
Compiling Scheme to JavaScript

Florian Loitsch
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France

http://www.inria.fr/mimosa/Florian.Loitsch

Manuel Serrano
Inria Sophia Antipolis

2004 route des Lucioles - BP 93 F-06902 Sophia
Antipolis, Cedex, France

http://www.inria.fr/mimosa/Manuel.Serrano

ABSTRACT
This paper presents SCM2JS a compiler that translates a variant
of the Scheme programming language into JavaScript. On the one
hand, some Scheme features are missing, amongst which the most
important are the lack of support for continuations, the absence
of exact numbers, and a partial treatment of tail recursions. On
the other hand, some extensions are added for improving the
connection between Scheme and JavaScript. In particular, SCM2JS
extends Scheme with the JavaScriptdot-notation which enables
compact class accesses. Scheme code and JavaScript can be mixed
because they both access functions and variables of the other
language and because they share, at runtime, a common memory.
The codes produced by SCM2JSare fast because for most programs
they have performance comparable to equivalent hand-written
JavaScript programs. Hence, one may use SCM2JS for replacing
JavaScript with Scheme. For instance, one may implement web
libraries or HTML actions in Scheme. The paper shows how this
can be done in context of Hop, a programming language dedicated
to interactive web development.

1. Introduction
JavaScript is a popular scripting language. It is embedded in
many applications such as PDF viewers, integrated development
environments, graphical applications. It has given birth to dialects
that are also successful (for instance, ActionScript, the language for
programming Flash applications). Its large deployment is mainly
due to its use as scripting language for web pages. Nearly every
modern site uses JavaScript now, and all mainstream internet
browsers are capable of interpreting JavaScript. As Web browsers
are installed on nearly every computer, JavaScript interpreters are
ubiquitous.
Contrary to what its name suggests, JavaScript is a functional
language whose design has been influenced by the Scheme programming
language [10]. However, these two languages are separated by
their syntaxes, the Scheme support for continuations, the Java-
Script support of object layer based on prototypes, and someother
minor technical differences. Since this is not an incredibly difficult
task, we have found it appealing to craft a compiler from Scheme
to JavaScript for replacing the latter with the former, in particular,
in active web pages.

[copyright notice will appear here]

However, for this replacement to be effective two requirements
must be fulfilled.

• Using Scheme instead of JavaScript should impose no performance
penalty. That is the performance of compiled Scheme codes
must be comparable to equivalent hand-written JavaScript
codes. We are considering performance as a potential issue
even if we have noticed tremendous differences of performance
depending on the hardware architecture and the JavaScript
interpreter used for testing. For instance, we have found that
running JavaScript programs within Firefox on the ultimate
generation of Intel processors is about ten times faster than
running the same programs within Safari. This tends to demonstrate
that most users are not paying much attention to performance.

• Scheme and JavaScript must be tightly integrated. That is all
bindings must be available from one language to the other.
The data structure must also be usable indifferently in both
language. For web programming this is of prime importance.
In JavaScript, the DOM (theDocument Object model is a
standardized way of representing a visualized HTML document
using an object hierarchy) is interfaced with classes. For
enabling easy access to the DOM, Scheme programs must be
able to access JavaScript classes with a lightweight and intuitive
syntax.

For enabling the SCM2JS compiler to meet these two requirements
we have decided to give up on full Scheme compliance. Section2
presents the difference of the source language of SCM2JS and the
official Scheme language as defined by its standard [10]. Section
3 discusses the Scheme to JavaScript compilation per se. It shows
how Scheme data structures are mapped to JavaScript. It presents
the most significant aspect of the compilation of the controlflow.
Then it concludes with a performance study. The following Section
4 presents the integration of Scheme and JavaScript. An example of
embedding of SCM2JS is then provided in Section 5 which presents
how it is used in the context of the Hop programming language.The
remaining sections discuss related and future work.

2. SCM2JS and R5RS
SCM2JS is not conform to the R5RS. There are mainly three
reasons for the non-conformance of SCM2JS: extensions to the
Scheme language, short-comings (mainly motivated by efficiency
reasons) and missing features.
SCM2JSshould integrate easily with JavaScript. During the creation
of a comfortable interface we were led to extend the Scheme
language by the “dot-notation” as explained in Section 4.
R5RS requires compliant Scheme implementations to be properly
tail-recursive. SCM2JScorrectly translates some common recursive
function calls into iterative statements (see Section 3.3), but
fails to cover all cases. Instead of implementing some expensive

1 2006/4/7

techniques, like trampolines, we decided to leave the remaining
tail-recursive calls untouched. Efficiency made us violateanother
R5RS requirement. JavaScript does not have any fixed point
number type, and instead of reimplementing a integer type we
decided to map Scheme’s exact numbers to JavaScript’s floating
point numbers.
SCM2JS is not (yet) feature complete either. It misses hygienic
macros (althoughdefine-macro can be used as replacement)
and it does not implement the complete Scheme runtime library:
most importantlycall/cc andeval are not available.eval, on
one hand, could be easily implemented in the form of a library
without any changes to the compiler.call/cc, on the other hand,
would require either a transformation to Continuation Passing
Style, or exception handling mechanisms as described in [14].
Both techniques would induce a certain overhead on the compiled
program.

3. SCM2JS Compiler
JavaScript and Scheme are related languages, but the compilation
from one to another is not so trivial. In [9] we already presented a
JavaScript to Scheme compiler. This section introduces theinverse
compiler, SCM2JS, and the important points of such a compilation.
We will begin with a short comparison of the two languages, then
continue with the chosen data type mapping in Section 3.2. We
will discuss flow control compilation in Section 3.3. Section 3.4
presents some optimizations we implemented in SCM2JS, and
Section 3.5 shows some benchmarks which confirm that all these
efforts weren’t fruitless.

3.1 Scheme vs. JavaScript

This section discusses the differences (and similarities)of Java-
Script and Scheme. We limit this comparison to the most significant
parts of the two languages. JavaScript has been inspired by Scheme,
and most of the similarities are hence not astounding. The following
list enumerates some of the shared features:

• types are dynamically checked,

• functions are first class citizens,

• lexical scoping,

• automatic memory management,

• aneval function, which allows one to compile and run code at
run-time, and

• n-ary and var-arg functions with anapply primitive that allows
to indirectly call these functions on a list or array of arguments.

In other areas JavaScript is however quite different from Scheme.
The move from Lisp-style syntax to C-like syntax is certainly the
most striking difference, and Section 3.4 mentions the expression
to statement pass which has been implemented as a consequence
of the C-like syntax. Other changes have nevertheless far greater
impact on the development of a Scheme to JavaScript compiler.
Especially JavaScript’s peculiar syntactic scoping of variables
makes the compilation difficult. In JavaScript a variable declaration
is valid for a complete function block wherever the declaration
is located. Section 3.3 shows why this behavior complicatesthe
compilation.
As we will see in the next section, the data types aren’t equal
either. JavaScript has less data types, and the matching types are
not always equivalent. JavaScript strings, for instance, are (contrary
to Scheme strings) immutable, and JavaScript numbers are always
floating point (whereas Scheme has exact numbers too).
Another difference is the lack ofcall/cc in JavaScript. The
existing try/catch partially compensates for the absence, but
is not as powerful ascall/cc

3.2 Data Types

JavaScript has basically four main types: booleans, numbers,
strings, and objects. Functions are of type object and don’thave
their proper data type. The JavaScript specification [8] additionally
cites undefined and null as respective types. Scheme, despite
being a smaller language, uses four more types: pairs, vectors,
characters and symbols.
SCM2JS maps Scheme’s

• booleans to booleans.

• functions to JavaScript functions.

• numbers to JavaScript numbers. Even though this mapping
seems obvious, it makes SCM2JS non conform to R5RS. Java-
Script’s numbers are always floating point, whereas Scheme
differentiates exact and inexact numbers.

• pairs to the JavaScript “class”sc_Pair with fields car and
cdr. The empty list is represented bynull.

• vectors to JavaScriptArrays.1

• characters to the “class”sc_Char, holding a JavaScript string
of length 1.

• strings to a new JavaScript “class”,sc_String. It is not
possible to reuse JavaScript’s strings, as they are immutable.
sc_String itself holds one of these immutable strings, and
replaces it, when necessary.

• symbols to strings.

JavaScript’s typing rules are less restrictive than Scheme’s rules.
Due to implicit conversions many operations that are errorsin
Scheme are valid expressions in JavaScript. SCM2JS takes advantage
of R5RS’ liberal error handling. Implementations are rarely forced
to detect and signal errors, but are free to handle most errors the
way they want to. In particular “[...] it is an error for a procedure to
be passed an argument that the procedure is not explicitly specified
to handle [...]. Implementations may extend a procedure’s domain
of definition to include such arguments”. In our case, errorsare
handled by JavaScript. If an operation yields an error according
to the JavaScript specification, an error is signaled. If however
JavaScript is able to handle an expression that would be invalid in
Scheme, no error is reported. The following examples demonstrate
this behavior:(car ’()) is an invalid expression in Scheme.
SCM2JS compiles this expression tonull.car. As null doesn’t
have any fields, JavaScript throws an exception. The compiled
version hence raises an error. In the following (invalid) code snippet
we try to add a symbol to a number:(+ 3 ’sym). The translated
code would be3 + ’sym’ which is a valid JavaScript expression
concatenating the two strings"3" and"sym". In this case no error
will be detected.
Similar missed errors happen when functions are not passed
the correct number of arguments, in which case either missing
arguments are filled with a special#unspecified value, or
additional arguments are ignored.

3.3 Flow Control

Scheme has only few flow-control constructs, and all of them have
similar counterparts in JavaScript. A direct mapping is however
impossible. R5RS requires Scheme implementations to be properly
tail-recursive. JavaScript on the other hand doesn’t even mention
this feature. Mapping Scheme function calls naively to JavaScript
function calls is hence dependent on the JavaScript implementation

1 Despite being called “Array”, this data-type is an object and consists,
similar to all JavaScript objects, of a hashtable.

2 2006/4/7

and not always2 conform. Two popular solutions aretrampolines
and Henry Baker’s “Cheney on the M.T.A.” [6]. The concept of
trampolines needs the modification of all call locations. Tail calls
are replaced by instructions that save the call target and arguments
in global variables, followed by areturn. Non tail calls, on the
other hand, are wrapped into an iterative loop. Initially the original
call target is executed. Once the function returns the trampoline
checks for the existence of a function in the global variablethat
temporarily holds the tail call targets. If this variable isnot empty
the stored function is executed, and the trampoline waits for the
next return.
Even though trampolines solve the initial problem of rapidly
growing stacks, they are inefficient. Tail calls need to manipulate
the global variables, whereas non tail call must be wrapped into an
iterative loops. An optimized version of trampolines is presented in
[11]. Instead of returning at every tail call, the program isallowed
to stack a constant number of tail calls. Only when the limit is
reached the continuation is stored in the global variables,and the
trampoline is used.
“Cheney on the M.T.A.”, on the other hand, transforms the program
into Continuation Passing Style (CPS) first, and thereby eliminates
the need for stacks. In the paper the authors propose to use the stack
as short term memory. Whenever the stack reaches the stack limit
a garbage collection is performed, and the program restartswith
an empty stack. The stack becomes the youngest generation ina
generational garbage collector.
All these techniques introduce some performance penalty and we
therefore decided not to implement any. For now SCM2JS just tries
to compile tail-recursive calls into iterative JavaScriptstatements.
This approach is however incomplete as it is impossible to statically
determine all call-targets. SCM2JS is able to transform the most
common recursive calls (likelet loop constructs) but leaves other
more difficult tail recursive calls untouched.
Even when the call-targets have been determined the tail-rec to
iterative transformation is not trivial. Alet loop construct, for
instance, is mapped to JavaScript’swhile statement.
Example:

(let loop ((x 1))
(if (> x 10)

’done
(loop (+ x 1))))

is compiled as:

var res = undefined;
var x = 1;
while (true) {
if (> x 10)

res = "done";
else {

x = x + 1;
continue;

}
break;

}

This simple mapping is efficient but it may break down when
closures are built in the body of the loop:

1: (let loop ((x 1))
2: (store! (lambda () x))
3: (loop (+ x 1)))

2 Actually all important JavaScript interpreters are knownnot to be tail-
recursive.

In this example the loop variablex is captured by anonymous
functions in line2. The capturedx is however freshly allocated
at each recursive call and is hence different for each of these
functions. An invocation of two different closures would yield two
different results. The previous transformation on the other hand
hoists loop variables outside the loop, which implies a shared x
for all anonymous functions:

1: var res = undefined;
2: var x = 1;
3: while (true) {
4: store(function() { return x; });
5: x = x + 1;
6: continue;
7: }

x is now outside the loop (line2) and it’s value is physically
modified at each iteration (line5). As the variable is allocated
outside the loop all anonymous functions reference the samex.
As this variable is physically changed during each iteration, all
anonymous functions return the same result (i.e. the final value of
x) when executed.
In JavaScript locally declared variables are visible within the whole
function body, and declaring a new variable within thewhile
body doesn’t solve this issue. The following code demonstrates this
unfruitful attempt:

var res = undefined;
var x = 1;
while (true) {
var tmp_x = x;
store(function() { return tmp_x; });
x = x + 1;
continue;
break;

}

Even thoughtmp_x is declared inside thewhile construct, the
peculiar JavaScript scoping rule makes it visible with the complete
function. In practice this means that the order and locationof
variable declarations is ignored and that there exists never more
than one variable of the same name. Once a variable has been
declared future declarations of variables of the same name are
ignored. In our case this means that the anonymous functionsshare
the same variable (this timetmp_x) again.
There are only two ways of creating new scopes in JavaScript:
functions and thewith construct. Indeed anonymous functions
solve the captured variable problem:

var res = undefined;
var x = 1;
while (true) {
(function(x) {

store(function() { return x; });
})(x);
x = x + 1;
continue;
break;

}

Although they partially defeat the purpose of the iterativewhile
statement (i.e. removing the unnecessary applications), they don’t
fill the stack and are hence a great improvement over recursive
function calls. It is furthermore possible to limit the anonymous
function to parts of the loop-body. If the captured variableis only
used within one branch of anif it is not necessary to invoke the
function in the other branch. Anonymous functions are however
too limiting: some JavaScript constructs don’t work over function

3 2006/4/7

boundaries, and in particular thecontinue statement must not be
moved inside another function.
JavaScript’swith statement on the other hand fullfills all our
requirements.with takes an object as parameter and pushes it
on the execution context stack. Every field of the pushed object
becomes a local variable limited to thewith scope. It is hence
sufficient to create an empty object, store the captured variables in
the fields of this object, and finally use thewith construct to push
it on the execution context stack.

var res = undefined;
var x = 1;
while (true) {
var tmp = new Object;
tmp.x = x;
with(tmp) {

store(function() { return x; });
}
x = x + 1;
continue;
break;

}

Some benchmarks indicate that, depending on the interpreter,
pushing an empty object on the execution context stack is slightly
slower or faster than function calls.

3.4 Optimizations

This section discusses common optimizations and compiler techniques
and shows how they apply to our compiler SCM2JS. Due to the high
level of JavaScript only few optimizations are applicable.It is for
instance not easy to take advantage of a typing pass as one can’t
pass typing information to JavaScript interpreters. We didhowever
implement (amongst others) an inlining optimization.
SCM2JS’s inlining is done in two steps. A first pass inlines user
functions, whereas a second pass inlines runtime procedures. The
first pass is rather rudimentary but fulfills its design goal,to inline
all let loop expressions. When a variable is bound to a function
and when it is only used once in functional position, then it is
inlined. The first condition avoids us to do a control flow analysis,
whereas the second condition avoids code growth.3 Even though
this optimization is quite limited, it reduces the execution time of
some benchmarks to less than 50%
A straightforward compilation of Scheme programs to JavaScript
programs maps Scheme calls to JavaScript calls. In many cases this
translation introduces an overhead. In particular binary operations
like +, -,or % are far less efficient if called via a runtime function.
A second pass therefore replaces function calls to specific library
functions with the more efficient version:sc_plus(x, y) would
become(x + y). Other examples for this optimizations are all
list primitives (car, cons, null?, etc.) and vector functions
(vector-ref, vector-set! orvector-length). This optimization
is especially important as it gives a speed improvement of upto a
factor of 25.
We conclude this section with a problem many Scheme compiler
encounter: Scheme is expression based, whereas JavaScriptis
statement based. Some JavaScript constructs can only be used
at specific locations. It is for instance not possible to use a
while loop at the right hand side of an assignment. SCM2JS
introduces temporary variables to store the intermediate results
of such statements. Interestingly these statements are mostly the
result of optimizations. JavaScript has an equivalent expression for
most statements: the if statementif (test) s1 else s2 can
be replaced by the conditional operatortest ? e1 : e2 and the

3 Future versions will probably inline too if the function’s size is under a
certain constant.

block statement{ s1 s2 } by the sequence expression (e1, e2).
The tail-rec pass however introduces some statement-onlywhile
loops and makes the technique necessary. Some other JavaScript
statements without equivalent expressions arecontinue, return,
break, throw, andtry.

3.5 Benchmarks

In order to evaluate the performance of SCM2JS we ran several
benchmarks under three Internet browsers on three different architectures:

• Linux/x86: an Intel Pentium 4 3.40GHz, 1GB, running Linux
2.6.15.

The used browsers were:

Firefox 1.5.0.1,

Opera 9.0 pre2, and

Konqueror 3.5.1

• Apple/G4: a PowerPC G4 1.67GHz, 2GB, running Mac OS X
10.4.5.

We used the following browsers:

Firefox 1.5.0.1,

Opera 9 build 3303, and

Safari 2.0.3 (417.9.2)

• Apple/Core: a Intel Core Duo 2GHz, 1GB, running Mac OS X
10.4.5.

We used the following browsers:

Firefox pre 1.5.0.2,

Opera 9 build 3278, and

Safari 2.0.3 (417.9.2)

It turned out, that the choice of browser has far more impact on
the performance than the architecture.Firefox and Opera are
sometimes up to ten times faster thanSafari or Konqueror. The
fastest architecture Intel Core Duo is however only four times as
fast as the PowerPC G4. More importantly, the browsers behave
similar on the different platforms.
Each program was run 10 times, and the minimum time was
collected. The time measurement was done by a small script,
which launched the benchmarks. Any time spent on the preparation
(parsing, precompiling, etc.) was hence not measured.
Every benchmark has been written in Scheme and JavaScript. We
then compiled the Scheme versions using SCM2JS and measured
the execution times of both the JavaScript code and the compiled
version.
Figure 1, 2 and 3 present the ratio of the JavaScript time by the
execution time of the compiled program (resp. on the Pentium4,
Apple G4 and Apple Intel Core Duo). A value of 1.0 therefore
represents the reference time of the handwritten JavaScript code.
Any value lower (resp. higher) than 1.0 means that the compiled
Scheme code ran faster (resp. slower) than this code.
In general the compiled code is nearly as fast as the handcrafted
version. Even under the worst condition SCM2JS is only about
six times slower than the JavaScript version (benchmarkNested
under Firefox on the Pentium 4 in figure 1).Nested consists of
several nested loops incrementing a counter in the most nested loop.
SCM2JS introduces a temporary variable for each loop, and uses
this variable twice per iteration. This more than doubles the size of
the loop bodies with a respective performance penalty. Apparently
Opera handles this case much better thanFirefox. Firefox is
about three times faster thanOpera when run on the JavaScript
files, butOpera degrades more gracefully and beatsFirefox on
the compiled files.

4 2006/4/7

Intel Pentium 4 / Linux

Firefox Opera Konqueror

1 2 3 4 5 6

Towers 1.0
1.2

1.0

Tak 1.9
1.0

1.3

Sieve 1.6
1.1

1.4

Quicksort 4.4
2.7

3.7

Nested 3.5
1.6

6.1

Mbrot 1.2
1.1
1.1

Mb100 1.5
1.2

1.1

Fib 1.0
1.0
1.0

Bague 1.1
0.7

0.3

Figure 1. SCM2JS compiled Scheme code interpreted by Firefox, Opera and Konqueror on a Pentium 4 running Linux. Scores are relative
to handwritten JavaScript files, which are the 1.0 mark. Lower is better.

IBM PowerPC G4 / Mac OS X

Firefox Opera Safari

1 2 3

Towers 1.0
1.3

1.2

Tak 1.5
0.7

0.9

Sieve 1.6
1.2
1.2

Quicksort 4.0
3.0

3.3

Nested 2.6
1.7

3.9

Mbrot 1.7
1.1

1.1

Mb100 1.2
1.2

1.0

Fib 1.0
1.0
1.1

Bague 0.9
0.6

0.3

Figure 2. SCM2JS interpreted by Firefox, Opera and Safari vs. JavaScript on aApple G4 running Mac OS X. Lower is better.

Intel Core Duo / Mac OS X

Firefox Opera Safari

1 2 3 4 5

Towers 1.0
1.2
1.2

Tak 1.4
1.0

1.8

Sieve 1.5
1.2

1.4

Quicksort 4.0
2.9

3.9

Nested 2.3
1.9

5.0

Mbrot 1.7
1.1
1.1

Mb100 1.1
1.3

1.2

Fib 1.0
1.0

1.1

Bague 0.7
0.7

0.4

Figure 3. SCM2JS interpreted by Firefox, Opera and Safari vs. JavaScript on aApple Intel Core Duo running Mac OS X. Lower is better.

5 2006/4/7

TheQuicksort benchmark suffers from the same problem: a very
small loop iterates over an array to find elements smaller or greater
than a certain pivot.
In less extreme cases, SCM2JSperforms quite well, though, and the
rudimentary inlining even allows SCM2JS to beat the handwritten
JavaScript in some cases (in particular theBague benchmark).

4. JavaScript Integration
SCM2JS provides a complete JavaScript-Scheme interface. That
is JavaScript code can access Scheme variables and call Scheme
functions, and inversely Scheme code can use JavaScript values.
When passing values from one language to another, conversions
must take place. In particular JavaScript strings and Scheme strings
are not of the same type. As JavaScript strings are immutable,
it was not possible to directly map Scheme strings to them.
Scheme symbols, on the other hand, are immutable too, and in
the current version symbols are compiled to JavaScript strings,
whereas Scheme strings are translated into a new classsc_String.
If a Scheme string should be used as JavaScript string a call
to string->symbol is hence necessary4, whereas a JavaScript
string can be converted to a Scheme string by the means of
symbol->string. Pairs and characters don’t have any conversion
routines (as there are not any equivalent data types in JavaScript),
and it is mostly convenient to just use their compiled representation.
Pairs by accessing theircar and cdr fields, and characters by
accessing theval field of thesc_Char class.
Functions are already mostly interchangeable, but to ease the
integration of Scheme functions in the context of JavaScript we
added thethis-extension. If a function is used as method, Java-
Script sets athis variable5 to the object on which the method was
called. Take for instance the code in Figure 4.

1: function f() { print(this.x); }; // prints 3
2: var o = new Object;
3: o.x = 3;
4: o.f = f;
5: o.f();

Figure 4. JavaScript’sthis keyword represents the object on
which the method has been called.

As f is called as method ofo, (line 5) this will be set to o
within the function f (line 1). The this-extension brings the
this variable to Scheme functions. Code within a procedure may
referencethis and hence access the object’s field on which it
has been called. Usingthis outside the scope of methods doesn’t
make much sense (even though the JavaScript specification gives a
sense to this case), and it should therefore be only used if a Scheme
function is going to represent a method.
In order to use JavaScript objects within Scheme two runtime
primitivesjs-field andjs-field-set! have been added. They
allow to respectively retrieve or set the fields of JavaScript objects.
The use of these functions is not optimal though. Accessing (or
changing) fields is too verbose and cumbersome. The equivalent of
the short JavaScript expression

x.y.z = a.b

would be:

(js-field-set! (js-field x ’y) ’z (js-field a ’b))

4 It is obviously possible to directly use a symbol instead.
5 Actually this is not a variable, but a keyword.

We introduced therefore JavaScript’s dot-notation into Scheme.
In addition tojs-field-set! andjs-field SCM2JS makes it
possible to directly access fields by concatenation the object, a dot
and the field-name. The previous example becomes:

(set! x.y.z a.b)

The dot-notation leads us to the first way of referencing Java-
Script variables from within Scheme: the runtime Scheme variable
js holds all global variables. If one wants to access JavaScript’s
globalalert function, it is sufficient to retrieve thealert field of
the *js* variable:(js-field *js* ’alert) or using the dot-
notation*js*.alert.
Internally*js* is set to JavaScript’s globalthis object. As such it
automatically contains all global variables.6 The*js* object is also
an easy way of making Scheme values available to JavaScript code.
Just by assigning a new field of*js* users can create a new global
variable and thereby export a Scheme value.7 In addition to this
explicit exports SCM2JS automatically declares all global Scheme
variables as global Javascript variables. The global variables are
declared under their mangled form, which means that only a subset
of variables are exported under their Scheme names.
In a certain way the*js* variable resembles explicit casts of
statically typed languages like Java or C. The programmer is
explicitly telling the compiler he is going to do something dangerous,
but that he is aware of the risk. Indeed, SCM2JS can’t verify if
the JavaScript variable exists, or if the variable name has been
mistyped.
A more secure method uses thejs keyword. Whenever SCM2JS
encounters a(js . A-LIST) expression in the top-level it adds
the a-list’s bindings to the symbol-table. These symbols are resolved
at compile time and accesses to these variables are therefore
checked by the compiler. This approach has the additional advantage
of better integration into the code. The A-list allows to alias Java-
Script variables with typical Scheme symbols. In the following
exampleA_GLOBAL would be aliased to*global* andsetEvent
to event-set!:

(js (event-set! setEvent) (*global* A_GLOBAL))

In some cases even the indirect access over the*js* variable is not
dynamic enough. Scheme code snippets can be compiled separately
and it is often desirable to access variables of other pieces. These
snippets might be the event handlers scattered around an HTML
file, or complete libraries.
The previous interfaces can both be used to bind the separated
pieces, but both come with their respective disadvantages.The safe
method requires the developer to write import clauses. Especially in
the case of event handlers, these clauses can become cumbersome.
Accessing variables of different parts over the*js* variable is not
optimal either. Global Scheme variables become members of the
global JavaScript variables under their mangled name. Eventhough
they are hence accessible over the*js* variable the programmer
would need to know the mangled variable name. As the mangling
function should stay compiler intern we implemented a third
option: every unbound variable is automatically considered to be
an imported global variable. If SCM2JS needs to mangle the name
the mangling will be the same for both modules, otherwise the
variable access could either reference a global JavaScriptvariable,

6 The*js* variable is, under its mangled name, a field of this object too.
7 This approach even allows to create global variables that are only
accessible through the global object:(set! *js*.new-global ’val)
sets the global variablenew-global to ’val’. new-global is however
parsed asnew - global and it is hence impossible to reference the
variable without the use of the globalthis object.

6 2006/4/7

a “compatible” Scheme variable. Also, this model combines some
advantages of the previous approaches: imported variablesdon’t
need to be declared, but can’t be used instantly, and they canbe
accessed directly (without redirection by the*js* variable). This
flexibility comes at a price, though. Allowing unbound symbols
removes an important safety net as any unbound symbol will be
considered to be a global imported variable. That is, the compiler
is no longer able to display “unbound variable” error messages.
Figure 5 demonstrates this smooth integration of JavaScript into
Scheme on a small example that manipulates the DOM. The given
Scheme program dynamically adds new HTML elements into an
existing tree.

5. Hop integration
In this section we present an example of SCM2JS embedding.
We show how it can be used in the context of Hop. Hop is a
functional language designed for programming webapplications
[13]. It exposes a distributed model made of twostrata. The first
stratum, named themain stratum, is intended for programming
server-side computations. The second stratum, named theclient or
GUI stratum, is intended for programming client-side computations.
The two strata execute on different computers. They do not share
memory but they share their namespace and they communicate via
function calls and events.
A Hop program first starts on a server. This initial step elaborates
an HTML tree that is sent to the client, typically a web browser.
User interactions on the client side may lead to the invocation of
functions on the server which, in turn, elaborates new HTML trees
that are sent back to the client.
In the current version of Hop, the main strata is programmed in a
variant of Scheme and the client strata is programmed in JavaScript.
The SCM2JS compiler allows to use Scheme for both stratum. This
section presents the integration of SCM2JS in Hop. It first presents
a compact overview of Hop (Sections 5.1, 5.2, and 5.3). Then,it
focuses on the integration of SCM2JS (Section 5.4 and Section 5.5)
and its impact on the GUI stratum.

5.1 The syntaxes of Hop

Hop rests on the closeness of the syntaxes of Scheme and HTML.
A simple syntactic transformation turns HTML documents into
Hop programs. Hop adds an extra open parenthesis before opening
markups and replaces closing markups with single closing parentheses.
In addition Hop attributes are introduced by an identifier starting
with a colon character (:) and their value is separated from the
name by white spaces. Hence the HTML document of Figure 6 is
written as shown Figure 7 in Hop.

<HTML>
<BODY>

<TABLE width="100%">
<TR> <TD>0</TD></TR>
<TR> <TD>1</TD></TR>
<TR> <TD>2</TD></TR>
<TR> <TD>3</TD></TR>

</TABLE>
</BODY>

</HTML>

Figure 6. A simple HTML file.

In the plain version of Hop, the JavaScript expressions of the GUI
stratum are delimited by opening and closing curly braces ({ and
}). For the sake of the example, Figure 8 shows a program that
displays the local time of the client.

(<HTML>
(<BODY>

(<TABLE> :width "100%"
(<TR> (<TD> 0))
(<TR> (<TD> 1))
(<TR> (<TD> 2))
(<TR> (<TD> 3)))))

Figure 7. A simple HOP program.

(<HTML>
(<BODY>

(<P> "The current date is: ")
(:id "date" "")
(<SCRIPT> {

var el = document.getElementById("date");
el.innerHTML = new Date() + "";

})))

Figure 8. Blending Scheme and JavaScript syntax.

5.2 Hop elaboration

The HTML tree that forms an answer is computed by the expressions
of the main stratum. That is, it iselaborated on the server. During
that stage, values can beinjected inside expressions of the GUI
stratum. This is denoted by the escape character$ inside curly
braces. The expression following a$ belongs to the main stratum.
It is evaluated during the elaboration. Its results is inserted in the
expression of the GUI stratum. Simple atomic values such as strings
or numbers as well as compound values such as vectors, references
to HTML nodes, and, as presented in Section 5.3, functions can
be inserted. The source code of Figure 9 illustrates this capacity.
First, line 1 a HTML span element is declared. It is inserted in
the answer line5. A reference to this element is injected in the
expression of the GUI stratum line8. In this example, a second
expression is injected line9.

1: (let ((el (:id "date" "")))
2: (<HTML>
3: (<BODY>
4: (<P> "The current date is: ")
5: a-span
6: (<SCRIPT> {
7: ($el).innerHTML =
8: "client time: " + new Date() +
9: " -- server time: " + $(current-date);

10: }))))

Figure 9. Elaborating a HTML tree.

5.3 Hop services

The expressions of the two strata of a Hop program are evaluated
in different heaps and environments. That is, they do not share
data. However, they may communicate by the means ofservice
invocations. A service is a function declared on the server. It
is defined using thedefine-service form. As any function it
may accept several arguments. A service is invoked from the GUI
stratum with a specialhop form:

hop(service (a0, a1, a2, ...), callback)

The values a0, a1, a2, ... are the actual arguments sent to the service.
Once the server has completed the evaluation of the service’s body,
i.e., when it has completed the elaboration of the answer, itapplies,
on the client, thecallback function on the service’s answer
(converted to a string). The code of Figure 10 shows an example

7 2006/4/7

1: (define (table-create! . rows)
2: (let ((table (document.createElement ’TABLE)))
3: (for-each (lambda (row)
4: (table.appendChild row))
5: rows)
6: table))
7:
8: (define (row-create! header? . cell-texts)
9: (let ((row (document.createElement (if header? ’TH ’TR))))
10: (for-each (lambda (cell-text)
11: (let ((c (document.createElement ’TD)))
12: (set! c.innerHTML cell-text)
13: (row.appendChild c)))
14: cell-texts)
15: row))
16:
17: (define (div-fill! div-id)
18: (let* ((nb-images document.images.length)
19: (nb-forms document.forms.length)
20: (head-row (row-create! #t ’Tag ’Count))
21: (image-row (row-create! #f ’Image nb-images))
22: (form-row (row-create! #f ’Form nb-forms))
23: (table (table-create! head-row image-row form-row)))
24: ((document.getElementById div-id).appendChild table)))

Figure 5. A Scheme program manipulating the DOM tree. The given program dynamically adds an HTML table, that contains statistics (the
number of images and forms) about the current document. In line18, and19 the number of images and forms of the current document are
retrieved. Using thecreateElement method of thedocument variable we then construct new table tags (line2, 9, and11). These tags are
subsequently combined viaappendChild (line 4, and13), and finally appended to thediv tag that has been given as parameter (line24).

where a table of contents is build on the server from information
sent by the client. In addition to illustrating the service call line 10,
this example also shows that compound data such as vectors may
transit from client and server and vice versa.

1: (define-service (make-toc sections)
2: ((vector-map sections)))
3:
4: (<HTML>
5: (map <H1> (iota 3))
6: (let ((toc (<DIV> "Toc: ")))
7: (<BUTTON>
8: :onclick {
9: var hs=document.getElementByTags("h1");

10: hop($make-toc(hs),
11: function(s) {($toc).innerHTML = s;})
12: } "Click to view the table of contents")))

Figure 10. Service invocation.

5.4 Hop Scheme

The SCM2JS compiler lets us replace JavaScript with Scheme in
Hop programs. In this new version, the curly braces are replaced
with the~ escape character that introduces expressions of the client
stratum. During the elaboration stage, Scheme client expressions
are compiled on the fly into JavaScript. The source code of Figure
11 is a direct re-writing of Figure 10.
As it can be noticed, the dot-notation of SCM2JS is strongly
relevant in the context of Hop. It enables a compact notationfor
reading and writing fields of instances which are frequent inHop.
In combination with SCM2JS, we have added a new construction
to Hop, namely thewith-hop form. Its syntax is:

(with-hop (service a0 a1 a2 ...) continuation)

1: (<HTML>
2: (map <H1> (iota 3))
3: (let ((toc (<DIV> "Toc: ")))
4: (<BUTTON>
5: :onclick
6: ~(let ((hs (document.getElementByTags "h1")))
7: (hop ($make-toc hs)
8: (lambda (s)
9: (set! $toc.innerHTML s))))

10: "Click to view the table of contents")))

Figure 11. Service invocation in Scheme.

This form invokes theservice with the arguments a0, a1, a2,
.... On completion of the invocation, the continuation is applied.
Contrary to thehop service invocation presented in Section 5.3, the
value sent to the continuation is no longer a string but any simple
or compound data type. In particular, Hop is able to automatically
create, on demand, classes on the client. That is, when an instance is
returned to the client as a result of a service invocation, inaddition
to sending the object, Hop also sends to the client the code required
for declaring the class anteriorly. This enables Hop expressions
to access objects independently of the strata. This is illustrated in
the example of Figure 12. In this example, a classsoftware is
declared in the main stratum (line24). Instances are created in the
servicequery-by-name and sent back to the client (line10). On
the GUI stratum (line27, 28, and29) the value returned by that
service is directly accessed as a class instance.

5.5 External Scheme Files

The previous section detailed only one way of inserting Scheme
code into Hop documents. Another way consists of including
complete Scheme files (usually libraries) in the<HEAD> section
of the page. Figure (ref :figure ”file-include”) shows an example
where two files are included: one JavaScript file, and one Scheme

8 2006/4/7

1: (module example
2: (library sqlite)
3: (class software
4: name::string
5: author::string
6: version::string
7: license::string))
8:
9: (define-service (query-by-name name)

10: (sqlite-select make-software "softwares WHERE (name = ~a)" name))
11:
12: (let ((name (<INPUT>))
13: (version (<INPUT>))
14: (license (<INPUT>)))
15: (<HTML>
16: (<BODY>
17: (<TABLE>
18: (<TR> (<TD> name))
19: (<TR> (<TD> version))
20: (<TR> (<TD> license)))
21: (<INPUT>
22: :type ’text
23: :onkeyup ~(if (= event.keyCode 13)
24: (with-hop ($query-by-name this.value)

25: (lambda (o)
26: (when o
27: (set! $name.value o.name)
28: (set! $version.value o.value)
29: (set! $license.value o.value)))))))))

Figure 12. This example illustrates the exchanges of compound values from a server to a client. In this example, a class is declared on
the server (line3). The servicequery-by-name (line 9) queries a database in order to return instances of the classsoftware to the client.
Automatically, Hop declares the classsoftware on the client. So, in the client code, the value received in the continuation (line25) is tested
and the fields revelant to the application are directly extracted (line27, 28, and29).

file. The Scheme file is compiled on the fly and then sent the same
way as the JavaScript file.

(<HTML>
(<HEAD>
(<HOP-HEAD> :jscript "jslib.js")
(<HOP-SCHEME-HEAD> :sscript "schemelib.scm"))

(<BODY> "some body text"))

Figure 13. A Hop document includes a JavaScript and a Scheme
file.

We mentioned in Section 4 that there are different ways of interfacing
with Scheme code. Either the safe interface usingjs directives, the
explicit mode accessing the*js* variable, or the unsafe way where
all unbound symbols are considered to be implicitly imported
global variables.
In the context of Hop we opted for the unsafe interface. It is
the easiest way of combining external files and injected code.
Even if external file came with a header file a safe compilation
would still be extremely difficult. Scheme code in Hop files is
often out of order (the code for a button click might be beforethe
main script with important initializations and declarations) and all
injected Scheme expressions are compiled upfront when the file is
loaded. The out of order compilation implies potentially undefined
variables at early locations, and the upfront compilation means
that we don’t have any relationship between the different Scheme
pieces. Two Scheme expressions might be part of the same page
(and should hence share the same variables) or might be completely
separated entities (or even dead code). The unsafe interface has
however advantages too, and we found it comfortable to use Java-
Script libraries without the hassle of import/export declarations.

5.6 Conclusion

Replacing JavaScript with Scheme on the client stratum has its pros
and cons. On the positive side, it enforces the cohesion between
the two strata. Scheme and JavaScript are similar languagesbut
they promote slightly different programming styles. For instance,
Scheme promotes recursions and higher-order operators, while
JavaScript promotes loops and iterators. Hence, while replacing
JavaScript with Scheme does not bring new functionality to Hop, it,
undoubtably, makes programs look nicer. A single, coherentsyntax
is used which gives the feeling of a continum from the server to the
client and vice-versa. Switching from server programming to client
programming does not require much intellectual effort.
On the dark side, it could be argued that using a single syntax,
inside a single source code, for expressions evaluated in different
environments and libraries is prone to error. The early experiments
tend to show that is not a dramatic drawback. Only the experience
will tell if using a single syntax for both strata is a benefit.

6. Related Work
Several different projects have tried to replace JavaScript on the
client side. The attempts can be divided into three categories: either
by enhancing the Internet browsers with their language of choice,
by compiling to already existing plugins (in particular theJava
Virtual Machine), or by compiling directly to JavaScript.
The most famous and successful extensions to browsers are the
Java and the Flash plugin. The Java extension [2] integratesa
JVM into the browser, and allows to run arbitrary8 code within
it. Macromedia’s Flash plugin [1] on the other hand is specialized
in displaying animations. Since release 5 Flash comes with an

8 The interpreted code is contained by security measures. Butthe engine
itself is capable of executing any code.

9 2006/4/7

integrated scripting language ActionScript [7], which is based on
ECMAScript.
A more SCM2JS related project is OpenScheme [4]. Similar to
SCM2JS it allows to use Scheme as scripting language on the client
side. It achieves this through the means of a plugin (available for
either Internet Explorer or Netscape compatible browsers)that is
capable of interpreting Scheme code. With this plugin developers
can directly send Scheme code to the client.
Most projects don’t write their own plugins, though, but reuse the
existing Java extension. Any language that can be compiled to Java
Byte Code can be interpreted by the Java plugin, and is hence
executable by the browser. Bigloo [12] amongst many others can
benefit from this approach to deliver so called applets with web-
pages.
The Java plugin is however not installed on every client, anda Java-
Script based approach reaches a far bigger user base.lisp2JavaScript
[3] is a prototype of compiling lisp-like languages to JavaScript.
ParenScript [5] is an already more mature attempt with a
complete macro environment or lisp-style iterations. The language
itself is largely based on JavaScript (with a LISP syntax), which
makes a direct translation straight-forward.

7. Future Work
SCM2JS has reached a usable state and it can be used as JavaScript
replacement now. There is however still room for improvement and
we would like to address the following issues in the future:

• increase performance. We think that an improved version of our
inlining pass, and some peephole optimizations could have a
positive impact on performance.

• improve the runtime. Some functions likeeval are still missing,
even though their implementation is straightforward.

• implementcall/cc. We hope to be able to create serializable
continuations, which would allow us to research migration
between Web browsers.

8. Conclusion
In this paper we have presented SCM2JS, a Scheme to JavaScript
compiler. We enumerated some differences between these two
languages, and showed how they affect an efficient compilation.
We detailed in particular the tail recursive loop translation. Several
benchmarks demonstrate the usability of our compiler. SCM2JS
compiled Scheme code is generally not more than twice as slowas
handcrafted JavaScript code.
We introduced the JavaScript and Hop integration. On the client
side the JavaScript interface allows to exchange data between
Scheme and JavaScript code, and an extension eases the use of
JavaScript values within Scheme code. On the server-side weare
able to replace JavaScript completely with Scheme.
As Hop itself is a variant of the Scheme language it is now possible
to write sophisticated web applications exclusively in Scheme.

9. References
[1] http://www.macromedia.com/shockwave.

[2] www.java.com/getjava/.

[3] http://www.cryptopunk.com/wip/lisptojavascript.html .

[4] http://gd.tuwien.ac.at/languages/OpenScheme/nposm.htm.

[5] http://blogs.bl0rg.net/netzstaub/archives/000525.html.

[6] Baker, H. – CONS Should Not CONS Its Arguments, Part II:
Cheney on the M.T.A<1> – Notices, 30(9), Sep, 1995, pp. 17-20.

[7] Colin Moock –ActionScript for Flash MX: The Definitive Guide –
, , 2002, pp. 1104 (est.).

[8] ECMA – ECMA-262: ECMAScript Language Specification –
1999.

[9] Florian Loitsch – Javascript to Scheme Compilation – 2005
Workshop on Scheme and Functional Programming, September,2005.

[10] Kelsey, R. and Clinger, W. and Rees, J. –The Revised(5) Report on
the Algorithmic Language Scheme– Higher-Order and Symbolic
Computation, 11(1), Sep, 1998.

[11] Schinz, M. and Odersky, M. –Tail call elimination of the Java
Virtual Machine – Proceedings of Babel&aps01, Florence, Italy, Sep,
2001.

[12] Serpette, B. and Serrano, M. –Compiling Scheme to JVM
bytecode: a performance study– 7th Int&apsl Conf. on Functional
Programming, Pittsburgh, Pensylvanie, USA, Oct, 2002.

[13] Serrano, M. and Gallesio, E. –HOP, a language for programming
the Web – 2006.

[14] Tatsurou Sekiguchi and Takahiro Sakamoto and Akinori Yonezawa
– Portable Implementation of Continuation Operators in
Imperative Languages by Exception Handling– Lecture Notes in
Computer Science, 20222001, pp. 217+.

10 2006/4/7

