Operational Semantics of
Cooperative Fair Threads

FrEDERIC BoussINOT*
Frederic.Boussinot@sophia.inria.fr

June 2002

Abstract

Fair threads are cooperative threads run by a fair scheduler which gives them equal
access to the processor. Fair threads can communicate by broadcast events. The
paper describes formal semantics for fair threads and fair schedulers in the structural
operational semantics format.

Keywords: Concurrency, Threads, Cooperative Scheduling, Structural Operational Se-
mantics

1 Introduction

FairThreads is a new framework for concurrent programming which puts the focus on sim-
plicity, clarity, and portability. The intension is to provide users with an alternative to
standard approaches of multithreading such as POSIX Pthreads in C, or Java threads.
FairThreads has been first proposed in the context of Java[2]. It has then been introduced
in the Bigloo[8] implementation of Scheme. Recently, a version of FairThreads has been
proposed for C[9]. FairThreads definition is relying on previous work belonging to the so-
called reactive approach described in the Web site [7]. FairThreads has strong links with the
Junior framework[4, 5] which is a set of Java classes for reactive programming. Comparison
of Java threads and SugarCubes, a framework closely related to Junior, can be found in [1].
In order to get a simple and clear framework, it appears that a formal approach is
mandatory. The purpose of this paper is to describe the formal operational semantics of
a large fragment of FairThreads. More precisely, one considers the cooperative part of the
framework, that will be called Cooperative FairThreads, and gives rewriting rules for it.
This semantics is close to the one of SugarCubes, described in [1]. A denotational semantics
is presently under work for the version of Cooperative FairThreads implemented in Bigloo.

Cooperative FairThreads

Cooperative fair threads are cooperative threads run by a scheduler which gives them equal
access to the processor. As usual in cooperative contexts, fair threads must never forget to
cooperate with other threads. Scheduler fairness has two aspects:

e Fair schedulers define execution instants in which all started threads run up to their
next cooperation point.

*EMP/CMA-INRIA, MIMOSA project.

e Fair schedulers dispatch the same information to all threads. More precisely, events
generated in a scheduler are broadcast to all the threads it schedules.

Cooperative frameworks are generally considered to be simpler than preemptive ones.
Indeed, as preemption cannot occur in an uncontroled way, cooperative frameworks are less
undeterministic. Actually, Cooperative FairThreads puts the situation to an extreme point,
as it is fully deterministic; threads are chosen for execution following a strict round-robin
algorithm. This can be a great help in programming and debugging.

Fairness in event processing means that all threads waiting for an event receive it during
the very instant it is generated; thus, a thread leaving control to cooperate with othes
threads does not risk to loose an event generated later in the same instant. Note that
scheduler instants define time scopes of events.

Cooperative FairThreads is fully portable as its semantics does not depends on the
executing platform.

Structure of the paper

The paper has the following structure: section 2 describes the syntax considered and the
notations used; section 3 gives an intuitive overview of the semantics; rewriting rules for
instructions used by fair threads are described in section 4; finally, section 5 describes
semantics of fair threads and of fair schedulers.

2 Syntax and Notations

As FairThreads are used in several different contexts, one defines an abstract syntax which
can be easily translated in the concrete syntax used in these contexts. Moreover, as the
goal is to give semantics for Cooperative FairThreads, not all primitives of FairThreads
are considered, but only those that fit in the purely cooperative framework (for example,
unlinked threads which are defined in the C version of FairThreads are not considered
because they are basically preemptive).

2.1 Threads

A fair thread t is basically made of 3 components:
e t.run is the instruction run by the thread.

e t.status is the execution status; initially, it has value CONT, which means that ex-
ecution has to be continued during the current instant. Status is TERM when the
thread is totally terminated; it is COOP when the thread cooperates because it has
finished execution for the current instant.

e t.suspis a boolean which is true if the thread is suspended, and false otherwise.

One associates to each thread ¢ a special event, denoted by term(t), used to signal the total
termination of ¢.

2.2 Instructions

The syntax of instructions is defined by:
inst basic_inst

syncnst

control_inst

timed_inst

get_value_inst

Basic Instructions
Amongst basic instructions, are calls, sequence of instructions, while loops, boolean tests,

etc.

basiciinst = call

nsty ... inst,

\

| while(exp) inst

| if(exp) inst1 else insta
|

Calls are means to change the environment; their exact syntax does not matter for the
abstract syntax (in concrete syntax, calls can be function, procedure, or method calls).

Synchronizing Instructions
Instructions for synchronization are: cooperate, waiting for an event, generation of an event,

and joining a thread (that is, waiting for termination of it).

syncanst = cooperate
| await(event)
| generate(event)
| generate_value(event,value)
| join(thread)

Control Instructions

Control instructions give fine control over threads: basically, threads can be created, stopped,
suspended, and resumed.

control_inst

I

create(thread)
| stop(thread)
| suspend(thread)

| resume(thread)

Timed Instructions
Timed instructions terminate when a delay (actually, defined by a number of instants)

expired; cooperate, await, and join are concerned.

timed_inst ::= cooperate_n(number)
| await_n(event, number)

| join_n(thread, number)

Get Value Instruction

The get_value instruction returns the kth values (it it exists) associated to a given event.

getvalueinst = get_value(thread, event, k)

Correspondance with the API in C
The correspondance with the C API of [9] is straightforward:
e cooperate: ft_thread_cooperate
e aqwait: ft_thread await
e generate: ft_thread_generate
o generate_value: ft_thread generate value
e join: ft_thread_join
e create: ft_thread create
e stop: ft_scheduler_stop
o suspend: ft_scheduler_suspend
o resume: ft_scheduler_resume
e cooperate_n: ft_thread_cooperaten
e aqwait_n: ft_thread awaitn
e join_n: ft_thread_joinmn

o get_value: ft_thread get_value

Note that only one scheduler is considered in Cooperative FairThreads (it can thus
be considered as implicit). For simplicity, error codes returned by instructions are not
considered.

2.3 Schedulers
A fair scheduler sched is made of several components:
e sched.actual is the list of active threads.
e sched.events is the list of generated events.
e sched.eoi is a boolean which is set to true at the end of each instant.
e sched.move is a boolean which is set to true when a new event is generated.
e sched.to_broadcast is the list of events to be considered as present at next instant.
e sched.to_start is the list of threads to be started at next instant.
e sched.to_stop is the list of threads to be stopped at next instant.
e sched.to_suspend is the list of threads to be suspended at next instant.
o sched.to_resume is the list of threads to be resumed at next instant.

e sched.values is the list of values associated to generated events.

2.4 Notations

Fair threads semantics is expressed in the so-called structural operational semantics (SOS)
format defined in [6].

Expressions
Evaluation of expression exp in the environment env is written:
exp k= env — env’

v is the result of evaluation, and env' is the resulting environment.

Instructions

Execution of the instruction inst by the scheduler sched in the environment env is written:
inst, sched, env 2 inst', sched’, env’

inst' is the resulting instruction, and « is the status (TERM, COOP, CONT) after exe-
cution; sched' is the resulting scheduler and env’ is the resulting environment.

Threads
Execution of the thread ¢ by the scheduler sched in the environment env is written:
t, sched, env LI t', sched , env’

t' is the thread after execution, and b is a boolean which is true if execution is finished for
the current instant; sched’ is the resulting scheduler and env’ is the resulting environment.

Schedulers
One execution step of the scheduler sched with the environment env is written:
sched, env i) sched’, env’

sched' is the resulting scheduler and env' is the resulting environment; the boolean b is
true if all threads have finished their execution for the current instant.
A sequence of execution steps leading to a situation where all threads are finished for
the current instant defines a complete instant of sched; it is written:

sched,env = sched’, env’

sched' is the resulting scheduler and env' is the resulting environment.

3 Overview of the Semantics

In this section, one gives an intuitive overview of the semantics.

3.1 Instants

Let’s consider a scheduler sched and an environment env. The final goal of the semantics
is to shows how sched and env evolves as time passes. Actually, evolution is decomposed in
a sequence of instants; first instant is:

sched,env —> sched;, env;

which means that, starting from sched and env, one gets sched; and env; at the end of
the instant.

Threads are not immediately started as soon as they are created in order to avoid
interferences with currently running threads. Actually, all threads created during one instant
are stored in sched.to_start, and are actually started at the beginning of the next instant.
In the same way, events broadcast from the outside world are stored in sched.to_broadcast
and are incorporated in the system at the beginning of the next instant. Stop, suspend, and
resume orders are processed in the same way.

Thus, evolution of the scheduler as time passes is a sequence of the form:

sched, env = schedi, env1 sched'l, envy = scheda, enva schedg, envy — scheds,envs ...

where sched] = sched; except that all orders collected during instant ¢ are incorporated in
sched.

Now, let’s decompose instants: each instant consists in cyclically running all threads
that are to be continued. Running a thread ¢ means to resume execution of its associated
instruction ¢.run. A thread which is to be continued is a thread which is neither suspended
nor completely terminated, and which has not already cooperated during the instant. The
instant is over when all threads that are not suspended are either terminated or have coop-
erated.

Threads which are started are placed in the actual vector of the scheduler. At the
beginning of each instant, threads that are completely terminated (TERM) and threads
stopped during previous instant are removed from actual. Remaining threads receives the
status CONT meaning that they are to be continued. Thus, at the beginning of each instant,
all threads in actual are either suspended or are to be continued. At the end of the instant,
all threads are either suspended, or terminated (TERM), or have cooperated (COOP). Note
that the order in which threads are executed always remains the same during an instant.
Note also that suspensions and resumptions of threads do no change the order in which the
other threads are executed.

3.2 Instructions

An execution step of an instruction inst run by a scheduler sched in an environment enwv is
written:

. [e3 .
inst, sched, env — inst’, sched', env’

inst is the instruction associated to the thread ¢ (¢.run) started in sched, and « is the code
returned after execution:

e Code TERM means that t is completely terminated, and, thus, must be removed from
the scheduler.

e Code COOP means that t cooperates, having finished to execute for the current in-
stant; in this case, inst’ is the new instruction that ¢ has to run at the next instant.
Basically, COOP is produced by the cooperate instruction.

e Code CONT means that t must be continued during the current instant; actually,
this happens when ¢t awaits an event e which is not present; in this case, the scheduler
gives control to the others threads which can generate e; as ¢ is to be continued for
the current instant, the scheduler will resume it; thus, if e is finally generated, it will
be seen by t.

The scheduler behavior consists in cyclically running the threads in actual until some
have to be continued. The number of cycles depends on the generated events. For example,
consider a situation where actual =< t1,t2 > and t; awaits the event e generated by t-.
Then, after t, execution, a new cycle is needed to resume t;. Otherwise, ¢; would not
consider e as present despite the fact that it is generated; in such a situation, one could not
say that e is broadcast. Note that a third cycle would be necessary if, after generating e, t2
where waiting for another event generated by t;. Actually, new cycles are needed until one
reaches a situation where no new event is generated; then, the end of the current instant
can be safely decided.

The scheduler uses two boolean flags to manage instants:

e The flag move is set each time a new event is generated; it is reset by the scheduler
at the beginning of each cycle. The scheduler does not decide the end of the cur-
rent instant when move is set, to give threads waiting for some generated event the
possibility to react to it.

o The flag eoi is set by the scheduler when the end of the current instant is decided; it
is reset at the beginning of each new instant. It is used to inform threads which are
waiting for events that these events are definitely absent. Then, the threads cooperate,
which leads to a situation where all non-suspended threads in actual are terminated,
or have cooperated. At that point, the next instant can safely take place.

Awaiting an event which is absent blocks a thread up to the end of the current instant.
This forbids immediate (that is, during same instant) reaction to the absence of an event;
reaction, if any, is thus postponed to next instant. This is important to avoid situations
where one could react to the absence of an event during a instant by generating it during
the same very instant, which would contradict the fact that the event is absent. These kind
of contradictions, known as ”causality problems” in synchronous languages[3], do not exist
with fair threads. In the same way, trying to get a not available generated value blocks a
thread up to the end of the current instant.

4 Instructions

This section describes the rewriting rules defining the semantics of instructions.

4.1 Call

A call immediately terminates after running the called function:

TERM
call, sched, env —R> nothing, sched, env’ (1)

where env' is the environment obtained after executing call in env, and nothing is the
instruction that does nothing:

TERM .
nothing, sched, env —R) nothing, sched, env (2)

4.2 Sequence

For simplicity, one only considers binary sequences (general sequences can be coded with
binary ones). There are two rules, depending on the termination of the first branch. If the
first branch terminates, then the second one is immediately run:

. TERM . . o .
inst1, sched,env — inst}, sched',env’ insta,sched’,env’ — inst), sched”, env”

3)

. . (=3 .
inst; insta, sched,env — inst), sched” , env"

If the first branch is not terminated, then so is the sequence:

inst1, sched, env —» inst), sched',env' o # TERM

(4)

. . (o3 . .
inst1 inste, sched, env —» inst] instz, sched', env’

4.3 While Loop

A while loop tests a boolean condition and terminates immediately if it is false:

false
erp = env — env'

(5)

while(exp) inst, sched, env TERM nothing, sched, env’
The body is executed when the condition is true:

true . . L= 2
erp E env — env' whilejnsi(exp) inst, sched, env’ — inst', sched', env'

while(exp) inst, sched, env =5 inst!, sched', env'

The auxiliary while;ns; instruction is defined in the following section.

Auxiliary While Instruction

The auxiliary while instruction runs the loop body up to termination, without re-evaluating
the boolean condition; then, it rewrites as a standard while loop which evaluates the condi-
tion to determine if the body has to be run.

. TERM . . o a .
inst, sched,env ~— inst’,sched',env’ while(exp) initial, sched',env’ — inst”, sched”,env'

(7)

. . @ .
while;nitiqai(exp) inst, sched, env — inst”, sched”, env'

inst, sched,env —= inst’, sched' ,env’ o # TERM

(8)

. . (o3 . .
while;nitiai(exp) inst, sched, env — while;pitiar(exp) inst’, sched', env’

4.4 If

The left branch is chosen if a boolean condition is true:

true . o .
exp E env — env’ insty, sched,env’ — inst], sched’, env"”

©)

. . . (o3 .
if(exp) insty else insty, sched,env — inst!, sched’,env'

Otherwise, the right branch is executed:

false . a .
exp = env —> env’' insty,sched,env’ — inst}, sched', env’

(10)

. . . (=3 .
if(exp) insty else insts, sched,env — instl,, sched’, env'!

4.5 Cooperate

The cooperate statement finishes execution for the current instant; moreover, nothing re-
mains to be done at the next instant (thus, execution at the next instant will resume in
sequence from cooperate):

coopP .
cooperate, sched,env —> mnothing, sched, env (11)

4.6 Generate

A generate statement adds the generated event in the event set of the scheduler, and
immediately terminates; moreover, the move flag is set to indicate that something new
happened:

TERM
generate(event), sched, env ER nothing, sched', env (12)
where sched' = sched[events += event][move := true].

If a value is associated to the generation, it is added at the end of the table of values
associated to the event.

generate(event,v), sched, env TERM nothing, sched', env (13)
where sched' = sched[events += event][move := true][values(event) += v].

4.7 Await

An instruction await terminates immediately if the awaited event is present:

event € sched.events

(14)

. TERM .
await(event), sched,env ~—" nothing, sched, env

An instruction await has to be continued if the awaited event is not generated while the
current instant is not terminated:

event ¢ sched.events sched.eoi = false

(15)

. CONT }
await(event), sched,env — await(event), sched, env

An instruction await cooperates if the awaited event is absent, that is, it is not generated
and the current instant is terminated:

event ¢ sched.events sched.eoi = true

(16)
await(event), sched, env cogr await(event), sched, env
4.8 Join
Nothing is done if the thread to be joined is already terminated:
t.status = TERM (17)

. TERM)
join(t), sched,env ~— mnothing, sched, env

If the thread is not already terminated, semantics of join is to wait for the event generated
by the scheduler when the thread terminates (see section 5.1).

t.status # TERM await(term(t)), sched,env — inst, sched', env'

(18)

join(t), sched,env — inst, sched!, env'

4.9 Create

Execution of create(t) adds t to the vector to_start. Thus, ¢t will be started at the next
instant.

create(t), sched, env TERM nothing, sched[to_start += t|,env (19)

4.10 Stop
Execution of stop(t) adds t to the vector to_stop. Thus, t will be stopped at the next instant.

stop(t), sched, env TERM nothing, sched[to_stop += t], env (20)

4.11 Suspend

Execution of suspend(t) adds t to the vector to_suspend. Thus, ¢ will be suspended at the
next instant.

suspend(t), sched, env TERM nothing, sched[to_suspend +=], env (21)

4.12 Resume

Execution of resume(t) adds ¢ to the vector to_resume. Thus, ¢t will be resumed at next
instant.

resume(t), sched, env TERM nothing, sched[to_resume += t],env (22)

4.13 Cooperate_n

Execution of cooperate_n(k) has no effect if the delay defined by k is expired:
k<0

(23)
cooperate_n(k), sched, env TERM nothing, sched, env

Otherwise, the thread cooperates and the instruction to be executed at next instant is
cooperate_n(k —1).

k>0 (24)

CcOOP
cooperate_n(k), sched,env —> cooperate_n(k — 1), sched, env

Actually, cooperate_n(k) is equivalent to the loop for(int i = 0;i < k;i + +) cooperate().

4.14 Await_n

Execution of await_(e, k) terminates immediately if e is present or if the delay defined by &
is expired:

event € sched.events or k<0

(25)
TERM
await_n(event, k), sched, env ER] nothing, sched, env

Execution of await_(e, k) is to be continued if e is not present while the current instant is
not terminated:

event ¢ sched.events k>0 sched.eoi = false (26)

. NT .
await_n(event, k), sched, env coN await_n(event, k), sched, env

Execution of await_n(e, k) cooperates if e is absent; moreover, the instruction to be executed
at the next instant is await-n(e, k — 1):

event € sched.events k>0 sched.eoi = true

cooP (27)
await_n(event, k), sched,env — await_n(event,k — 1), sched,env

4.15 Join_n

Nothing is to be done if the joined thread is already terminated or if the delay is expired:
t.status = TERM or k<0

(28)
joinn(t, k), sched, env TERM nothing, sched, env
Otherwise, the semantics is defined, using await_n, by:
t.status # TERM await_n(term(t), k), sched,env — inst, sched',env’' (29)

join_n(t, k), sched, env — inst, sched', env’

10

4.16 Generated Values

If a value is available then it is returned and execution terminates immediately:

sched.values(event).length > k (30)

get_value(t, event, k), sched, env Tﬂ)M nothing, sched, env’
where env’ is enwv, transformed by the return of the value (this is not modelized here).
Execution is to be continued if no value is available while current instant is not termi-
nated:

sched.values(event).length < k sched.eoi = false

31

get_value(t, event, k), sched, env CONT get_value(t, event, k), sched, env

If no value is available when the current instant is over, then the instruction simply coop-
erates:

sched.values(event).length < k sched.eoi = true

COOP (32)
get_value(t, event, k), sched,env — mnothing, sched, env

5 Threads and Schedulers

This section describes the rewiting rules defining the semantics of threads and schedulers.

5.1 Thread

Nothing is done for a thread which is suspended, or whose status is different from CONT':
t.susp = true or t.status # CONT

true (33)
t, sched,env — t, sched, env

If a thread must be continued, then the instruction associated to it (t.run) is executed:

t.susp = false t.status = CONT t.run,sched,env = inst, sched', env’ (34)

t, sched, env —b) t', sched" ,env’
where:
o t' =t[run := inst][status = q
e b= falseif « = CONT, and b = true otherwise.

e sched" = sched'[events += term(t)][move := true] if « = TERM, and sched" =
sched' otherwise.

Note that the move flag is set in case of termination to postpone the end of the current
instant (otherwise, a thread waiting to join ¢ could remain unfired).

5.2 Scheduler Execution Step

During an execution step, the scheduler gives control to all the threads that have to be
continued. The threads considered are elements of the vector actual of the scheduler.
Nothing is done if actual is empty (written <>):

sched.actual =<>

true (35)
sched,env — sched,env

If actual is not empty, then all elements are considered in turn (n is the length of actual):

bi
sched;.actual[i], sched;, env; —> inst, sched;+1[actuali] := inst],env;y1 (€ 0.m—1 (36)

and b;
schedg,envg — ' schedn,envn

11

Note that threads are considered in a fixed order, which is the order of appearence in actual.
The resulting boolean is true only if all the threads have finished to execute for the current
instant.

5.3 Instant

Execution for an instant is finished when all threads have finished their execution for this
instant:

true
sched,env — sched’,env’
sched, env = sched’, env’

(37)

Otherwise, the scheduler cyclically performs execution steps. If no event is generated during
a step (move is still false at the end of the step), then the scheduler decides the end of the
current instant, by setting the eoi flag.

false
sched,env — sched',env’ sched’,env’ = sched"’, env"

sched, env => sched'”’ ,env"

where sched” = sched' except that:

(38)

e sched" .move = false;

e sched" .eoi = true if sched'.move = false, and sched" .eoi = false otherwise.

5.4 Chaining Instants

Let sched be a scheduler. One defines Next(sched) as the scheduler obtained from sched
by performing the following actions in sequence:

1. concatenate to_start to actual.
2. replace events by to_broadcast.

3. remove elements of to_stop from actual; moreover, for each ¢t € to_stop, add event
term(t) to events.

4. for each t € to_resume, set t.susp to false.
5. for each t € to_suspend, set t.susp to true.

6. for each thread t € actual, remove it if t.status is TERM , and otherwise set t.status
to CONT.

7. set the flag eoi to false.
8. reset to_start, to_broadcast, to_stop, to_resume, to_suspend, and values to empty.

The chain of instants performed by scheduler sched, starting from the environment env,
is:

sched,env => schedi,envi Next(schedi),envi = scheda,enva Next(scheds2), enva = scheds, envs ...

Note that Next(sched;) incorporates events, threads, and orders that have been pro-
duced (by the system itself, or by the external world) during previous instant i — 1.

12

6 Conclusion

One has defined the semantics of the cooperative part of a framework for concurrent pro-
gramming, based on the notion of a fair thread. Fair threads are run by fair schedulers
which give threads equal rights to get the processor and equal rights to receive broadcast
events.

Cooperative FairThreads has a clear and simple semantics, made of about 40 rules. The
semantics is deterministic: at each step, there is no choice of the rule to apply. As a first
consequence, Cooperative FairThreads is fully portable; the second consequence is that it
becomes possible to reason about programs expressed in Cooperative FairThreads; finally,
implementations can be very close to the semantics, which is a way to have confidence in
them.

References

[1] F. Boussinot, J-F. Susini, Java threads and SugarCubes, Software Practice & Experi-
ence, 30(5), 545-566, 2000.

[2] F. Boussinot, Java Fair Threads, Inria Research Report, 2001.

[3] N. Halbwachs, Synchronous Programming of Reactive Systems, Kluwer Academic Pub.,
1993.

[4] L. Hazard, J-F. Susini, F. Boussinot, The Junior reactive kernel, Inria Research Report
3732, 1999.

[5] L. Hazard, J-F. Susini, F. Boussinot, Programming with Junior, Inria Research Report
4027, 2000.

[6] G. Plotkin, A Structural Approach to Operational Semantics, Report DAIMI FN-19,
Aarhus University, 1981.

[7] http://wuw.inria.fr/mimosa/rp
[8] http://www.inria.fr/mimosa/fp/Bigloo

[9] http://www.inria.fr/mimosa/rp/FairThreads/FTC.

13

Contents
1 Introduction

2 Syntax and Notations

2.1 Threads e e
2.2 Instructions e e e e e e e
2.3 Schedulers e e
2.4 NotationsS o o i i e e e e e e e e

3 Overview of the Semantics
3.1 Instants e e e e e e
3.2 Imstructions e e e e e e

4 Instructions

4.1 Call . . . e e e e e e e e
4.2 Sequence.
4.3 While Loop e
s
4.5 Cooperate e
4.6 Generate. v it e e e e e e e e
4.7 Awalt e
4.8 JOII e
4.9 Create i e e e e e e e e e e e e
410 StOp e e
4.11 Suspendl e
4.12 Resume L e e e e e e
4.13 Cooperaten e e e e e
414 Awaitn L e e
415 Joinmo e e e
4.16 Generated Values e e e e
5 Threads and Schedulers
5.1 Thread e e
5.2 Scheduler Execution Step 0 e e e e e e e e
5.3 Imstant L L e e e e e e
54 Chaining Instants oL o e

6 Conclusion

14

11
11
11
12
12

13

