
Verifying programs and proofs

part II. describe program properties

Yves Bertot

September 2012

1 Motivating introduction

In version 8.4, the Coq system does not provide any debugging tool. On the other hand, it
provides ways to express logical expressions between various pieces of data. For instance, we can
express logically the relation that should exist between a function and its input, in a way that is
independent from the actual algorithm implemented in the function. If we think about a division
function (as we learn it in school), there is a simple relation between the divided number x, the
divisor y, the computed quotient q, and the computed remainder r:

x = y * q + r /\ r < y

In English, this relation states that x is equal to the sum of the product of y and q and r and
that r is smaller than y. This relation should be satisfied by the pair of numbers returned by a
division algorithms, but this can only be satisfied if we avoid dividing by 0. In this course, we will
concentrate on the language used to express relations between pieces of data.

In this lesson, we will learn how to write logical formulas that represent correctly what we
want to express and how to prove these formulas. This may be difficult for readers that have little
acquaintances with logic, but somehow, we should try to learn by practice. We know that we
understand it when we start being able to write concise formulas that we can prove, thus getting
lemmas, and when we can use these lemmas to prove other formulas, thus getting new theorems.

2 Writing logical formulas

2.1 Predicates

In this section, we will consider a new type, the type of propositions and ways to build atomic
objects in this type. The simplest way to assert a proposition is to say that some value is equal
to another. Here two examples:

Check 3 = 2 + 1.

3 = 2 + 1 : Prop

Check 3 = 4.

3 = 4 : Prop

Note that you can always write a logical proposition, as long as it is well-formed, even if this
proposition is false (here 3 = 4 is a well-formed logical proposition, even if it is false).

In this course, we will define new predicates by simply inventing new functions of one or two
arguments that return a value that is then compared to another value. For instance, we can write
a function that returns the boolean value true whenever its argument is even, and then make this
into a predicate by expressing that the value of the function is true.

1

Fixpoint even (n : nat) :=

match n with 0 => true | 1 => false | S (S p) => even p end.

Check even 3.

even 3 : bool

Check even 3 = true.

even 3 = true : Prop

We see here that there is a distinction between boolean values and propositions. In practice,
boolean values are meant to be the result of tests that can be checked by a program, but propo-
sitions may represent statements that no algorithm can verify in one run. Boolean values can be
produced and tested in programs. Logical proposition do not belong inside programs, at least for
our lessons.

2.2 Logical connectives

There are four simple connectives implies, and, or, not. These connectives are given with notations
that make it possible to write logical formulas in a short and readable way.

• Implication is noted ->.

• Conjunction (and) is noted /\.

• Disjunction (or) is noted \/.

• Negation is noted ~.

• Equivalence is noted <->. In fact A <-> B is a defined as A -> B /\ B -> A.

For instance, we can write the following proposition.

Check ~ (even 2) = true -> even 3 = false.

even 2 <> true -> even 3 = false

: Prop

2.3 Quantifications

We can also write formulas that give properties about a whole type. There are two main con-
nectives for this. The first one, forall, describes universal quantification. In other words, this
is used to express that every element of a type satisfies some property. The second one, exists,
describes existential quantification. This is used to express that at least one element satisfies some
property. For instance, one can write the following proposition.

Check forall x, even x = true -> exists y, x = 2 * y

Here, the example chosen as illustration is true and can be proved. In a sense, this means that we
can prove that the even function does what we intend it to do. On the other hand, we cannot write
an algorithm that verifies that the property holds, because it would need to verify the statement
for every natural number, but the set of natural numbers is infinite and the verification would
never end. This is why we make the distinction between propositions (that can be stated and
proved) and boolean values (that can be computed by an algorithm).

2.4 Some more predefined predicates

With the Arith and List libraries loaded, the Coq system also provides a predefined predicate
to compare two natural numbers, noted x <= y. Different variants are also provided for strict
comparisons (x < z), and for intervals (x <= y < z).

For lists there is also the In predicate, such that In x l means that x is inside l.

2

2.5 Playing with logical formulas

To progress further you should be able to write simple logical formulas that carry the meaning of
some of your knowledge about real life, programs, or mathematical facts.

In general, if you write A -> B and you mean this formula to be true, it is not necessary that
A is always true: you only want to express that B is true in all cases where A is true, but A may
sometimes be false and in those cases, B can also be false. On the other hand, if you write A /\

B and you mean this formula to be true, then A should always be true.
Here is a sentence: in winter, days are always shorter than nights, and there is always a day

that is rainy. We could capture this by assuming that we have a type of dates that contains all
dates in the year, a predicate winter that holds for dates in winter, a function night length

that returns the length of the night for every date, as a natural number (for instance counting the
number of minutes) and a similar function day length that returns the length of the day. Also,
we could have a function weather that associates a date and a year to the weather on that day.
This function would return its value in a type that contains at least the values sunny and maybe
rainy, or cloudy. The sentence could then be described by the following logical formula:

(forall d: date, winter d -> day_length d <= night_length) /\

(exists y : nat, exists d : date, weather y d = rainy)

The distinction between conjunction and implication is important. If you want to define a
predicate P and you know that some predicate A has to hold for every object that satisfies P, then
you should probably use a conjunction in the definition of P, not an implication, even though
there may be objects that do no satisfy A (and therefore they do not satisfy P either). Here is an
example with prime numbers: We know that all prime numbers are larger than or equal to 2. So
when writing a definition for the predicate prime we write something like that:

Definition prime n := 2 <= n /\ ...

If we replaced this conjunction by an implication, this would allow 0 to be considered a prime
number, because a formula of the form 2 <= 0 -> ... can always be proved.

3 Performing simple proofs

To perform a proof, we state the proposition we want to prove, then we decompose the proposition
into simpler propositions, until they can be solved. The commands used to decompose propositions
are called tactics. To learn how to use the tactics, it is handy to classify them according to the
connectives and according on whether the connectives appears in something we want to prove or
in something we already know.

3.1 Stating a logical formula

It is better to show that in an example.

Lemma ex1 : 2 = 3 -> 3 = 2.

The keyword is Lemma: we will use it every time we want to start a new proof. Then comes a
unique name, which we choose, ex1. Then comes a colon “:”. Then comes a logical formula (here
an implication between two equalities). We finish the command with a period.

3.2 Known facts and facts to prove

At any time during a proof, the Coq system displays goals, which describe what we have to prove.
Each goals has two parts, the first part is context of temporary known facts. The second part is
a conclusion, a fact that needs to be proved. A simple case of proof is when the fact we want to
prove is present among the known facts. In this case, it suffices to use the basic tactic assumption

to solve the goal. If we do that, the Coq system displays the next unsolved goal, or says that the
proof is complete.

3

3.3 Finishing a proof

When there are no more subgoals to solve, the system says that the proof is complete, but we still
have an operation to do: we must instruct the system to record the completed proof in memory.
This is done by typing in the command Qed.

3.4 Handling connectives

3.4.1 implication

When a goal’s conclusion is an implication, we can make it simpler by applying the tactic intros

H. This produces a new goal with an extra element in the context, which corresponds to the
proposition that was initially in the left hand side of the implication.

H : A

==================

2 = 3 -> 3 = 2

intros H’.

H : A

H’ : 2 = 3

==================

3 = 2

The name used as argument to the intros tactic is used to name the new fact in the context.
To use an hypothesis that contains an implication, we use the tactic apply. Here is an example.

H : A -> 2 = f 3

==================

2 = f 3

apply H.

H : A -> 2 = f 3

==================

A

This works only if the left hand side of the hypothesis H corresponds exactly with the conclusion.
The conclusion is replaced by left-hand side of the arrow. If there are several arrows in the
hypothesis, then several goals are produced. For instance, if the hypothesis had been A -> B ->

2 = 3, then we would have had two new goals, one with A and the other with B.

3.4.2 Conjunction

When a goal’s conclusion is a conjunction, we can make it simpler by applying the tactic split.
This produces two new goals whose statements are the parts of the conjunction.

H1 : A -> B

=======================

C /\ D

split.

H1 : A -> B

=======================

C

Subgoal 2 is:

D

4

When we want to use an hypothesis that is a conjunction, we often need to decompose this
conjunction to extract its parts as new hypotheses. This is done with the destruct command.

H : A /\ B

=====================

A

destruct H as [H1 H2].

H1 : A

H2 : B

=====================

A

3.4.3 Disjunction

When a goal’s conclusion is a disjunction, we can make it simpler by applying one of the tactics
left and right. This produces a new goal with only the chosen part of the goal.

H1 : A -> B

=======================

B \/ 2 = 3

left.

H1 : A -> B

=======================

B

Of course, we have to be careful and choose the tactic that will really lead us to a new goal that
is provable (in this example, choosing right looks silly).

When we want to use an hypothesis that is a disjunction, we often need to decompose this
conjunction to extract its parts as new hypotheses. But this produces two goals, because if we
have to cover the two case:

H : A \/ B

=====================

B \/ A

destruct H as [H1 | H2].

H1 : A

=====================

B \/ A

Subgoal 2 is:

B \/ A

The second goal contains an hypothesis named H2 (as stated in the destruct tactic) with B as
the statement.

3.4.4 Negation

When a goal’s conclusion is a negation, we can make it simpler by applying the tactic intros H.

H1 : A -> B

=======================

~ A

intros H.

H1 : A -> B

H : A

=======================

False

5

When proving “not A”, the idea is to show that assuming A would lead to a contradiction.
When we want to use an hypothesis that is a negation, we apply a tactic called case H. This

replaces the current conclusion by the negated formula.

H : ~ A

=====================

C

case H.

H : ~ A

=====================

A

We should do this exactly when we know that we will be able to prove A more easily that proving
C.

3.5 Quantifiers

3.5.1 Universal quantification

When trying to prove a universally quantified formula, we often use the tactic intros x, where
x is a name chosen to fix the value on which we want to reason. The idea is that if we want to
prove a formula for all members of a type, we should simply prove that this formula holds for a
single arbitrary one, which we chose to name x. Here is an example:

==================

forall A:Prop, A -> A

intros A.

A : Prop

==================

A -> A

This proof can be finished by typing intros H. and then assumption.

We shall see in another lesson that some universally quantified formulas can be proved by more
advanced means, like induction.

If one wants to use an hypothesis that starts with a universal quantification, one should most
of the time use the tactic apply. Here is an example:

H : forall x: nat, P x -> Q x

================

Q 3

apply H.

H : forall x: nat, P x -> Q x

================

P 3

Note that the Coq system found an instance of the universally quantified formula that corresponds
to Q 3, then it applied the same behavior as for implication.

3.5.2 Existential quantification

When trying to prove an existentially quantified formula, we have to provide a candidate value
that satisfies the required predicate. The tactic is called exists (with the same spelling as the
logical connective). Here is an example.

======================

exists x, 2 * x = 6

exists 3.

======================

2 * 3 = 6

6

As a result, we simply have to prove that the provided value (here 3) satisfies the required predicate.
When trying to use an hypothesis that starts with an existential quantification, we actually

want to decompose the information in this quantification, so that we obtain a new context that
really contains a value satisfying the interesting property. Here is an example:

H : exists x : nat, even x = true

======================

C

destruct H as [w Pw].

w : nat

even w = true

=======================

C

In the goal before the destruct tactic, there is no natural number that satisfies the property.
In the goal after the tactic, there is a natural number called w and we know that w satisfies the
property, so we can use it for various purposes.

3.6 Predicates

3.6.1 Equality

When we want to prove an equality, the simplest approach is when the two members of the equality
are equal (even modulo computation). Here is an example.

=====================

2 = 3 - 1

reflexivity.

No more subgoals.

This tactic can also be used if the computation uses functions that we have defined ourselves, like
even.

If we want to use an hypothesis that contains equalities, we can use the rewrite tactic.

H : 3 = 2

====================

2 = 3

rewrite H.

H : 3 = 2

====================

2 = 2

The tactic rewrite can also be used if the equality is wrapped inside a universal quantification.
In that case, it finds the first relevant instantiation of the universally quantified variable before
performing the replacement.

H : forall x : nat, f (f x) = g (x + x)

====================

g (2 + 2) = E

rewrite <- H.

H : forall x : nat, f (f x) = g (x + x)

====================

f (f 2) = E

Note also, that the <- modifier makes it possible to use the equality in a different direction.

7

4 Un exemple de preuve

Lemma distr_or_comm_l :

forall a b c, a \/ (b /\ c) -> (a \/ b) /\ (a \/ c).

intros a b c h.

destruct h as [ha | hconj].

split.

left.

exact ha.

left.

exact ha.

destruct hconj as [hb hc].

split.

right.

exact hb.

right.

exact hc.

Qed.

5 Exercises

1. Write a predicate multiple of type nat -> nat -> Prop, so that multiple a b expresses
that a is a multiple of b (in other words, there exists a number k such that a = k * b).

2. Write a formula using natural numbers that expresses that when n is even (a multiple of 2)
then n * n is even.

3. Write a formula using natural numbers that expresses that when a number n is a multiple
of some k, then n * n is a multiple of k (you don’t have to prove it yet).

4. Write a predicate odd of type nat -> Prop that characterize odd numbers like 3, 5, 37.

5. Assuming there exists a type T used to represent numbers and a function nat of T of type T

-> nat, which maps any element of T to the element of nat that it represents, and assuming
that tadd is a function of type T -> T -> T, how do you express that tadd represents
addition? Beware that several elements of T may represent the same element of nat.

6. Write the script that proves the following formula

forall P Q : nat -> Prop,

forall x y:nat, (forall z, P z -> Q z) -> x = y -> P x ->

P x /\ Q y

7. Write the script that proves the following formula

forall A B C : Prop, (A /\ B) \/ C -> A \/ C

8. Write the script that proves the following formula

forall P : nat -> Prop, (forall x, P x) ->

exists y:nat, P y /\ y = 0

9. Write the script that proves that when n is a multiple of k, then n * n is also a multiple of
k.

10. Write the script that proves that when n is odd, then n * n is also odd.

8

6 More information

Vous pouvez utiliser le livre [1] (disponible en français sur internet) et le manuel de référence [4].
Il existe aussi un tutoriel en français par un autre professeur [7]. Il y aussi des tutoriels en anglais
[5, 3].

References

[1] Y. Bertot and P. Castéran. Interactive Theorem Proving and Program Development,
Coq’Art:the Calculus of Inductive Constructions. Springer-Verlag, 2004.

[2] B. Pierce et al. Software Foundations http://www.cis.upenn.edu/~bcpierce/sf/

[3] Y. Bertot Coq in a Hurry Archive ouverte “cours en ligne”, 2008. http://cel.

archives-ouvertes.fr/inria-00001173

[4] The Coq development team. The Coq proof Assistant Reference Manual, Ecole Polytechnique,
INRIA, Université de Paris-Sud, 2004. http://coq.inria.fr/doc/main.html

[5] G. Huet, G. Kahn, C. Paulin-Mohring, The Coq proof Assistant, A Tutorial, Ecole Polytech-
nique, INRIA, Université de Paris-Sud, 2004. http://coq.inria.fr/V8.1/tutorial.html

[6] E. Giménez, P. Castéran, A Tutorial on Recursive Types in Coq, INRIA, Université de
Bordeaux, 2006. http://www.labri.fr/Perso/~casteran/RecTutorial.pdf.gz

[7] A. Miquel, Petit guide de survie en Coq, Université de Paris VII. http://www.pps.jussieu.
fr/~miquel/enseignement/mpri/guide.html

9

