2}\right] .
\end{aligned}
$$

Limit model

$$
\langle a\rangle(u, v)=\int_{\mathbb{R}^{m}}\langle D\rangle(y) \nabla u \cdot \nabla v \mathrm{~d} y, \quad u, v \in H_{P}^{1}
$$

Proposition The bilinear forms $\langle a\rangle$ is well defined, continuous, symmetric, non-negative and coercive on H_{P}^{1}, with respect to $\operatorname{dom} \mathcal{T} \subset L^{2}\left(\mathbb{R}^{m}\right)$.
Proposition For any $\left(u^{\mathrm{in}}, \dot{u}_{\text {in }}\right) \in H_{P}^{1} \times \operatorname{dom} \mathcal{T}$ there is a unique variational solutioni.e., $u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; H_{P}^{1}\right), \partial_{t} u \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; \operatorname{dom} \mathcal{T}\right)$

$$
\begin{gathered}
\left(u(0)=u^{\text {in }}, \partial_{t} u(0)=\dot{u}_{\text {in }}\right) \\
\frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbb{R}^{m}} \partial_{t} u v(y) \mathrm{d} y+\langle a\rangle(u(t), v)=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right), v \in H_{P}^{1}
\end{gathered}
$$

We have $u \in C\left(\mathbb{R}_{+} ; H_{P}^{1}\right), \partial_{t} u \in C\left(\mathbb{R}_{+} ; \operatorname{dom} \mathcal{T}\right)$

Uniformly bounded energy

$$
\sup _{0<\varepsilon \leq 1}\left\{\left|u_{\mathrm{in}}^{\varepsilon}\right|_{H_{P}^{1}}+\left|\dot{u}_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}+\frac{\left|b \cdot \nabla u_{\mathrm{in}}^{\varepsilon}\right|_{L^{2}\left(\mathbb{R}^{m}\right)}}{\varepsilon}\right\}<+\infty
$$

Theorem (Weak convergence)

$$
\begin{gathered}
\lim _{\varepsilon \searrow 0} u_{\text {in }}^{\varepsilon}=u^{\text {in }} \text { weakly in } H_{P}^{1}, \quad \lim _{\varepsilon \searrow 0} \dot{u}_{\text {in }}^{\varepsilon}=\dot{u}_{\text {in }} \text { weakly in } L^{2}\left(\mathbb{R}^{m}\right) \\
\sup _{0<\varepsilon \leq 1} \frac{\left|b \cdot \nabla u_{\mathrm{in}}^{\varepsilon}\right| L^{2}\left(\mathbb{R}^{m}\right)}{\varepsilon}<+\infty
\end{gathered}
$$

Then $\left(u^{\varepsilon}\right)_{\varepsilon},\left(\partial_{t} u^{\varepsilon}\right)_{\varepsilon}$ converge weakly \star in
$L^{\infty}\left([0, T], H_{P}^{1}\right), L^{\infty}\left([0, T] ; L^{2}\left(\mathbb{R}^{m}\right)\right)$ respectively, $T \in \mathbb{R}_{+}$toward the solution $\left(u, \partial_{t} u\right) \in L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; H_{P}^{1} \cap \operatorname{ker} \mathcal{T}\right) \times L_{\text {loc }}^{\infty}\left(\mathbb{R}_{+} ; \operatorname{ker} \mathcal{T}\right)$ of the problem

$$
\begin{aligned}
& \frac{\mathrm{d}}{\mathrm{~d} t} \int_{\mathbb{R}^{m}} \partial_{t} u v \mathrm{~d} y+\int_{\mathbb{R}^{m}}\langle D\rangle(y) \nabla u \cdot \nabla v \mathrm{~d} y=0 \text { in } \mathcal{D}^{\prime}\left(\mathbb{R}_{+}\right), v \in H_{P}^{1} \\
& \text { with }\left(u(0), \partial_{t} u(0)\right)=\left(u^{\text {in }},\left\langle\dot{u}_{\text {in }}\right\rangle\right) .
\end{aligned}
$$

Proof For any $u(t), v \in H_{P}^{1} \cap \operatorname{ker} \mathcal{T}$ and any $s \in[0, S], S \in \mathbb{R}_{+}$

$$
\begin{aligned}
& \int_{\mathbb{R}^{m}} D(y) \nabla u(t) \cdot \nabla v \mathrm{~d} y=\int_{\mathbb{R}^{m}} D(y) \nabla(u(t))_{-s} \cdot \nabla v_{-s} \mathrm{~d} y \\
& =\int_{\mathbb{R}^{m}} D(y)^{t} \partial Y(-s ; y)(\nabla u(t))_{-s} \cdot{ }^{t} \partial Y(-s ; y)(\nabla v)_{-s} \mathrm{~d} y \\
& =\int_{\mathbb{R}^{m}} \partial Y(-s ; y) D(y)^{t} \partial Y(-s ; y)(\nabla u(t))_{-s} \cdot(\nabla v)_{-s} \mathrm{~d} y \\
& =\int_{\mathbb{R}^{m}} \partial Y(-s ; Y(s ; z)) D(Y(s ; z))^{t} \partial Y(-s ; Y(s ; z)) \nabla u(t, z) \cdot \nabla v(z) \mathrm{d} z \\
& =\int_{\mathbb{R}^{m}} G(s) D \nabla u(t) \cdot \nabla v \mathrm{~d} y \\
& =\int_{\mathbb{R}^{m}} \frac{1}{S} \int_{0}^{s} G(s) D \mathrm{~d} s \nabla u(t) \cdot \nabla v \mathrm{~d} y \rightarrow \int_{\mathbb{R}^{m}}\langle D\rangle(y) \nabla u(t) \cdot \nabla v \mathrm{~d} y .
\end{aligned}
$$

Proposition Assume that $A \in H_{Q}^{\infty}$ and that $\left(w^{\varepsilon}\right)_{\varepsilon}$ converges weakly in $L^{2}\left([0, T] ; X_{P}\right)$ toward w^{0}, when $\varepsilon \searrow 0$.

1. If $A=A(y)$ are non-negative, then

$$
\int_{0}^{T} \int_{\mathbb{R}^{m}} A(y) w^{0}(t) \cdot w^{0}(t) \mathrm{d} y \mathrm{~d} t \leq \liminf _{\varepsilon \searrow 0} \int_{0}^{T} \int_{\mathbb{R}^{m}} A(y) w^{\varepsilon}(t) \cdot w^{\varepsilon}(t) \mathrm{d} y \mathrm{~d} t .
$$

2. If there is $d>0$ such that $Q^{1 / 2} A Q^{1 / 2} \geq d I_{m}$ and
$\limsup _{\varepsilon \searrow 0} \int_{0}^{T} \int_{\mathbb{R}^{m}} A(y) w^{\varepsilon}(t) \cdot w^{\varepsilon}(t) \mathrm{d} y \mathrm{~d} t \leq \int_{0}^{T} \int_{\mathbb{R}^{m}} A(y) w^{0}(t) \cdot w^{0}(t) \mathrm{d} y \mathrm{~d} t$
then the family $\left(w^{\varepsilon}\right)_{\varepsilon}$ converges strongly in $L^{2}\left([0, T] ; X_{P}\right)$ toward w^{0}, when $\varepsilon \searrow 0$.

Theorem (Strong convergence) Assume that
$\lim _{\varepsilon \searrow 0} u_{\text {in }}^{\varepsilon}=u^{\text {in }}$ strongly in $H_{P}^{1}, \lim _{\varepsilon \searrow 0} \frac{b \cdot \nabla u_{\text {in }}^{\varepsilon}}{\varepsilon}=0$ strongly in $L^{2}\left(\mathbb{R}^{m}\right)$

$$
\lim _{\varepsilon \searrow 0} \dot{u}_{\text {in }}^{\varepsilon}=\dot{u}_{\text {in }} \text { strongly in } L^{2}\left(\mathbb{R}^{m}\right), \quad b \cdot \nabla \dot{u}_{\text {in }}=0
$$

Then we have the strong convergences

$$
\lim _{\varepsilon \searrow 0} u^{\varepsilon}=u \text { in } L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right), \lim _{\varepsilon \searrow 0} \nabla u^{\varepsilon}=\nabla u \text { in } L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+} ; X_{P}\right)
$$

$\lim _{\varepsilon \searrow 0} \partial_{t} u^{\varepsilon}=\partial_{t} u$ in $11 L_{\mathrm{loc}}^{\infty}\left(\mathbb{R}_{+} ; L^{2}\left(\mathbb{R}^{m}\right)\right), \lim _{\varepsilon \searrow 0} \frac{b \cdot \nabla u^{\varepsilon}}{\varepsilon}=0$ in $L_{\mathrm{loc}}^{2}\left(\mathbb{R}_{+} ; L^{2}\right.$

The Maxwell equations

$$
\begin{gathered}
\partial_{t} D-\operatorname{rot} H=0, \quad \partial_{t} B+\operatorname{rot} E=0, \operatorname{div} D=0, \operatorname{div} B=0 \\
D=\epsilon_{0} \epsilon_{r} E, \quad B=\mu_{0} H
\end{gathered}
$$

Energy balance

$$
\frac{1}{2} \frac{\mathrm{~d}}{\mathrm{~d} t}\{D \cdot E+B \cdot H\}+\operatorname{div}(E \wedge H)=0
$$

Strongly anisotropic electric permittivity

$$
\epsilon_{r}=\operatorname{diag}\left(n_{1}^{2}, n_{2}^{2}, n_{3}^{2}\right)
$$

$n_{i}=$ indice propre du milieux

$$
\epsilon_{r}^{-1 / 2}=M+\frac{b \otimes b}{\varepsilon}
$$

Maxwell equations

$$
\begin{gathered}
\partial_{t} D^{\varepsilon}-\operatorname{rot} \frac{B^{\varepsilon}}{\mu_{0}}=0, \quad \partial_{t} B^{\varepsilon}+\operatorname{rot}\left[\frac{1}{\epsilon_{0}}\left(M+\frac{b \otimes b}{\varepsilon}\right)^{2} D^{\varepsilon}\right]=0 \\
\operatorname{div} B^{\varepsilon}=0, \quad \operatorname{div} D^{\varepsilon}=0
\end{gathered}
$$

Perspectives

1. Maxwell equations with disparate permittivity eigenvalues
2. determine the effective permittivity
3. estimate the effective propagation speed
4. asymptotic behavior (weak/strong convergence results)

THANK YOU!

