Méthodes de décomposition de domaine de type relaxation d'ondes pour les équations de Maxwell

Yves Courvoisier¹ Travail sous la direction de Martin J. Gander

Université de Genève

Sophia-Antipolis, juin 2010

¹ yves.courvoisier@unige.ch

PLAN

- 1. Introduction
- 2. SWR appliquée aux équations de Maxwell
- 3. Condition de transmission classique
- 4. Convergence en un nombre fini de pas
- 5. Facteur de convergence pour l'équation des ondes

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

- 6. Conditions de transmission:
 - transparentes
 - optimisées
- 7. Conclusion

Méthode de décomposition de domaine

Schéma explicatif pour les méthodes de décomposition de domaines (DDM):

Méthode de décomposition de domaine

Schéma explicatif pour les méthodes de décomposition de domaines (DDM):

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Méthode de décomposition de domaine

Schéma explicatif pour les méthodes de décomposition de domaines (DDM):

Histoire: introduit par H. A. Schwarz en 1869 pour l'équation de Laplace

$$\begin{aligned} \Delta u &= 0 \quad \text{on } \Omega \\ u &= g \quad \text{on } \partial \Omega \end{aligned}$$

pour une géométrie complexe illustrée par l'image originale.

La méthode de Schwarz alternée:

$$\left\{ \begin{array}{rrrr} \Delta u_1^n(x) &=& 0, & x \in T_1, \\ u_1^n(x) &=& u_2^{n-1}(x), & x \in L_2, \\ u_1^n(x) &=& g(x), & x \in L_0, \end{array} \right. \left\{ \begin{array}{rrrr} \Delta u_2^n(x) &=& 0, & x \in T_2, \\ u_2^n(x) &=& u_1^n(x), & x \in L_1, \\ u_2^n(x) &=& g(x), & x \in L_3. \end{array} \right.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 - のへで

Histoire: introduit par H. A. Schwarz en 1869 pour l'équation de Laplace

$$\begin{array}{lll} \Delta u = 0 & \text{on } \Omega \\ u = g & \text{on } \partial \Omega \end{array}$$

pour une géométrie complexe illustrée par l'image originale.

La méthode de Schwarz alternée:

$$\left\{ \begin{array}{rrrr} \Delta u_1^n(x) &=& 0, & x \in T_1, \\ u_1^n(x) &=& u_2^{n-1}(x), & x \in L_2, \\ u_1^n(x) &=& g(x), & x \in L_0, \end{array} \right. \left\{ \begin{array}{rrrr} \Delta u_2^n(x) &=& 0, & x \in T_2, \\ u_2^n(x) &=& u_1^n(x), & x \in L_1, \\ u_2^n(x) &=& g(x), & x \in L_3. \end{array} \right.$$

◆□ > ◆□ > ◆□ > ◆□ > ・□ = ・ つへで

Histoire: introduit par H. A. Schwarz en 1869 pour l'équation de Laplace

$$\Delta u = 0 \quad \text{on } \Omega$$
$$u = g \quad \text{on } \partial \Omega$$

pour une géométrie complexe illustrée par l'image originale.

La méthode de Schwarz alternée:

$$\left\{ \begin{array}{rrrr} \Delta u_1^n(x) &=& 0, & x \in T_1, \\ u_1^n(x) &=& u_2^{n-1}(x), & x \in L_2, \\ u_1^n(x) &=& g(x), & x \in L_0, \end{array} \right. \left\{ \begin{array}{rrrr} \Delta u_2^n(x) &=& 0, & x \in T_2, \\ u_2^n(x) &=& u_1^n(x), & x \in L_1, \\ u_2^n(x) &=& g(x), & x \in L_3. \end{array} \right.$$

◆□> ◆□> ◆三> ◆三> ・三 ・ のへで

Histoire: introduit par H. A. Schwarz en 1869 pour l'équation de Laplace

$$\begin{array}{lll} \Delta u = 0 & \text{on } \Omega \\ u = g & \text{on } \partial \Omega \end{array}$$

pour une géométrie complexe illustrée par l'image originale.

La méthode de Schwarz parallèle, une adaptation de P.-L. Lions pour des besoins de parallelisation en 1989:

$$\begin{cases} \Delta u_1^n(x) = 0, & x \in T_1, \\ u_1^n(x) = u_2^{n-1}(x), & x \in L_2, \\ u_1^n(x) = g(x), & x \in L_0, \end{cases} \begin{cases} \Delta u_2^n(x) = 0, & x \in T_2, \\ u_2^n(x) = u_1^{n-1}(x), & x \in L_1, \\ u_2^n(x) = g(x), & x \in L_3, \end{cases}$$

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆 ・ のへで

Histoire: pour la simulation de circuit, Lelarasmee, Ruehli and Sangiovanni-Vincentelli en 1982 introduisent la méthode avec l'exemple suivant:

$$\begin{cases} \dot{v}_1 + g_1(v_1, v_2, v_3) = f_1, \\ \dot{v}_2 + g_2(v_1, v_2, v_3) = f_2, \\ \dot{v}_3 + g_3(v_1, v_2, v_3) = f_3. \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

Histoire: pour la simulation de circuit, Lelarasmee, Ruehli and Sangiovanni-Vincentelli en 1982 introduisent la méthode avec l'exemple suivant:

$$\begin{cases} \dot{v}_1 + g_1(v_1, v_2, v_3) = f_1, \\ \dot{v}_2 + g_2(v_1, v_2, v_3) = f_2, \\ \dot{v}_3 + g_3(v_1, v_2, v_3) = f_3. \end{cases}$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ □□ - のへぐ

↓ WR

$$\begin{cases} \dot{v}_1^k + g_1(v_1^k, v_2^{k-1}, v_3^{k-1}) = f_1, \\ \dot{v}_2^k + g_2(v_1^k, v_2^k, v_3^{k-1}) = f_2, \\ \dot{v}_3^k + g_3(v_1^k, v_2^k, v_3^k) = f_3. \end{cases}$$

Histoire: pour la simulation de circuit, Lelarasmee, Ruehli and Sangiovanni-Vincentelli en 1982 introduisent la méthode avec l'exemple suivant:

$$\begin{cases} \dot{v}_1 + g_1(v_1, v_2, v_3) = f_1, \\ \dot{v}_2 + g_2(v_1, v_2, v_3) = f_2, \\ \dot{v}_3 + g_3(v_1, v_2, v_3) = f_3. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ◆○へ⊙

↓ WR

$$\begin{cases} \dot{v}_1^k + g_1(v_1^k, v_2^{k-1}, v_3^{k-1}) = f_1, \\ \dot{v}_2^k + g_2(v_1^k, v_2^k, v_3^{k-1}) = f_2, \\ \dot{v}_3^k + g_3(v_1^k, v_2^k, v_3^k) = f_3. \end{cases}$$

Histoire: pour la simulation de circuit, Lelarasmee, Ruehli and Sangiovanni-Vincentelli en 1982 introduisent la méthode avec l'exemple suivant:

$$\begin{cases} \dot{v}_1 + g_1(v_1, v_2, v_3) = f_1, \\ \dot{v}_2 + g_2(v_1, v_2, v_3) = f_2, \\ \dot{v}_3 + g_3(v_1, v_2, v_3) = f_3. \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ → 三 ◆○へ⊙

↓ WR

$$\begin{cases} \dot{v}_1^k + g_1(v_1^k, v_2^{k-1}, v_3^{k-1}) = f_1, \\ \dot{v}_2^k + g_2(v_1^k, v_2^k, v_3^{k-1}) = f_2, \\ \dot{v}_3^k + g_3(v_1^k, v_2^k, v_3^k) = f_3. \end{cases}$$

Histoire: pour la simulation de circuit, Lelarasmee, Ruehli and Sangiovanni-Vincentelli en 1982 introduisent la méthode avec l'exemple suivant:

+5

$$\begin{cases} \dot{v}_1 + g_1(v_1, v_2, v_3) = f_1, \\ \dot{v}_2 + g_2(v_1, v_2, v_3) = f_2, \\ \dot{v}_3 + g_3(v_1, v_2, v_3) = f_3. \end{cases}$$

T MK

$$\begin{cases} \dot{v}_1^k + g_1(v_1^k, v_2^{k-1}, v_3^{k-1}) = f_1, \\ \dot{v}_2^k + g_2(v_1^k, v_2^k, v_3^{k-1}) = f_2, \\ \dot{v}_3^k + g_3(v_1^k, v_2^k, v_3^k) = f_3. \end{cases}$$

(日)

k-1

- 3

Schwarz Waveform Relaxation method

On introduit la méthode de décomposition de domaine de type relaxation d'ondes pour les équations de Maxwell en temps,

 $-\epsilon \partial_t \mathbf{E} + \nabla \times \mathbf{H} - \sigma \mathbf{E} = \mathbf{J}, \quad \mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}.$

sur $\Omega \times (0, T)$, cette méthode est parallèle par nature.

Deux idées réunies:

Problème évolutif résolu avec une décomposition de domaine

Schwarz Waveform Relaxation method

On introduit la méthode de décomposition de domaine de type relaxation d'ondes pour les équations de Maxwell en temps,

 $-\epsilon \partial_t \mathbf{E} + \nabla \times \mathbf{H} - \sigma \mathbf{E} = \mathbf{J}, \quad \mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}.$

sur $\Omega \times (0, T)$, cette méthode est parallèle par nature.

Pour $\mathbf{u} = (E_1, E_2, E_3, H_1, H_2, H_3)^T$, $\mathbf{\bar{J}} = (\mathbf{J}, 0)^T$ et \mathcal{L} l'opérateur différentielle de Maxwell. La méthode *Schwarz Waveform Relaxation method* (SWR) est donnée par:

 \cap

くしゃ (雪をくます)(日) (の)

Schwarz Waveform Relaxation method

On introduit la méthode de décomposition de domaine de type relaxation d'ondes pour les équations de Maxwell en temps,

 $-\epsilon \partial_t \mathbf{E} + \nabla \times \mathbf{H} - \sigma \mathbf{E} = \mathbf{J}, \quad \mu \partial_t \mathbf{H} + \nabla \times \mathbf{E} = \mathbf{0}.$

sur $\Omega \times (0, T)$, cette méthode est parallèle par nature.

Pour $\mathbf{u} = (E_1, E_2, E_3, H_1, H_2, H_3)^T$, $\mathbf{\bar{J}} = (\mathbf{J}, 0)^T$ et \mathcal{L} l'opérateur différentielle de Maxwell. La méthode *Schwarz Waveform Relaxation method* (SWR) est donnée par:

$$\begin{cases} \mathcal{L}(\mathbf{u}^{i,n}) = \bar{\mathbf{J}}, & \Omega_i \times (0, T), \\ \mathbf{u}^{i,n} = \mathbf{g}, & \partial \Omega \times (0, T), \\ \mathbf{u}^{i,n}(\mathbf{x}, 0) = \mathbf{u}_0 & \Omega_i, \\ \mathcal{B}_i(\mathbf{u}^{i,n}) = \mathcal{B}_i(\mathbf{u}^{j,n-1}), & \Gamma_i \times (0, T). \end{cases} \stackrel{\Omega}{\xrightarrow{}} \begin{array}{c} \Omega_1 \\ \Omega_2 \\ \Gamma_1 \\ \partial \Omega \end{array}$$

くしゃ (雪をくます)(日) (の)

Conditions de transmission classiques

On se place dans $\overline{\Omega} = \mathbb{R}^3$ avec la décomposition suivante:

-
$$\Omega_1=(-\infty,\mathcal{L}] imes\mathbb{R}^2$$
,

-
$$\Omega_2 = [0, +\infty) \times \mathbb{R}^2$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

Conditions de transmission classiques

On se place dans $\overline{\Omega} = \mathbb{R}^3$ avec la décomposition suivante:

-
$$\Omega_1 = (-\infty, L] imes \mathbb{R}^2$$
,

-
$$\Omega_2 = [0, +\infty) \times \mathbb{R}^2$$

 $\frac{1}{\mathbb{R}^2} \frac{t}{L} \frac{1}{x}$

▲日 → ▲圖 → ▲ 国 → ▲ 国 → 二 国 →

Variables caracteristiques: ($Z=\sqrt{rac{\mu}{\epsilon}}$ impédance)

$$\Omega_{1}: \qquad \omega_{-}^{1} = \left(-\frac{1}{2}(\frac{1}{Z}E_{2} - H_{3}), \frac{1}{2}(\frac{1}{Z}E_{3} - H_{2})\right)^{T} \qquad \Omega_{2}: \qquad \omega_{-}^{2} = \omega_{+}^{1}, \\ \omega_{+}^{1} = \left(\frac{1}{2}(\frac{1}{Z}E_{2} + H_{3}), -\frac{1}{2}(\frac{1}{Z}E_{3} - H_{2})\right)^{T} \qquad \omega_{+}^{2} = \omega_{-}^{1}.$$

Conditions de transmission classiques

On se place dans $\overline{\Omega} = \mathbb{R}^3$ avec la décomposition suivante:

-
$$\Omega_1 = (-\infty, L] imes \mathbb{R}^2$$
,

-
$$\Omega_2 = [0, +\infty) \times \mathbb{R}^2$$

 $\begin{array}{c|c} 0 \\ \hline \\ L \\ \hline \\ \mathbb{R}^2 \end{array}$

t

Variables caracteristiques: ($Z=\sqrt{rac{\mu}{\epsilon}}$ impédance)

Conditions de transmission classiques:

$$\mathcal{B}_1(\mathsf{E},\mathsf{H})=\omega_-^1,\quad \mathcal{B}_2(\mathsf{E},\mathsf{H})=\omega_-^2.$$

Conditions de Dirichlet sur les variables rentrantes.

Transformée de Laplace en temps pour l'équation de l'erreur: $-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$

Transformée de Laplace en temps pour l'équation de l'erreur: $-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$

et une transformée de Fourier dans les directions y et z:

Transformée de Laplace en temps pour l'équation de l'erreur: $-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$

et une transformée de Fourier dans les directions y et z:

$$\frac{\partial}{\partial x} \begin{bmatrix} \hat{E}_2\\ \hat{E}_3\\ \hat{H}_2\\ \hat{H}_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & -\frac{k_y k_z}{\epsilon s + \sigma} & \frac{k_y^2}{\epsilon s + \sigma} + \mu s \\ 0 & 0 & -\frac{k_z^2}{\epsilon s + \sigma} - \mu s & \frac{k_y k_z}{\epsilon s + \sigma} \\ \frac{k_y k_z}{\mu s} & -\frac{k_y^2}{\mu s} - (\epsilon s + \sigma) & 0 & 0 \\ \frac{k_z^2}{\mu s} + \epsilon s + \sigma & -\frac{k_y k_z}{\mu s} & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{E}_2\\ \hat{E}_3\\ \hat{H}_2\\ \hat{H}_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

qui a pour solution

$$\Omega_1: \quad (\hat{E}_2, \hat{E}_3, \hat{H}_2, \hat{H}_3)^T = (\alpha_1 v_1 + \alpha_2 v_2) e^{-\lambda(x-L)} + (\alpha_3 v_3 + \alpha_4 v_4) e^{\lambda(x-L)}, \\ \Omega_2: \quad (\hat{E}_2, \hat{E}_3, \hat{H}_2, \hat{H}_3)^T = (\beta_1 v_1 + \beta_2 v_2) e^{-\lambda x} + (\beta_3 v_3 + \beta_4 v_4) e^{\lambda x}.$$

Transformée de Laplace en temps pour l'équation de l'erreur: $-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$

et une transformée de Fourier dans les directions y et z:

$$\frac{\partial}{\partial x} \begin{bmatrix} \hat{E}_2\\ \hat{E}_3\\ \hat{H}_2\\ \hat{H}_3 \end{bmatrix} + \begin{bmatrix} 0 & 0 & -\frac{k_y k_z}{\epsilon s + \sigma} & \frac{k_y^2}{\epsilon s + \sigma} + \mu s \\ 0 & 0 & -\frac{k_z^2}{\epsilon s + \sigma} - \mu s & \frac{k_y k_z}{\epsilon s + \sigma} \\ \frac{k_y k_z}{\mu s} & -\frac{k_y^2}{\mu s} - (\epsilon s + \sigma) & 0 & 0 \\ \frac{k_z^2}{\mu s} + \epsilon s + \sigma & -\frac{k_y k_z}{\mu s} & 0 & 0 \end{bmatrix} \begin{bmatrix} \hat{E}_2\\ \hat{E}_3\\ \hat{H}_2\\ \hat{H}_3 \end{bmatrix} = \begin{bmatrix} 0\\ 0\\ 0\\ 0 \end{bmatrix}$$

~

qui a pour solution

 $\begin{aligned} \Omega_1 : \quad & (\hat{E}_2, \hat{E}_3, \hat{H}_2, \hat{H}_3)^T = (\alpha_1 v_1 + \alpha_2 v_2) e^{-\lambda(x-L)} + (\alpha_3 v_3 + \alpha_4 v_4) e^{\lambda(x-L)}, \\ \Omega_2 : \quad & (\hat{E}_2, \hat{E}_3, \hat{H}_2, \hat{H}_3)^T = (\beta_1 v_1 + \beta_2 v_2) e^{-\lambda x} + (\beta_3 v_3 + \beta_4 v_4) e^{\lambda x}. \end{aligned}$

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

▶ condition à l'infini (Silver-Müller): $\alpha_1 = \alpha_2 = \beta_3 = \beta_4 = 0$.

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

- ▶ condition à l'infini (Silver-Müller): $\alpha_1 = \alpha_2 = \beta_3 = \beta_4 = 0$.
- condition de transmission: elle implique une relation de récurrence sur les interfaces,

 $\boldsymbol{\alpha}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\alpha}^{n-2}, \ \boldsymbol{\beta}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\beta}^{n-2}.$

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

- ▶ condition à l'infini (Silver-Müller): $\alpha_1 = \alpha_2 = \beta_3 = \beta_4 = 0$.
- condition de transmission: elle implique une relation de récurrence sur les interfaces,

$$\boldsymbol{\alpha}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\alpha}^{n-2}, \ \boldsymbol{\beta}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\beta}^{n-2}.$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

$$\mathbf{A}_{1} = \begin{bmatrix} -k_{y}k_{z} & k_{y}^{2} + \mu s^{2}\epsilon + \mu s\sigma + Z\lambda(\epsilon s + \sigma) \\ k_{z}^{2} + \mu s^{2}\epsilon + \mu s\sigma + Z\lambda(\epsilon s + \sigma) & -k_{y}k_{z} \end{bmatrix},$$

$$\mathbf{A}_{2} = \begin{bmatrix} k_{y}k_{z} & -(k_{y}^{2} + \mu s^{2}\epsilon + \mu s\sigma) + Z\lambda(\epsilon s + \sigma) \\ -(k_{z}^{2} + \mu s^{2}\epsilon + \mu s\sigma) + Z\lambda(\epsilon s + \sigma) & k_{y}k_{z} \end{bmatrix}$$

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

- ▶ condition à l'infini (Silver-Müller): $\alpha_1 = \alpha_2 = \beta_3 = \beta_4 = 0$.
- condition de transmission: elle implique une relation de récurrence sur les interfaces,

$$\boldsymbol{\alpha}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\alpha}^{n-2}, \ \boldsymbol{\beta}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\beta}^{n-2}.$$

Le facteur de contraction de la méthode est donné par:

$$\rho := (\rho(\mathbf{A}_1^{-1}\mathbf{A}_2)e^{-2\lambda L})^{\frac{1}{2}} = \left|\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}e^{-\lambda L}\right|$$

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

On détermine les constantes α_i et β_i à l'aide des conditions aux bords.

- ▶ condition à l'infini (Silver-Müller): $\alpha_1 = \alpha_2 = \beta_3 = \beta_4 = 0$.
- condition de transmission: elle implique une relation de récurrence sur les interfaces.

$$\boldsymbol{\alpha}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\alpha}^{n-2}, \ \boldsymbol{\beta}^{n} = (\mathbf{A}_{1}^{-1}\mathbf{A}_{2})e^{-2\lambda L}\boldsymbol{\beta}^{n-2}.$$

Le facteur de contraction de la méthode est donné par:

$$\rho := \left(\rho(\mathbf{A}_1^{-1}\mathbf{A}_2)e^{-2\lambda L}\right)^{\frac{1}{2}} = \left|\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}e^{-\lambda L}\right|$$

Solution après 2*n* itérations pour $\sigma = 0$:

$$\hat{\mathbf{e}}_{1}^{2n} = \left(\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}\right)^{2n} \mathbf{e}^{-2n\lambda L} \hat{\mathbf{e}}_{1}^{0},$$

où $\lambda = \sqrt{|\mathbf{k}|^2 + \mu s^2 \epsilon + \mu s \sigma}$ et $e_i^n = (E_2^{i,n}, E_3^{i,n}, H_2^{i,n}, H_3^{i,n})^T$. ◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

On obtient la transformée de Laplace inverse à l'aide des convolutions: ($\sigma = 0$)

$$\bar{e}_i^{2n} = \mathcal{L}^{-1}(\hat{e}_i^{2n}) = \mathcal{L}^{-1}(\left(\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}\right)^{2n}) * \mathcal{L}^{-1}(e^{-2n\lambda L}) * \mathcal{L}^{-1}(\hat{e}_i^0).$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

On obtient la transformée de Laplace inverse à l'aide des convolutions: ($\sigma = 0$)

$$\bar{e}_i^{2n} = \mathcal{L}^{-1}(\hat{e}_i^{2n}) = \mathcal{L}^{-1}(\left(\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}\right)^{2n}) * \mathcal{L}^{-1}(e^{-2n\lambda \mathsf{L}}) * \mathcal{L}^{-1}(\hat{e}_i^0).$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = = - のへぐ

On obtient la transformée de Laplace inverse à l'aide des convolutions: ($\sigma = 0$)

$$\bar{e}_i^{2n} = \mathcal{L}^{-1}(\hat{e}_i^{2n}) = \mathcal{L}^{-1}(\left(\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}\right)^{2n}) * \mathcal{L}^{-1}(e^{-2n\lambda \mathsf{L}}) * \mathcal{L}^{-1}(\hat{e}_i^0).$$

La transformée de Laplace inverse du terme exponentielle:

$$\mathcal{L}^{-1}(e^{-2nL\lambda}) = \begin{cases} -J_1(|k|c(t^2 - (\frac{2nL}{c})^2)^{1/2}) \frac{|k|2nL}{(t^2 - (\frac{2nL}{c})^2)^{1/2}}, & t > \frac{2nL}{c}, \\ 0, & 0 < t < \frac{2nL}{c}, \end{cases}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

On obtient la transformée de Laplace inverse à l'aide des convolutions: ($\sigma = 0$)

$$\bar{e}_i^{2n} = \mathcal{L}^{-1}(\hat{e}_i^{2n}) = \mathcal{L}^{-1}(\left(\frac{\lambda - s\sqrt{\epsilon\mu}}{\lambda + s\sqrt{\epsilon\mu}}\right)^{2n}) * \mathcal{L}^{-1}(e^{-2n\lambda \mathsf{L}}) * \mathcal{L}^{-1}(\hat{e}_i^0).$$

La transformée de Laplace inverse du terme exponentielle:

$$\mathcal{L}^{-1}(e^{-2nL\lambda}) = \begin{cases} -J_1(|k|c(t^2 - (\frac{2nL}{c})^2)^{1/2}) \frac{|k|2nL}{(t^2 - (\frac{2nL}{c})^2)^{1/2}}, & t > \frac{2nL}{c}, \\ 0, & 0 < t < \frac{2nL}{c}, \end{cases}$$

Theorem

L'erreur de l'algorithme SWR appliquée à Maxwell avec $\sigma = 0$, L > 0, et une fenêtre de temps (0, T) s'annule lorsque

$$n > \frac{Tc}{2L},$$
 $c = \frac{1}{\sqrt{\mu\epsilon}}$ (vitesse de l'onde)

Conditions aux bords transparentes

On cherche des conditions de transmission telles que la solution de SWR coincide avec la solution exacte sur le domaine Ω en 2 itérations. **Transformée de Laplace:** (pour l'erreur)

$$-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$$

< D > < 同 > < E > < E > < E > < 0 < 0</p>

Conditions aux bords transparentes

On cherche des conditions de transmission telles que la solution de SWR coincide avec la solution exacte sur le domaine Ω en 2 itérations. **Transformée de Laplace:** (pour l'erreur)

$$-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$$

Theorem

Les conditions de transmission ci-dessous sont transparentes:

$$\omega_+^2 + S_1^{ex} \omega_-^2(0, y, z) = 0, \quad \omega_-^1 + S_2^{ex} \omega_+^1(L, y, z) = 0,$$

où les opérateurs S_I , I = 1, 2, ont pour symbol en Fourier:

$$\sigma_I^{\text{ex}} = \frac{1}{(\lambda + s\sqrt{\epsilon\mu})(\lambda + s\sqrt{\epsilon\mu} + \sigma Z)} \begin{bmatrix} k_y^2 - k_z^2 - \lambda\sigma Z & -2k_yk_z \\ -2k_yk_z & k_z^2 - k_y^2 - \lambda\sigma Z \end{bmatrix},$$

 $\mathbf{k} = (k_y, k_z)$ fréquences Fourier, $\lambda = \sqrt{|\mathbf{k}|^2 + \mu s^2 \epsilon + \mu s \sigma}$.
Conditions aux bords transparentes

On cherche des conditions de transmission telles que la solution de SWR coincide avec la solution exacte sur le domaine Ω en 2 itérations. **Transformée de Laplace:** (pour l'erreur)

$$-\epsilon s \tilde{\mathbf{E}} + \nabla \times \tilde{\mathbf{H}} - \sigma \tilde{\mathbf{E}} = 0, \quad \mu s \tilde{\mathbf{H}} + \nabla \times \tilde{\mathbf{E}} = 0.$$

Theorem

Les conditions de transmission ci-dessous sont transparentes:

$$\omega_+^2 + S_1^{ex} \omega_-^2(0, y, z) = 0, \quad \omega_-^1 + S_2^{ex} \omega_+^1(L, y, z) = 0,$$

où les opérateurs S_I , I = 1, 2, ont pour symbol en Fourier:

$$\sigma_l^{ex} = \frac{1}{(\boldsymbol{\lambda} + s\sqrt{\epsilon\mu})(\boldsymbol{\lambda} + s\sqrt{\epsilon\mu} + \sigma Z)} \begin{bmatrix} \mathbf{k}_y^2 - \mathbf{k}_z^2 - \lambda\sigma Z & -2\mathbf{k}_y\mathbf{k}_z \\ -2\mathbf{k}_y\mathbf{k}_z & \mathbf{k}_z^2 - \mathbf{k}_y^2 - \lambda\sigma Z \end{bmatrix},$$

$$\mathbf{k} = (k_y, k_z) \text{ fréquences Fourier}, \quad \lambda = \sqrt{|\mathbf{k}|^2 + \mu s^2 \epsilon + \mu s \sigma}.$$

On modifie alors le système SWR:

$$\begin{cases} \mathcal{L}(u^{i,n}) = \bar{J}, \\ u^{i,n} = g, \\ u^{i,n}(x,0) = u_0 \\ \mathcal{B}_i(u^{i,n}) = \mathcal{B}_i(u^{j,n-1}), \end{cases}$$

$$\begin{aligned} &\Omega_i \times (0, T), \\ &\partial\Omega \times (0, T), \\ &\Omega_i, \\ &\Gamma_i \times (0, T). \end{aligned}$$

On modifie alors le système SWR:

$$\begin{cases} \mathcal{L}(u^{i,n}) &= \bar{J}, & \Omega_i \times (0, T), \\ u^{i,n} &= g, & \partial \Omega \times (0, T), \\ u^{i,n}(x, 0) &= u_0 & \Omega_i, \\ \omega_-^{i,n} + S_i^{ex} \omega_+^{i,n} &= \omega_+^{j,n-1} + S_i^{ex} \omega_-^{j,n-1}, & \Gamma_i \times (0, T). \end{cases}$$

On modifie alors le système SWR:

$$\begin{cases} \mathcal{L}(u^{i,n}) &= \bar{J}, & \Omega_i \times (0, T), \\ u^{i,n} &= g, & \partial \Omega \times (0, T), \\ u^{i,n}(x,0) &= u_0 & \Omega_i, \\ \omega_-^{i,n} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_+^{i,n} &= \omega_+^{j,n-1} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_-^{j,n-1}, & \Gamma_i \times (0, T). \end{cases}$$

On modifie alors le système SWR:

$$\begin{cases} \mathcal{L}(u^{i,n}) &= \bar{J}, & \Omega_i \times (0, T), \\ u^{i,n} &= g, & \partial \Omega \times (0, T), \\ u^{i,n}(x,0) &= u_0 & \Omega_i, \\ \omega_-^{i,n} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_+^{i,n} &= \omega_+^{j,n-1} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_-^{j,n-1}, & \Gamma_i \times (0, T). \end{cases}$$

On approxime l'opérateur exacte (fréquences):

$$\sigma_i^{app} = \gamma_i \begin{bmatrix} k_y^2 - k_z^2 & -2k_y k_z \\ -2k_y k_z & k_z^2 - k_y^2 \end{bmatrix}, \quad \text{où } \gamma_i \in \mathbb{C}.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

On modifie alors le système SWR:

$$\begin{cases} \mathcal{L}(u^{i,n}) &= \bar{J}, & \Omega_i \times (0, T), \\ u^{i,n} &= g, & \partial \Omega \times (0, T), \\ u^{i,n}(x,0) &= u_0 & \Omega_i, \\ \omega_-^{i,n} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_+^{i,n} &= \omega_+^{j,n-1} + \mathbf{S}_{\mathbf{i}}^{\mathbf{app}} \omega_-^{j,n-1}, & \Gamma_i \times (0, T). \end{cases}$$

On approxime l'opérateur exacte (fréquences):

$$\sigma_i^{app} = \gamma_i \begin{bmatrix} k_y^2 - k_z^2 & -2k_y k_z \\ -2k_y k_z & k_z^2 - k_y^2 \end{bmatrix}, \quad \text{où } \gamma_i \in \mathbb{C}.$$

Il faut alors choisir γ_i de telles sorte que S_i^{app} soient locals et que le facteur de contraction correspondant soit petit.

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

Facteur de contraction optimisé

Avec le choix particulier $\gamma_1 = \gamma_2 = \frac{p - s \sqrt{\mu \epsilon}}{|\mathbf{k}|^2 (p + s \sqrt{\mu \epsilon})}$, $p \in \mathbb{C}$, on obtient

$$\rho^{app} = \left| \left(\frac{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} - p}{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} + p} \right) e^{-\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} L} \right|,$$

・ロト・4回ト・ミミト・ミニー つへで

Facteur de contraction optimisé

Avec le choix particulier $\gamma_1 = \gamma_2 = \frac{p - s\sqrt{\mu\epsilon}}{|\mathbf{k}|^2(p + s\sqrt{\mu\epsilon})}$, $p \in \mathbb{C}$, on obtient

$$\rho^{app} = \left| \left(\frac{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} - p}{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} + p} \right) e^{-\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} L} \right|,$$

Ce choix ramène la problématique de l'optimisation à quelque chose de connu:

Equation des Ondes

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

Equation des ondes

Méthode SWR pour l'équation des ondes:

$$\begin{cases} \frac{1}{c^2} \partial_{tt} u_i^n &= \Delta u_i^n + f \quad \Omega_i \times (0, T) \\ u_1^n &= g \qquad \partial \Omega_i \cap \Omega \times (0, T) \\ u_1^n(\cdot, 0) &= u_0|_{\Omega_i} \qquad \Omega_i \\ \partial_t u_1^n(\cdot, 0) &= u_0'|_{\Omega_i} \qquad \Omega_i \end{cases}$$

Et sur les bords artificielles,

$$\mathcal{B}_{1,\Gamma_1}u_1^n=\mathcal{B}_{1,\Gamma_1}u_2^{n-1}, \text{ sur } \Gamma_1, \quad \mathcal{B}_{2,\Gamma_2}u_2^n=\mathcal{B}_{2,\Gamma_2}u_1^{n-1}, \text{ sur } \Gamma_2.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Equation des ondes

Méthode SWR pour l'équation des ondes:

$$\begin{cases} \frac{1}{c^2} \partial_{tt} u_i^n &= \Delta u_i^n + f \quad \Omega_i \times (0, T) \\ u_1^n &= g \qquad \partial \Omega_i \cap \Omega \times (0, T) \\ u_1^n(\cdot, 0) &= u_0|_{\Omega_i} \qquad \Omega_i \\ \partial_t u_1^n(\cdot, 0) &= u_0'|_{\Omega_i} \qquad \Omega_i \end{cases}$$

Et sur les bords artificielles,

$$\mathcal{B}_{1,\Gamma_1}u_1^n=\mathcal{B}_{1,\Gamma_1}u_2^{n-1}, \text{ sur } \Gamma_1, \quad \mathcal{B}_{2,\Gamma_2}u_2^n=\mathcal{B}_{2,\Gamma_2}u_1^{n-1}, \text{ sur } \Gamma_2.$$

Où le contexte est le même que précédemment:

$$\Omega = \mathbb{R}^3, \quad \Omega_1 = (-\infty, L) \times \mathbb{R}^2, \quad \Omega_2 = (0, \infty) \times \mathbb{R}^2.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Equation des ondes

Méthode SWR pour l'équation des ondes:

$$\begin{cases} \frac{1}{c^2} \partial_{tt} u_i^n &= \Delta u_i^n + f \quad \Omega_i \times (0, T) \\ u_1^n &= g \qquad \partial \Omega_i \cap \Omega \times (0, T) \\ u_1^n(\cdot, 0) &= u_0|_{\Omega_i} \qquad \Omega_i \\ \partial_t u_1^n(\cdot, 0) &= u_0'|_{\Omega_i} \qquad \Omega_i \end{cases}$$

Et sur les bords artificielles,

$$\mathcal{B}_{1,\Gamma_1}u_1^n=\mathcal{B}_{1,\Gamma_1}u_2^{n-1}, ext{ sur } \Gamma_1, \quad \mathcal{B}_{2,\Gamma_2}u_2^n=\mathcal{B}_{2,\Gamma_2}u_1^{n-1}, ext{ sur } \Gamma_2.$$

Où le contexte est le même que précédemment:

$$\Omega = \mathbb{R}^3, \quad \Omega_1 = (-\infty, L) imes \mathbb{R}^2, \quad \Omega_2 = (0, \infty) imes \mathbb{R}^2.$$

On cherche les conditions au bord transparentes pour une convergence en deux itérations pour ensuite les approximer

Conditions transparents pour les ondes

Conditions transparentes sont données par l'opérateur DtN:

$$(\partial_{\mathbf{n}} + S_i^{ex})u_i^n = 0$$
, où $\sigma_i^{ex} = \lambda = \sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}}$.

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ ○ ○ ○

Conditions transparents pour les ondes

Conditions transparentes sont données par l'opérateur DtN:

$$(\partial_{\mathbf{n}} + S_i^{ex})u_i^n = 0$$
, où $\sigma_i^{ex} = \lambda = \sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}}$.

Conditions de transmission pour convergence en 2 itérations:

$$(\partial_{\mathbf{n}} + S_i^{ex})u_i^n = (\partial_{\mathbf{n}} + S_i^{ex})u_j^{n-1}$$

◆□▶ ◆□▶ ◆ □▶ ◆ □▶ ○ □ ○ の < @

Conditions transparents pour les ondes

Conditions transparentes sont données par l'opérateur DtN:

$$(\partial_{\mathbf{n}} + S_i^{ex})u_i^n = 0$$
, où $\sigma_i^{ex} = \lambda = \sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}}$.

Conditions de transmission pour convergence en 2 itérations:

$$(\partial_{\mathbf{n}} + S_i^{ex})u_i^n = (\partial_{\mathbf{n}} + S_i^{ex})u_j^{n-1}$$

Conditions de transmission approximées:

$$(\partial_{\mathbf{n}} + S_i^{app})u_i^n = (\partial_{\mathbf{n}} + S_i^{app})u_j^{n-1}.$$

<日 > < 同 > < 目 > < 目 > < 目 > < 目 > < 0 < 0</p>

où σ^{app} approxime λ .

Facteur de contraction pour les ondes

Pour les conditions de transmission approximées, on obtient un facteur de contraction:

$$\rho^{\textit{onde}} := \left| \frac{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} - \sigma^{\textit{app}}}{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} + \sigma^{\textit{app}}} e^{-\lambda L} \right|.$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Facteur de contraction pour les ondes

Pour les conditions de transmission approximées, on obtient un facteur de contraction:

$$\rho^{\text{onde}} := \left| \frac{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} - \sigma^{\text{app}}}{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} + \sigma^{\text{app}}} e^{-\lambda L} \right|.$$

Rappelle Maxwell:

$$\rho^{app} = \left| \frac{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} - p}{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} + p} e^{-\lambda L} \right|.$$

<□> <□> <□> <□> <=> <=> <=> <=> <<

Facteur de contraction pour les ondes

Pour les conditions de transmission approximées, on obtient un facteur de contraction:

$$\rho^{onde} := \left| \frac{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} - \sigma^{app}}{\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} + \sigma^{app}} e^{-\lambda L} \right|$$

Rappelle Maxwell:

$$\rho^{app} = \left| \frac{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} - p}{\sqrt{|\mathbf{k}|^2 + s^2 \mu \epsilon} + p} e^{-\lambda L} \right|.$$

Donc pour $s=i\omega$, on a $(c=1/\sqrt{\mu\epsilon})$

$$\rho^{\mathsf{app}} = \rho^{\mathsf{onde}}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ →□ ● ◇◇◇

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

L'article [Gander & Halpern] répond à cette question avec les suggestions suivantes.

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

L'article [Gander & Halpern] répond à cette question avec les suggestions suivantes.

$$\checkmark \sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} = \pm i \frac{\omega}{c} \sqrt{1 - \frac{|\mathbf{k}|^2 c^2}{\omega^2}}$$

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

L'article [Gander & Halpern] répond à cette question avec les suggestions suivantes.

$$\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} = \pm i \frac{\omega}{c} \sqrt{1 - \frac{|\mathbf{k}|^2 c^2}{\omega^2}}.$$

$$p = i \frac{\omega}{c} r(\frac{|\mathbf{k}|c}{\omega})$$

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

L'article [Gander & Halpern] répond à cette question avec les suggestions suivantes.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

On cherche la solution de: (principe du maximum)

$$\min_{p \in \mathbb{C}} \max_{(s,k_y,k_z)} \rho^{app} = \min_{p \in \mathbb{C}} \max_{(i\omega,k_y,k_z)} \rho^{app}$$

L'article [Gander & Halpern] répond à cette question avec les suggestions suivantes.

$$\sqrt{|\mathbf{k}|^2 - \frac{\omega^2}{c^2}} = \pm i \frac{\omega}{c} \sqrt{1 - \frac{|\mathbf{k}|^2 c^2}{\omega^2}}.$$

$$p = i \frac{\omega}{c} r(\frac{|\mathbf{k}|c}{\omega})$$

$$r(\frac{|\mathbf{k}|c}{\omega}) \text{ une fonction rationnelle réelle interpolant } \sqrt{1 - \frac{|\mathbf{k}|c^2}{\omega^2}}.$$

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1 - a^2} - r(a)}{\sqrt{1 - a^2} + r(a)} e^{-i \frac{\omega}{c} \sqrt{1 - a^2} L} \right|, \text{ où } a = \frac{|\mathbf{k}|c}{\omega}.$$

(ロ)、(型)、(E)、(E)、 E、 の(の)

Evanescent vs Propagative

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right|, \text{ où } a = \frac{|\mathbf{k}|c}{\omega}.$$

Evanescente vs Propagative, i.e. a > 1 vs 0 < a < 1:

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right| \quad \text{vs} \quad \min_{r\in\mathbb{R}} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} \right|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Evanescent vs Propagative

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right|, \text{ où } a = \frac{|\mathbf{k}|c}{\omega}.$$

Evanescente vs Propagative, i.e. a > 1 vs 0 < a < 1:

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right| \quad \text{vs} \quad \min_{r \in \mathbb{R}} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} \right|$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

On traite le cas evanescent avec le recouvrement

Evanescent vs Propagative

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right|, \text{ où } a = \frac{|\mathbf{k}|c}{\omega}.$$

Evanescente vs Propagative, i.e. a > 1 vs 0 < a < 1:

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| e^{-i\frac{\omega}{c}\sqrt{1-a^2}L} \right| \quad \text{vs} \quad \min_{r \in \mathbb{R}} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} \right|$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへぐ

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} \right|$$

◆□ > ◆□ > ◆ Ξ > ◆ Ξ > → Ξ = ∽ ۹ < ↔

◆□> ◆□> ◆三> ◆三> ・三 のへで

$$\min_{r} \max_{(i\omega,k_y,k_z)} \left| \frac{\sqrt{1-a^2}-r(a)}{\sqrt{1-a^2}+r(a)} \right|$$

On interprète *a*:
$$a = \frac{|\mathbf{k}|c}{\omega} = \cos(\theta)$$

Donc on limite la recherche à des angles $\theta \in (\theta_c, \frac{\pi}{2})$.

◆□▶ ◆□▶ ◆ □▶ ★ □▶ = □ の < @

Donc Ce qui implique:

$$\min_{r} \max_{\theta \in [\theta_c, \frac{\pi}{2}]} \left| \frac{\sqrt{1 - \cos(\theta)^2} - r(\cos(\theta))}{\sqrt{1 - \cos(\theta)^2} + r(\cos(\theta))} \right|$$

Notation: $\tau := \sqrt{1 - a^2} = \sin(\theta) \in [\sin(\theta_c), 1].$
$$\min_{r} \max_{\tau \in [\sin(\theta_c), 1]} \left| \frac{\tau - r(a)}{\tau + r(a)} \right|$$

Choix de r

Finalement on choisit

$$r(a)= aurac{q(- au)+q(au)}{q(- au)-q(au)}, \quad ext{où} \ q=\prod_{l=1}^m(au-\sqrt{1-a_l^2}).$$

où r(a) interpole $\sqrt{1-a^2}$ au points a_l .

Choix de r

Finalement on choisit

$$r(a) = \tau \frac{q(-\tau) + q(\tau)}{q(-\tau) - q(\tau)}, \quad \text{où } q = \prod_{l=1}^{m} (\tau - \sqrt{1 - a_l^2}).$$

où r(a) interpole $\sqrt{1-a^2}$ au points a_l . facteur de contraction:

$$\rho^{app} = \prod_{l=1}^{m} \left| \frac{\tau - \sqrt{1 - a_l^2}}{\tau + \sqrt{1 - a_l^2}} \right|.$$

Choix de r

Finalement on choisit

$$r(a) = \tau \frac{q(-\tau) + q(\tau)}{q(-\tau) - q(\tau)}, \quad \text{où } q = \prod_{l=1}^{m} (\tau - \sqrt{1 - a_l^2}).$$

où r(a) interpole $\sqrt{1-a^2}$ au points a_l . facteur de contraction:

$$\rho^{app} = \prod_{I=1}^{m} \left| \frac{\tau - \sqrt{1 - a_I^2}}{\tau + \sqrt{1 - a_I^2}} \right|.$$

Theorem

Pour m = 1, on atteint le minimum de min max ρ^{app} lorsque

$$\sqrt{1-a_1^2}=\sqrt{\sin(\theta_c)}.$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ ○三 のへぐ

Expérience numérique

Schéma numérique: Yee

 Champs évalués sur des mailles décallées.

◆□> ◆□> ◆三> ◆三> ・三 のへで

Expérience numérique

Schéma numérique: Yee

- Champs évalués sur des mailles décallées.
- Explicite en temps

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Expérience numérique

Schéma numérique: Yee

- Champs évalués sur des mailles décallées.
- Explicite en temps
- Condition aux bords parfaitement conductrice

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆
Expérience numérique

Schéma numérique: Yee

- Champs évalués sur des mailles décallées.
- Explicite en temps
- Condition aux bords parfaitement conductrice

◆□▶ ◆□▶ ◆□▶ ◆□▶ ▲□ ◆ ○ ◆

Exemple: Deux sous-domaines $\Omega_1 = [0, \frac{1}{2} + L]$ et $\Omega_1 = [\frac{1}{2} - L, 1]$, recouvrement 2*L*. Conditions de transmissions:

$$\mathbf{A} \begin{bmatrix} Hy \\ Hz \end{bmatrix}^{i,n} - \mathbf{B} \begin{bmatrix} Ey \\ Ez \end{bmatrix}^{i,n} = \mathbf{A} \begin{bmatrix} Hy \\ Hz \end{bmatrix}^{j,n-1} - \mathbf{B} \begin{bmatrix} Ey \\ Ez \end{bmatrix}^{j,n-1}$$

A, B tel que conditions caractéristiques

Conclusion

 Résultat de convergence en un nombre fini de pas (équivalent à l'équation des ondes)

◆□ > ◆□ > ◆豆 > ◆豆 > 「豆 」 のへで

- Ondes évanescentes traitées avec le recouvrement.
- Conditions de transmission optimisées pour les ondes propagatives.

Conclusion

- Résultat de convergence en un nombre fini de pas (équivalent à l'équation des ondes)
- Ondes évanescentes traitées avec le recouvrement.
- Conditions de transmission optimisées pour les ondes propagatives.

Travaux en cours:

- ▶ Implementation d'un code en C++.
- Analyse de différentes approches pour l'approximation des conditions transparentes.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Références

V. Dolean, M.J. Gander, and L. Gerardo-Giorda, Optimized Schwarz Methods for Maxwells equations, SIAM Journal on Scientific Computing, Vol. 31, No. 3, pp. 2193-2213, 2009.

A. Alonso Rodriguez, L. Gerardo-Giorda, New nonoverlapping domain decomposition methods for the harmonic Maxwell system, SIAM Journal on Scientific Computing, Vol. 28, No. 1, pp. 102-122, 2006.

M.J. Gander and L. Halpern, Absorbing boundary conditions for the wave equation and parallel computing, Mathematics of Computation, Vol. 74, No. 249, pp. 153-176, 2004.

Merci de votre attention